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ABSTRACT
We present a novel method to improve action recognition by
leveraging a set of captioned videos. By learning linear pro-
jections to map videos and text onto a common space, our
approach shows that improved results on unseen videos can
be obtained. We also propose a novel structure preserving
loss that further ameliorates the quality of the projections.
We tested our method on the challenging, realistic, Holly-
wood2 action recognition dataset where a considerable gain
in performance is obtained. We show that the gain is pro-
portional to the number of training samples used to learn
the projections.

CCS Concepts
•Information systems → Video search; •Computing
methodologies → Activity recognition and under-
standing;

Keywords
Action recognition, Multi-modal learning

1. INTRODUCTION
Imagine listening to someone describing a movie clip. When

watching the actual footage afterwards, there will be many
divergences from what one may have pictured. Many of the
missing visual details from the description will likely appear
different in pictures, having been filled in by one’s brain.
That is because text and videos are very much different do-
mains.

A sentence describing a video clip will inevitably not il-
lustrate every detail of a scene, usually focusing on the rel-
evant semantic entities. A video, instead, carries plenty of
information. In particular, the semantic of a video is still
hardly represented through visual features due to the well
known semantic gap [20]. Features are designed to capture
appearance and motion, with invariance to lighting, camera
movements and viewpoint. They are not usually geared to
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represent meaning in the form of objects and actions, unless
some learning is involved. Consequently, both representa-
tions have natural limitation on the information they may
deliver. Yet two video sequences with similar descriptions
should share semantic properties.

We believe that the semantics of a text associated with
a video can be exploited to improve the visual features.
This approach has been successfully applied to image an-
notation [1]. Textual descriptions of videos have some in-
teresting properties. First they contain a high level repre-
sentation that is hard to obtain from the bare visual data.
Second they have a strong sequential structure that in some
cases, visual feature representation struggle to maintain.

In this paper we try to give an answer to the question:
“Do textual descriptions help action recognition?” To sat-
isfy this curiosity we devise a learning scheme to incorporate
the textual information into the video representation. We
require this process to be done once in advance, so that tex-
tual descriptions are not needed when attempting to predict
actions in a new video.

Our learning scheme has a first step, creating a connection
between visual and textual features, in the form of a feature
transformation. Finally this transformation is applied to vi-
sual feature vectors on which we want to learn human action
classifiers. When testing new videos only the transformation
and the classifier are needed.

The main contributions of this paper are:

• A method exploiting paired visual and textual data
to learn a common space, in which text semantic im-
proves visual features, leading to better action recog-
nition performance.

• A novel structure preserving loss, that is able to avoid
excessive distortion of the relationships in the initial
feature spaces.

To the best of our knowledge, this is the first work that
incorporates textual information into the video represen-
tation for the task of action recognition. Experiments on
the challenging Hollywood2 dataset show several benefits of
our approach, obtaining state of the art performance. Even
more, we show that performance increases with the amount
of training data and that such benefit is observable even
with relatively few samples.

2. PREVIOUS WORK
There are few contributions on cross-modal representation

for video and there is no previous work on action recogni-
tion exploiting joint multi-modal representations. For this



reason we briefly review works pertaining cross-modal space
learning and action recognition and highlight the few inter-
sections in these two lines of research.

2.1 Multimodal Joint Spaces
There is little prior art on video-text embedding. Das et

al. use latent topics modeling and a tripartite template graph
to map visual features to words and finally to generate a
textual description [2]. Xu et al. jointly model language
and visual space to improve retrieval [29]. Zhu et al. [31]
proposed to use a context-aware CNN to combine video and
text for the task of aligning books and movies.

Additionally, embedding visual and textual features into
a common space has been done for other tasks.

For the task of image annotation, Ballan et al. [1] pro-
posed to use Kernel Canonical Correlation Analysis to fuse
labels with image features into a semantic space. Consid-
ering that the top k ranked list of annotations are usually
transferred when annotating a novel image, in [28] a novel
embedding built with a rank loss is proposed. They show
that optimizing the precision at k in a joint word-image em-
bedding is useful. A deep visual semantic embedding model
is proposed in [4] to train visual models exploiting both la-
beled image data and semantic information gathered from
unannotated text. Socher et al. [21] proposed to employ a
neural network to map the training images to their respec-
tive word vectors, in order to perform zero-shot learning on
novel image categories.

For the task of captioning, in [22] the authors proposed
to use Recurrent Neural Networks (RNN) on dependency
trees, together with a learned multimodal representation for
describing images with sentences. In [8], another approach
based on RNN for describing images is proposed. They per-
form alignment of textual descriptions with an embedding
that is learned on training pairs of images and descriptions.

Differently from all these works, we address the task of
action recognition in video. We propose a novel loss to learn
a structure preserving common space in which action classi-
fication is easier, thanks to the incorporation of knowledge
from the textual space.

2.2 Action Recognition
Action recognition has received significant attention in the

past. The majority of the works follow a standard pipeline
where features are first extracted from the video and then
used as inputs to a classifier.

Since videos provide a huge amount of information through
motion, many works focused on the development of features
such as the improved Dense Trajectories (iDT) [26] and the
recent Convolutional Neural Networks (CNN) [12,23].

Improved Dense Trajectories exploit optical flow to per-
form feature tracking and extract consistent local descrip-
tors. Optical flow is estimated compensating camera move-
ments, registering subsequent frames with a transformation
[26]. They are considered state-of-the-art of video hand-
crafted features.

After local feature extraction, generic action recognition
methods typically apply a pooling strategy to obtain a global
feature of a video. As in the image domain, Fisher Vec-
tors [17] obtain the best performance [26].

In addition to handcrafted features, CNNs have been re-
cently found to be very good at learning meaningful fea-
tures [3, 23]. In [23], 3D convolutions are used to extend

an AlexNet CNN [12] to videos, with the aim of obtain-
ing learned features from its activations. They show per-
formance comparable to iDT features on datasets obtained
from YouTube.

Classification is usually performed using SVM. Only re-
cently few works began to employ CNN to train end-to-end
classifiers [9, 19].

3. FUSING TEXT AND VIDEO
In this section we introduce our embedding model which

learns, via linear projections, a novel representation for videos.

3.1 Common Space
Given a pair made of a video x ∈ RD and a sentence y ∈

RV , we define Wv ∈ RK×D and Wt ∈ RK×V respectively as
the video and sentence projection matrices, where K is the
dimensionality of the common space. The pair embedded
representation is:

u = Wv · x v = Wt · y (1)

Similarly as [8, 31], the idea is that paired elements should
be located very near in the projected space while unpaired
ones should be more distant. In particular, we require that
the cosine similarity cos(x, y) = x·y/(||x||·||y||) between two
paired elements (ui, vi) versus any other unpaired elements
should be greater than α ∈ (0, 1). To this end, we learn
matrices Wv and Wt solving an unconstrained problem, by
minimizing the following contrastive ranking loss:

Lrank =
∑
i

∑
k

max{0, α− cos(ui, vi) + cos(ui, vk)}+∑
i

∑
k

max{0, α− cos(vi, ui) + cos(vi, uk)}(2)

where vk and uk are contrastive terms, respectively incorrect
videos and sentences that should not be associated to ui and
vi.

3.2 Structure Preserving Space
One shortcoming of the pairwise ranking-loss defined in

Equation 2 is that no information of the original manifolds
of visual and textual features is preserved in the common
space. For instance, similar videos with close visual features
can be mapped far apart in the common space or, conversely,
dissimilar videos may end up close together.

We address this shortcoming by defining additional con-
straints that, in contrast to Equation 2, preserve the original
similarities in the common space. Thus, they act as a regu-
larizer that induces some structure of the original manifolds
into the common space.

We consider the constraint:

| cos(xi, xk)− cos(ui, uk)| < βv (3)

which enforces solutions that keep the similarity between
two videos, before and after the projection, within a mar-
gin βv. Similarly, we formulate the following constraint for
sentences:

| cos(yi, yk)− cos(vi, vk)| < βs (4)

We add these constraints to the problem defined by the min-
imization of loss in Equation 2. In order to maintain an
unconstrained problem, we relax the constraints defined in



(a) Video Space (b) Embedding Space

Figure 1: Effect of our projection, using t-SNE vi-
sualization on Hollywood2 dataset. Each color cor-
responds to a different label.

Equation 3 and Equation 4 into a structure preserving loss.
For videos, we define:

Ω =
∑
i

∑
k

max{0,−βv + cos(xi, xk)− cos(ui, uk)}+∑
i

∑
k

max{0,−βv − cos(xi, xk) + cos(ui, uk)} (5)

and for sentences, we define:

Θ =
∑
i

∑
k

max{0,−βs + cos(yi, yk)− cos(vi, vk)}+∑
i

∑
k

max{0,−βs − cos(yi, yk) + cos(vi, vk)} (6)

We add both terms to the ranking loss in Equation 2 and
define our novel structure preserving loss:

Lstruct = Lrank + Ω + Θ (7)

We show in Figure 1 a t-SNE [25] visualization of the
original video features and their projection in the common
space. It can be seen that a structure emerges in the embed-
ding space. Compared to the original features, video sharing
the same labels (i.e. the same colors) are put closer. This
suggests that a classification algorithm may be able to find
a better hypothesis.

Our embedding procedure uses a vector representation for
videos and descriptions. In the following we detail the visual
and textual features we have used in our experiments.

3.3 Video Representations
We explore two different video representations: learned

spatio-temporal features and handcrafted features. The for-
mer is based on recent developments in deep learning, specif-
ically we used the temporal extension of convolutional neural
network obtained by performing 3D convolutions on video
volumes namely C3D, proposed by Tran [23]. The latter
is the well known improved dense trajectory (iDT) features
proposed by Wang et al. [27].

For each video we compute C3D features on subsequences
of 16 frames using the network pre-trained on Sports-1M [9].
Specifically, we obtain the activations of the sixth network
layer which is Fully Connected (FC6). To obtain a global
video representation, we use average-pooling of the FC6 over
the whole sequence, ending with a 4096-dimensional vector.

We use all iDT descriptors, namely HOG, HOF, MBHx,
MBHy, MBHxy and trajectories coordinates, encoding them
with Fisher Vectors [17]. First we learn a PCA projection

on 200k randomly selected descriptors for each local fea-
ture. We retain the first 80 components of each feature (ex-
cept for trajectories which is compressed to 20). Then we
concatenate the space-time coordinates of the central tra-
jectory point, normalized in [−1, 1], to the PCA compressed
features. This adds spatial context to each local feature.

We estimate the GMM using the same subset on which we
have learned PCA. We consider 256 Gaussians as previous
work [26]. This results in a high dimensional representation
that can be prone to overfitting. Thus, we further compress
this representation to 4,096 dimensions with PCA, the same
of C3D representation.

3.4 Textual Representation
We employ the Skip-Thought representation [11] which

learns a distributed sentence representation using a neural
model similar in the spirit to Word2Vec [15]. Skip-Thought
are learned through an encoder-decoder architecture. A sen-
tence si is fed to the encoder one word wt

i at a time to
produce a hidden state hi representing the entire sentence.
Then, the decoder has to output the previous si−1 and the
next si+1 sentence of the corresponding text, exploiting the
encoder output hi. Thus, the model is learned optimizing
the sum of the log-probabilities for the forward and back-
ward sentences conditioned on the encoder representation.

Given sentences si, si−1 and si+1, the log loss to be opti-
mized is:∑

t

log p(wt
i+1|w<t

i+1, hi) +
∑
t

log p(wt
i−1|w<t

i−1, hi) (8)

where notation w<t indicates all words before wt, in the
same sentence. We use the combine-skip model that has a
hidden state hi dimensionality of 4,800.

3.5 Learning Details
We initialize matrices weights, with random uniform dis-

tribution, wij ∝ U
(
−
√

(2/nin),
√

(2/nin)
)

, where nin is

the input dimensionality of each domain. We set the pro-
jection space dimensionality K to 1000. Parameters α and
β were both set to 0.2.

We optimize all losses using ADAM [10]. Considering all
the contrastive pairs is unfeasible on large datasets, thus we
only select a set of random pairs at each iteration.

We set the batch size to 100 and randomly sample 50
contrastive elements for each batch element. We run no
more than 20 epochs and keep the model yielding the highest
action classification mAP. We measure the mAP using 5-fold
cross-validation on Hollywood2 training set.

After computing textual and visual features, we learn an
embedding space for each type of feature. Afterwards, we
apply the relative projections defined in Equation 1 to obtain
new visual features. We learn a one-vs-rest linear SVM for
each action class. For iDT we use late fusion, i.e. we sum
SVM scores of each single-feature classifier.

4. EXPERIMENTS

4.1 Datasets
Since no public dataset with textual descriptions and ac-

tion classes is publicly available, we consider one dataset to
learn the embedding and one to perform the actual action
recognition.



(a) iDT

Approach mAP

Wang [26] et al. 65.7
Jain [6] et al. 62.5
Zhu [30] et al. 61.4
Mathe [14] et al. 61.0
Jiang [7] et al. 59.5
Gaidon [5] et al. 54.0

iDT+Fisher 56.4
iDT+Fisher+PCA 58.4
ours 66.2
ours + structure 67.4

(b) CNN

Approach mAP

Max pooled LSTM [18] 43.2
Soft attention model [18] 43.9

C3D 44.7
ours 48.1
ours + structure 48.7

Table 1: Comparison with state-of-the art on Holly-
wood2.

The MPII Video Description Dataset [16] contains 68,337
short video sequences with associated textual descriptions,
gathered from 94 HD movies. The particularity of this
dataset is the availability of aligned Audio Descriptions.
They are textual descriptions of video sequences that, read
by a professional narrator, make movies accessible to vi-
sually impaired people. We use this dataset to learn the
embedding.

The Hollywood2 [13] dataset contains 1,707 video snip-
pets gathered from 69 HD movies labeled with 12 different
actions. It is a difficult dataset since actions have high vari-
ation in appearance, context and motion. We used the clean
training dataset with the provided train and test split. We
use this dataset to measure the actual action recognition
performance.

Both datasets are built from movies. We keep the datasets
independent by removing from MPII all clips extracted from
movies that are used in both datasets. We are left with
57,613 clips.

4.2 Results
We compare classification performance on Hollywood2 of

baseline features and their projected counterparts.
First, we report in Table 1 (a) the performance of our

approach using iDT features, compared to the state-of-the-
art. Our baseline is similar to the approach of Wang et
al. in [26]. However, for the sake of simplicity we do not
use Spatio-Temporal Pyramids in conjunction with Spatial
Fisher Vector. We just rely on the concatenation of local
feature coordinates to each descriptor to inject contextual
information. Thus, our implementation reaches 56.4 vs 65.7
of [26].

Applying PCA to the baseline does not compromise per-
formance in classification, actually slightly improving the
mAP. This behavior has been reported previously in image
retrieval tasks [24]. Our projection, learned with the struc-
ture preserving loss, obtains an improvement of more than
9 mAP points with respect to the FV+PCA baseline.

In Table 1 (b) we report classification results using the
C3D descriptor, compared with other CNN based approaches.
Unfortunately convolutional representations do not perform
very well on this challenging dataset. Our baseline is slightly
superior to the Soft attention model by Sharma et al. [18].
Nonetheless, using our re-projected features improves mAP
by 4 points. The structure preserving loss adds a slight im-
provement.

For both visual features we obtain a substantial improve-
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Figure 2: MAP on Hollywod2 varying the training
set size compared to baseline.

ment by learning a novel representation from video-text pairs.
Moreover our structure preserving loss helps in not corrupt-
ing the video similarity in the starting space consistently
improving the performance on both features.

We also analyze how the size of embedding training set
affects the action classification performance. Increasing the
set of captioned videos should increment the quality of the
common space. We are also interested to understand if the
learning method saturates. We perform this analysis using
the late fusion of iDT descriptors, that performed better
than C3D.

Interestingly, using 25% of the training set, we already get
a sensible improvement in classification performance. Even
more intriguing is the fact that the quality of the features
steadily increases until the whole training set is used, with no
observable saturation, as can be seen in Figure 2. We believe
that further increasing the amount of captioned videos may
lead to even better projections.

5. CONCLUSIONS
Our intuition that textual description can improve visual

features for action recognition in video proved correct. The
proposed method can easily leverage large sets of videos
paired with a description to improve action recognition. Pro-
jections in structure preserving common space, can be prof-
itably learned even with a smaller data set and performance
improvement, in our experiments, does not show saturation.
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