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ABSTRACT

In this paper we propose dense spatio-temporal features to
capture scene dynamic statistics together with appearance,
in video surveillance applications. These features are ex-
ploited in a real-time anomaly detection system. Anomaly
detection is performed using a non-parametric modelling,
evaluating directly local descriptor statistics, and an unsu-
pervised or semi-supervised approach. A method to update
scene statistics, to cope with scene changes that typically
happen in real world settings, is also provided. The pro-
posed method is tested on publicly available datasets and
compared to other state-of-the-art approaches.

Categories and Subject Descriptors

H.3.1 [Information Systems]: Content Analysis and In-
dexing; H.5.1 [Multimedia Information Systems]: Video

General Terms

Algorithms, Experimentation

Keywords

Anomaly detection, surveillance, local descriptors, action
recognition, spatio-temporal interest points

1. INTRODUCTION
Currently, the video surveillance systems that are deployed

rely primarily on human personnel that have to watch, usu-
ally simultaneously, the streams of several cameras. One of
the main objectives of these operators is to identify if some
unusual event is happening in the scene and then react ap-
propriately. The growing number of CCTV cameras being
deployed makes the systems based on human operators not
scalable: monitoring is expensive and tiring (after 20 min-
utes of work the attention of an operator degrades [9]) and
thus becomes ineffective. To solve these issues video analyt-
ics techniques that automatically analyze the video streams
and warn, in real time, the operators when some unusual
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activity is taking place, are getting a large attention in the
scientific community. Once an anomaly has been detected
it is possible to perform higher level video analysis, such as
target tracking, behaviour and human action recognition, or
exploit pan-tilt-zoom cameras to capture higher resolution
images, e.g. to perform face logging and recognition.

Anomaly detection approaches require to build a model of
normal data and then to attempt to detect variations in the
observed data from this model. The model can be learned
using supervised [2, 5, 7, 10] or unsupervised approaches [1,
4, 6, 11, 12, 16, 17]. Given the fact that anomalies are rare,
differing amongst each other with unpredictable variations,
in this work we follow an unsupervised approach.

The model can be learned off-line as in [5, 7, 10, 13] or in-
crementally updated (as in [1, 12]) to adapt itself w.r.t. the
changes that happen over time within the visual context of
a setting. Our approach continuously updates the model, to
deal with changes in “normal” behaviour, e.g. due to varia-
tions in lighting and scene setting.

Most of the methods for identifying unusual events in
video sequences use trajectories [2, 7, 10, 11, 13, 17] to repre-
sent the activities shown in a video. In these approaches ob-
jects and persons are tracked and their motion is described
by their spatial location; the main drawbacks of tracking-
based approaches are the fact that only spatial deviations are
considered anomalies, thus abnormal appearance or motion
of a target that follows a “normal” track is not detected, and
the fact that it is very difficult to cope with crowded scenes.
Optic flow has been used to model typical motion patterns
in [1,12,16] but, as noted in [13], also this measure may be-
come unreliable in presence of extremely crowded scenes; to
solve this issue a dense local sampling of optic flow has been
adopted in [1]. Local spatio-temporal descriptors have been
successfully proposed in [8, 14] to recognize human actions,
while more simple descriptors based on spatio-temporal gra-
dients have been used to model motion in [4,13] for anomaly
detection.

In this work we propose a non-parametric approach that
detects and localize anomalies in real-time, using dense local
spatio-temporal features that model both appearance and
motion of persons and objects. Using these features it is
possible to deal with different types of anomalies and with
crowded scenes. This approach addresses both the problem
of high variability in unusual events and the need of deal-
ing with scene changes that happen in real world settings.
The paper is structured as follows: the local spatio-temporal
descriptor is described in Sect. 2; in Sect. 3 is presented
the anomaly detection method; finally experimental results,
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Figure 1: Examples of overlapping cuboids: i) spatial overlap, ii) temporal overlap, iii) spatio-temporal
overlap.

obtained using standard datasets, and conclusions are dis-
cussed in Sect. 4.

2. SPATIO-TEMPORAL FEATURES
Detecting abnormal situations in video-surveillance sce-

narios has often to deal with the modelling of crowd pat-
terns. Describing such statistics is extremely complex since
object detection and tracking is often unfeasible both for
computational issues and for occlusions; moreover as stated
in Sec. 1, the use of trajectories does not allow to capture
variations of scene appearance and the presence of unknown
objects moving in the scene. Global crowd descriptors are
not able to describe anomalous patterns which often occurs
locally (e.g. a biker or a person moving in an unusual di-
rection among a crowd). The most suitable choice in this
context is to observe and collect very short local space-time
patches. Due to the short temporal extension (5-10 frames)
of actions and movements, especially if the scene is filmed at
a distance as typical in surveillance, is necessary to sample
this features overlapped both in time and space so to obtain
an almost complete coverage of the scene statistics.

The spatio-temporal features used in the system are densely
sampled using a grid of cuboids that overlap in space and
time. Fig. 1 shows an example of spatial, temporal and
spatio-temporal overlaps of cuboids. This approach allows
to precisely localize an anomaly both in terms of position on
the frame and in time; it models also the fact that certain
parts of the scene are subject to different anomalies, illu-
mination conditions, etc., and is well suited for the typical
surveillance setup where a fixed camera is observing a scene
over time. In addition it makes it possible to reach real-
time processing speed, since it does not require to perform
spatio-temporal interest point localization.

The spatio-temporal volumes extracted on the overlap-
ping regular grid are represented as in the following. To
compute the representation of each volume we define a de-
scriptor based on three-dimensional gradients computed us-
ing the luminance values of the pixels (Fig. 2). Each volume
is divided in 18 subregions (three along each spatial direction
and two along the temporal); each subregion is described by
spatio-temporal image gradient represented in polar coordi-
nates as follows

M3D =
q

G2
x + G2

y + G2
t , (1)

φ = tan−1(Gt/
q

G2
x + G2

y), (2)

θ = tan−1(Gy/Gx) (3)

Figure 2: Example of cuboids extraction.

where Gx, Gy and Gt are respectively computed using fi-
nite difference approximations: Lσd

(x + 1, y, t) − Lσd
(x −

1, y, t), Lσd
(x, y +1, t)−Lσd

(x, y−1, t) and Lσ(x, y, t+1)−
Lσd

(x, y, t − 1). L is obtained by filtering the signal I with
a Gaussian kernel of bandwidth σd (in all the experiments
we have used σd = 1.1). We compute two separated ori-
entation histograms quantizing φ and θ, weighting them by
the magnitude M3D. This descriptor is robust w.r.t. illu-
mination and lighting changes, as required in a surveillance
context in which a video could be recorded over a large ex-
tent of time. We do not apply a re-orientation of the 3D
neighbourhood, since rotational invariance, otherwise useful
in object detection and recognition tasks, is not desirable in
a human behavior and scene modelization context. The φ
(with range, −π

2
, π

2
) and θ (−π,π) are quantized in four and

eight bins, respectively. The overall dimension of the de-
scriptor is thus 3× 3× 2× (8 + 4) = 216. This construction
of the three-dimensional histogram is inspired, in principle,
by the approach proposed by Scovanner et al. [18], where
they construct a weighted three-dimensional histogram nor-
malized by the solid angle value (instead of quantizing sep-
arately the two orientations) to avoid distortions due to the
polar coordinate representation. However, we have found
that our method is computationally less expensive, equally
effective in describing motion information given by appear-
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ance variation, and showing an accuracy of human action
recognition that is above or in line with other state-of-the-
art descriptors [3], but without requiring tuning of descriptor
parameters.

3. NON-PARAMETRICANOMALYDETEC-

TION
Our system is able to learn from a normal data distri-

bution fed as a training set but can also start without any
knowledge of the scene, learning and updating the “normal
behaviour” profile dynamically. The model can always be
updated with a very simple procedure. Despite the simple
formulation of this approach our system is able to model
complex and crowded scenes, including both dynamic and
static appearance patterns.

3.1 Semi-supervised detection
In anomaly detection tasks a certain amount of normal

data is usually available; our system can exploit this data as
a training set to bootstrap itself and run in a semi-supervised
fashion. Our system can also be run on-line with no previous
knowledge of the scene, since a model update procedure is
provided.

To jointly capture scene motion and appearance statistics
we extract pixel cuboids on a regular, slightly overlapped
spatio-temporal grid. Cuboids are represented with a ro-
bust space-time descriptor described in Sect. 2. In order to
decide if an event is anomalous there is need of a method
to estimate normal descriptor statistics. Moreover, since no
assumptions are made on the scene geometry or topology,
it is important to describe this normal descriptors distri-
bution locally w.r.t. the frame. Therefore, given a certain
amount of training frames for each cell in our grid, space-
time descriptors are collected and stored using a structure
for fast nearest-neighbour search, providing local estimates
of anomalies; an overview of this schema is shown in Fig. 3.
The training stage is very straightforward, since we do not
use any parametric model to learn the local motion and ap-
pearance; instead we represent the scene normality directly
with descriptor instances.

A simple way to decide if an event happening at a certain
time and location of the video stream has to be considered
anomalous, is to perform a range query on the training set
data structure to look for neighbours. Once an optimal ra-
dius for each image location is learned, all patterns for which
the range query does not return any neighbour are consid-
ered anomalies. The problem with this technique is the in-
trinsic impossibility to select a-priori a correct value for the
radius. This happens for two reasons: firstly, each scene
location undergoes different dynamics, for example a street
will mostly contains fast unidirectional motion generated by
cars and other vehicles, while a walkway will have less in-
tense motion and more variations of the direction; moreover
a static part of the scene, like the side of a parking lot, will
mostly contain static information. Secondly, we want to be
able to update our model dynamically by adding data which
has to be considered normal given the fact that we observed
that kind of pattern for a sufficient amount of time; there-
fore, since that scene statistics has to evolve over time, the
optimal radius will evolve too. Finally, we also would like
to select a value that encodes the system sensitivity, i.e. the

K-means

tree

K-means

tree

tree

K-means

tree
K-means

tree

Normal data

Anomaly

tree

Normal data

Anomaly

Anomaly

Figure 3: System overview. Each cell features
are stored on efficient k-means tree based indexes.
Planes underneath represent a simplified view of the
high dimensional feature space; dashed circles are
plotted at the optimal radius value.

probability that the observed pattern is not generated from
the underlying scene descriptors distribution.

To estimate the optimal radius for each data structure
we compute CDFi, the empirical cumulative distribution of
nearest-neighbour distances of all interest point in the struc-
ture of the cell i of the overlapping grid. Given a probability
pa below which we consider an event anomalous, we choose
the radius r̂i for cell i as:

r̂i = CDF−1

i (1 − pa) . (4)

The anomaly probability pa can be set to 10−2, 10−3, 10−4,
10−5, . . . depending on the user’s need to obtain a more or
less sensitive system. This optimal radius formulation allows
easy data-driven parameter selection and model update.

3.2 Model update
Since the applications for anomaly detection in video surveil-

lance are designed to be executed for a long time, it is very
likely that a scene will change its appearance over time; very
simple examples are the event of a snowstorm, the cars that
enter and exit a parking lot or the placement of temporary
structures in a setting. It is therefore very urgent to pro-
vide a way to update our model. Again, we propose a very
straightforward data-driven technique.

Together with the data-structure for each overlapping grid
cell, we keep a list of anomalous patterns. On a regular ba-
sis this list is inspected and new data is incorporated by ap-
plying the following procedure. We exploit the same range
query approach presented in the previous subsection, to look
for normality in the abnormality list. If some event happens
very frequently it is likely that it will a have certain amount
of neighbours in feature space, while true anomalous event
will still be outliers. After the estimation of an optimal ra-
dius for the anomalous pattern list, we discard all outliers
in this list and incorporate all other data in the cell i train-
ing set. The optimal radius r̂i for the updated cell is then
recomputed.

Even if it is not required, since they can be used with
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default values, two parameters of the system can be tuned
to adapt them to a particular scenario: grid density and
overlap of cuboids. Reducing the cuboids overlap can in-
crease the detection performance, while using a more or less
dense spatio-temporal grid can serve also as a system adap-
tation for a specific camera resolution or frame rate. These
two parameters are directly bound to physical and technical
system properties (e.g. camera resolution and computer pro-
cessing speed) that the user can easily access to figure out
a proper configuration. Instead, the system automatically
computes the optimal radius parameter, that is a quantity
that is extremely task, scene and time dependent.

4. EXPERIMENTAL RESULTS

4.1 System evaluation
We tested our approach on UCSD1 anomaly dataset which

provides a frame-by-frame local anomaly annotation. Videos
are recorded at a resolution of 238 × 158 and 10 fps us-
ing fixed cameras that overlook pedestrian walkways. This
dataset mostly contains sequences of pedestrians in walk-
ways; annotated anomalies, that are not staged, are non-
pedestrian entities (bikers, skaters, small carts) accessing the
walkway and pedestrians moving in anomalous motion pat-
terns or in non walkway regions. The dataset is split in two
sets of sequences, each of which is recorded from a different
camera and corresponds to a different scene. The first sub-
set contains 34 training video samples and 36 testing video
samples, while the latter contains 16 training video samples
and 14 testing video samples for a global amount of 100.
Each sequence lasts around 200 frames, for a total dataset
duration of ∼ 33 minutes. We tested our approach on the
first split of the UCSD dataset. Each anomalous frame in
the testing set is annotated; for each cuboid classified as
anomalous, we flag as anomalous each region of the frames
from which it was created; frames that contain at least one
anomalous region are considered anomalous.

In the first set of experiments we evaluated the best pa-
rameters for dense sampling and overlapping of the spatio-
temporal descriptors. Results are reported using the ROC
curve and the Equal Error Rate (EER) - that is the rate
at which both false positives and misses are equal. Fig. 5
reports the ROC curves while varying the parameters of
size and spatial overlapping of cuboids (reported in terms
of pixels), with pa varying from 10−5 to 10−2. Reducing the
cuboid size allows a more precise localization of anomalies
but, as a drawback, may increase the amount of false de-
tections, see Fig. 1 for an example of this behavior of our
system. We also tested different cuboid temporal exten-
sions in the range 5-12 frames, finding that the best per-
formance is obtained with a value of 8. The EER curve in
Fig. 4 shows that the best results are obtained for cuboids
of 40 × 40 pixels, while the ROC curve shows that a 50%
spatial overlap achieves the lowest EER (i.e. intersection of
the ROC curve with the dashed line), while temporal over-
lap has no substantial benefit; spatial overlap helps to detect
more abnormal patterns without raising false positives since
it improves the spatial localization of the anomaly, while a
dense sampling in time, derived from temporal overlap, in-
creases the false positive rate leading to a slightly degraded
performance.

1http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
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Figure 5: ROC curves for the UCSD dataset, while
varying size and spatial overlap of cuboids (top) and
temporal extent and overlap (bottom).

Since the approach aims at real-time processing, we have
evaluated the impact of the dense sampling of cuboids, com-
puting the average number of processed frames per second
while varying the spatial overlap of cuboids. Fig. 6 shows
that even with 50% spatial overlap, the system is able to pro-
cess 17 frames per second, despite the fact that no code opti-
mization, like parallelization, has been adopted. Cuboid size
does not affect the computation time since smaller cuboids
imply an increased number of descriptors which are faster
to compute while bigger cuboids generate fewer but slower
to compute descriptors. This results were obtained on a 2.6
GHz CPU with 3 GB of RAM.

Since in video surveillance the precision of the alarms is
important, because a human operator may be disturbed
by a high number of false alarms, in Fig. 7 we report the
precision-recall curve for the UCSD dataset, created varying
the pa parameter from 10−5 to 10−2, showing a good per-
formance; considering low probabilities pa for the anomalies
reduces the recall, while raising the precision, and viceversa.
In particular the break-even point at 0.70 of precision and
recall is obtained for 10−4

≤ pa ≤ 10−3. Fig. 9 shows a qual-
itative comparison of anomaly localization of our approach
with other state-of-the-art approaches, while Fig. 10 shows
other examples of anomaly localization of our approach.

We compare our system with results of other state-of-the-
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Figure 9: Qualitative comparison of anomaly localization with other methods: our method, mixture of
dynamic textures [15], social force and mixture of principal components analyzers [12,15], social force only [16].
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Figure 8: ROC curve to compare of our method with
state-of-the-art approaches. The dashed diagonal is
the EER line.

art approaches, as they are reported in [15]: MPCCA [12],
Adam et al. [1] and Mahadevan et al. [15]. Fig. 8 shows
that our approach obtains the second best result after the
method proposed in [15], but it has to be noted that this ap-
proach is not suitable for real-time processing since it takes
25 seconds to process a single frame on a computer with a
computational power comparable to the machine used in our
experiments.

Conclusions

In this paper we have presented a non-parametric anomaly
detection approach that can be executed in real-time in a
completely unsupervised manner. We have also provided a
straightforward procedure to dynamically update the learned
model, to deal with scene changes that happen in real-world
surveillance scenarios. Dense and overlapping spatio-temporal
features, that model appearance and motion information,
have been used to capture the scene dynamics, allowing the
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cessed while varying the spatial overlap of cuboids.
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Figure 7: Precision-Recall curve for the UCSD
dataset.
detection of anomalies, such as carts and bicycles ona pedes-
trian walkway in a challenging crowded scene which cannot
be modeled using trajectories or pure motion statistics (op-
tical flow).

A comparison on a publicly available dataset shows that
our method executes in real-time and achieves the best per-
formance with respect to existing state-of-the-art real-time
solutions [1, 12]. Our future work will deal with the expan-
sion of the system to model contextual appearance, motion
and temporal information.
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