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Abstract

In this paper we describe a system for automatic people
counting in crowded environments. The approach we pro-
pose is a counting-by-detection method based on depth im-
agery. It is designed to be deployed as an autonomous ap-
pliance for crowd analysis in video surveillance application
scenarios. Our system performs foreground/background
segmentation on depth image streams in order to coarsely
segment persons, then depth information is used to localize
head candidates which are then tracked in time on an auto-
matically estimated ground plane. The system runs in real-
time, at a frame-rate of about 20 fps. We collected a dataset
of RGB-D sequences representing three typical and chal-
lenging surveillance scenarios, including crowds, queuing
and groups. An extensive comparative evaluation is given
between our system and more complex, Latent SVM-based
head localization for person counting applications.

1. Introduction
People counting and crowd analysis are two important

and classical computer vision problems in video surveil-
lance. People counting can be loosely understood as the
instantaneous estimation of the number of persons present
in a scene, and crowd analysis can be understood to be the
higher-level analysis of behaviors of groups of people in
crowded scenes. In crowded, public environments like air-
ports, shopping malls and railway stations, automatic peo-
ple counting and crowd analysis can alert operators to po-
tentially dangerous situations without having to dedicate
manpower to monitoring many video streams.

Despite the importance of people counting in modern
video surveillance contexts, the problem remains a sub-
ject of active research. Techniques for people count-
ing can be divided into two, broad categories. The De-
tection+Counting approach uses a pedestrian detector to

identify candidate person regions in an image, then typi-
cally applies some type of segmentation or disambiguation
post-processing to verify person candidates before count-
ing. Recent counting-by-detection approaches use either
RGB [4, 2] or depth imagery [14, 7, 9].

The first step for counting objects is usually to apply mo-
tion segmentation to detect moving scene elements. Fehr et
al. detect moving objects using a mixture of Gaussians and
project blobs on both ground and “head” planes. The inter-
section of these two blob projections is considered the area
occupied by people. This approach assumes people density
to be constant in every moving blob and therefore may be
inaccurate in case this assumption is not true. Kong et al.
rely on histograms of normalized features to take into ac-
count perspective [2]. Their method requires some parame-
ter learning.

The simplest way of exploiting depth for counting is to
orient cameras perpendicularly to the ground plane [14].
This approach is simple and effective, but poses a strong
constraint on system deployment. Moreover, such sensor
deployment may strongly reduce the area covered by sen-
sors when the ceiling is not high enough. To address this
issue some approaches work with arbitrary camera orienta-
tions [7, 9]. Fu et al. apply template matching to locate head
and shoulder patterns that are used as seeds for segmenta-
tion. Hsie et al. project depth clouds onto the ground plane
and exploit morphology to find people blobs. The method
in [7] deals with crowded environments by splitting pairs
of incorrectly fused blobs. In case of severe crowding this
approach is limited and may not split groups of more than
two people for which there is not a single convexity in the
extracted hull. Similarly, the approach in [9] can not re-
ally handle extremely crowded scenes since the projection
of blobs on the ground plane may result in fused blobs for
close targets. Chan applies a Gaussian process regressor
on segmented blobs to estimate the people count [1]. This
hybrid approach needs training data (i.e. annotated people



counts for a number of frames).
The other category of techniques for people counting is

Feature-Based Counting. These techniques, rather than re-
lying on an explicit detection phase to identify and delineate
persons in an image, exploit image features to estimate the
true count [11, 12, 13]. The idea of counting-by-regression
was recently exploited in [11, 12]. Feature-based counting
has been proposed for extremely crowded images by Idress
et al. [10]; they propose the exploitation of multiple features
that correlate with crowd density such as head detector out-
put and SIFT location. Lempitsky et al. apply the idea of
learning to count with minimal supervision. They require
only a single dot per object to count as annotation and learn
a regressor on features correlated with object density. Both
these approaches only count the objects in an image and
do not provide a true estimate of the number of individu-
als crossing into and out of an area. To solve this issue in
a regression framework, Ma et al. proposed a counting-by-
regression approach on a time-slice image of the area of
surveillance [12].

Counting by regression has the strong disadvantage of
requiring training data. So every deployment of such a sys-
tem will typically need some annotated frames. One of our
driving design goals for our counting system is that the de-
ployment require minimal human intervention. We there-
fore decided to implement a counting-by-detection method
based on 3D sensors. Our algorithm runs in real time, re-
quires no training data and can exploit cheap, off-the-shelf
sensors. The approach uses depth information to obtain
highly accurate foreground segmentation, followed by well-
localized head detection and projection to an automatically
estimated ground plane. RGB-D cameras like the Microsoft
Kinect are becoming commodity devices deployed in many
application scenarios. These sensors provide synchronized
depth information about the scene in parallel with the RGB
video stream.

In the next section we give a brief overview of our en-
tire system. Then in Section 3 we describe our approach to
head detection and localization in depth image streams. In
Section 4 we describe a multi-target tracking system used
to track persons from entry into until exit from the area of
surveillance, and in Section 5 we report on a series of ex-
periments performed to evaluate our system.

2. System overview
Our people counting system is designed to provide accu-

rate, real-time performance in crowded environments. We
take an appliance approach to the design of our system,
envisioning a distributed surveillance system where each
appliance communicates with a central surveillance engine
implementing logic for global surveillance and resource op-
timization tasks. As an example, a large department store
may wish to monitor people inflow and outflow at given

(a) RGB frame (b) Incorrect blob detection

Figure 2: Example of incorrect blob labeling in crowd.

times of the day. Each door can be equipped with our peo-
ple counter that communicates how many customers enter
or exit the store. Another scenario could be related to public
safety, where police agencies may want to monitor the birth
of agglomerates of people in sensitive public areas.

In our application scenarios we require simple, effective
image processing and computer vision techniques in order
to deploy the system on low-end hardware. We show the
information flow from sensor to high-level person count-
ing and crowd analysis algorithms in Figure 1. Our design
is simple and effective. We assume depth images from a
calibrated stereo system as input to our system. We first
extract the foreground using the depth stream. Applying
simple edge detection with a Sobel operator and combining
the foreground edges in the depth map with the foreground
map we can separate almost every blob in the scene. We lo-
calize heads with the algorithm explained in Section 3 and
project the top head point onto the automatically-estimated
ground plane. We then use Multi-Target Tracking (MTT)
with simple nearest neighbor data association to estimate
people flow.

3. Head localization
Since ours is a counting-by-detection approach, the first

step of our pipeline is the detection of each subject. Instead
of searching for a full pedestrian we focus in the localization
of heads in the RGB-D video stream. We begin by remov-
ing the background through selective running average back-
ground subtraction. Denoting the background pixel model
at time t as Bt(x, y) and the new frame as Ft(x, y), a depth
pixel is considered foreground if |Bt(x, y)−Ft(x, y)| > ∆.
The background at pixel x, y is:

Bt(x, y) = αδt(x, y)Ft−1(x, y)+(1−αδt(x, y))Bt−1(x, y),
(1)

where

δt(x, y) =

{
0 if |Bt(x, y)− Ft(x, y)| > ∆

1 otherwise.
(2)

To identify the heads of each target we first label con-
nected components in the foreground image. Unfortunately,
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Figure 1: A diagram of the principal modules in our system. The depth maps of frames are processed to detect moving
objects. Heads are then located in the foreground-segmented depth map, and the highest point is projected onto the ground
plane. These positions are then used as detections for input to a multi-target tracking system and the crowd analysis algorithm.

when crowding occurs all foreground pixels can be incor-
rectly grouped into a blob as shown in Figure 2. To avoid
connecting all foreground pixels we first apply a mask com-
puted by binarizing the response of the Sobel operator on
the depth image. Using this mask we separate blobs at dif-
ferent distances from the sensor. As shown in Figure 1, blob
detection is significantly improved by this simple step: the
edges in the depth map provide essential cues required for
segmenting people moving in unison an who are thus not
well-segmented by the background model alone.

For each blob B we apply the following procedure to
localize the corresponding head. Consider the set of pix-
els P = {(x1, y1), (x2, y2), ..., (xn, yn)} ∈ B. We com-
pute d̂ = minpD(x, y), where D(x, y) is the depth value
at location (x, y). We retain pixels (x, y) of B for which
D(x, y) ∈ [d̂, d̂+ ε]. After processing each blob in this way
only the head pixels remain in the foreground mask and re-
labeling this image yields accurate head localization in the
image plane. Blobs with an area of less than 300 pixels are
discarded.

4. People tracking

Head localization as described in the previous section al-
lows frame-wise people counting. This is already a useful
feature that has many security and public safety applica-
tions. To count the exact number of people passing from
a controlled area we need to detect entering and exiting
events. This is a problem that can be solved only with mul-
tiple target tracking. Tracking on the ground plane is also
beneficial in case of multiple devices controlling partially
overlapped areas.

Using the internal camera parameters:

K =

αx 0 x0
0 αy y0
0 0 1

 , (3)

Figure 3: Example of ground plane estimation (left) in a
crowded scene (right). Each person point cloud has a dif-
ferent color.

we estimate the 3D location of points using:

x3D = [(x2D − x0) ·D(x2D, y2D)]/αx

y3D = [(y2D − y0) ·D(x2D, y2D)]/αy

z3D = D(x2D, y2D).

To extract the ground plane we run RANSAC to fit a
plane on the entire point cloud [6, 8]. This is a simple setup
step that need be run only once or in cases the camera orien-
tation is changed. As shown in Figure 3, the ground plane
is accurately estimated. To count people an area of analysis
must be defined. The user can easily select a polygon on the
ground in the RGB frame that we then project on the ground
plane using the stereo calibration.

To perform multiple target tracking on the ground plane
we use a very simple yet effective approach. After detecting
objects (i.e. head projections on the plane), we perform data
association. At each frame we build a distance matrix:

C =


c11 c12 ... c1m
c21 c22 ... c2m

...
...

...
...

cn1 cn2 ... cnm

 cij = d(ti, pj). (4)

that maps detections pj to existing tracks ti. We use a
greedy approach that iteratively associates track/detection



Seq Frames Persons Persons/frame Person flow
FLOW 1260 3542 2.80 28

QUEUE 918 5031 5.48 8
GROUPS 1180 9057 7.68 0

Table 1: Dataset statistics. “Persons” is the total number
of detectable persons, and “Person flow” is the number of
persons entering and exiting the scene.

pairs with the smallest distance. We do not associate pairs
for which cij is more than 30 cm. Every unassociated track
is temporarily disabled. For each unassociated detection a
new track is created. We attempt to re-associate disabled
tracks in subsequent frames until their time-to-live expires
(10 frames).

Counting people is now trivial: for a specified direction
of counting, everytime a target inside the controlled area
exits the area a counter is incremented. The instantaneous
count per frame is given by the number of detections ob-
tained with the method in Section 3.

5. Experiments
Here we report on a number of experiments performed

to evaluate the performance of our approach in a number of
challenging and realistic situations. We also describe a pub-
licly available dataset we developed of RGB-D sequences
designed specifically for evaluation of people counting ap-
plications.1 We believe this to be one of the most complete
RGB-D dataset resources for people counting and crowd
analysis applications.

5.1. Dataset

We acquired a dataset of RGB-D imagery under typical
conditions for visual surveillance applications in crowded
environmnents. We recorded three video sequences that en-
compass three common people grouping and motion sce-
narios:

• In the FLOW sequence we asked the participants to
walk straight from one point to another of the room.
This sequence is useful to evaluate people counting
systems in scenarios such as retail access or under-
ground/train station pedestrian walkways.

• In the QUEUE sequence we asked participants to act
as if waiting in line. People move slowly forward as
people ahead are served. This sequence is challenging
since pedestrians can be absorbed by the background
while waiting and is useful to test the robustness of the
background modeling under real conditions.

• Finally, in the GROUPS sequence we asked partici-
pants to split into two groups and talk to each other

1URL of dataset withheld for double-blind review.

without exiting the controlled area. This sequence rep-
resents scenarios related to public safety in open and
closed spaces.

In all of the three sequences people are highly occluded as
seen in in Figure 4. Table 1 reports some statistics on the
sequences in our dataset.

5.2. Experimental results

We performed a comparison of our counting by detection
method with the state of the art Latent SVM (LSVM) pedes-
trian detector [5]. We used the model trained on the INRIA
dataset since on our dataset it gave the best performances.
We localize heads in frames using LSVM by running the
part-based detector on the frame. Then, after non-maximum
suppression we extract all the head parts and then further
suppress overlapping heads, which we found removed some
false positive detections. We also report results using an
improved version of this technique that exploits the seg-
mented foreground mask; after heads are localized, we re-
move all boxes that do not contain at least 30% foreground
pixels. We refer to this segmentation-enhanced version as
“LSVM+Segm” below.

We leave the 3D localization of targets and tracking the
same, and therefore project the lowest point of the detected
head onto the ground plane and use this data as detec-
tions for input to greedy, nearest neighbor data association
scheme. The lowest point is the most likely to fall on the
person point cloud.

We measure precision and recall for people detection on
the ground plane. We map the ground truth and detected
head points onto an area of 0.5 × 0.5 meters around the
projected point and consider a detection correct if the VOC
overlap score is above 0.5 [3]. As in the PASCAL VOC
challenge, duplicate detections are considered false posi-
tives and are not associated even if they have a VOC score
higher than 0.5.

We also measure the counting accuracy with the mean
absolute error:

MAE =
1

N

N∑
f=1

|count(f)− gt(f)|, (5)

over all frames f = 1, . . . , N . This averages the per frame
discrepancies between predicted count count(f) and the
ground truth gt(f). With this value we have a more inter-
pretable datum to assess system performance and compare
its performance with competing ones. This measure, how-
ever, is not rigorous in a scientific sense since it can be influ-
enced by lucky guesses. As an example, a frame with three
persons and three detections is considered correct even if
the bounding boxes are completely decorrelated. Our sys-
tem runs in real time (20fps), while running the LSVM de-



(a) Our method (b) LSVM (c) LSVM+Segm.

Figure 4: Example detections for our method, Latent SVM and Latent SVM+Segm.

Precision Recall MAE
Our Method 0.9753 0.8926 0.4138

Latent SVM+Segm [5] 0.9082 0.5955 1.2502
Latent SVM [5] 0.8478 0.6054 1.0302

Table 2: Comparison of our method with LSVM and
LSVM+Segm on the FLOW sequence.

tector on our frames which are 640x480 takes around 6 sec-
onds per frame.

As can be seen in Tables 2, 3 and 4 our technique greatly
improves over LSVM in frame-by-frame people counting
for the basic LSVM and the version using the depth image
for background modeling. In Table 2 we report results on
the FLOW sequence. On this sequence the relatively high
speed of people renders the background model accurate, al-
though the fast motion can also result in missed head de-
tections, affecting recall. Recall is also affected by the high
occlusions rate in this sequence.

In Table 3 we report results of our approach and LSVM
on the QUEUE sequence from our dataset. In this sequence
precision is much lower than on the other two. Finally,
in Table 4 we report our results compared to LSVM and
LSVM+Segm on the GROUPS sequence. Our approach

Precision Recall MAE
Our Method 0.9534 0.9169 0.6521

Latent SVM+Segm [5] 0.8516 0.5538 2.6314
Latent SVM [5] 0.7915 0.5673 2.3097

Table 3: Comparison of our method with LSVM and
LSVM+Segm on the QUEUE sequence.

Precision Recall MAE
Our Method 0.9795 0.9453 0.5861

Latent SVM+Segm [5] 0.8725 0.5633 3.1781
Latent SVM [5] 0.8236 0.5798 2.8448

Table 4: Comparison of our method with LSVM and
LSVM+Segm on the GROUPS sequence.

performs best on this sequence, likely due to the lower oc-
clusion rate.

In every sequence our algorithm has a substantially bet-
ter performance with respect to LSVM and its improved
version LSVM+Segm. In terms of MAE our method has
an average error of less than one person per frame, while
LSVM and LSVM+Segm produce counts off by 2-3 per-
sons on GROUPS and QUEUE and by 1 person on FLOW.
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(a) FLOW (b) QUEUE (c) CROWD

Figure 5: Recall distance curves on the three sequences from our dataset.

In terms of precision and recall, we obtain a similar behav-
ior on the three video sequences, with the segmentation step
making LSVM more selective increases precision signifi-
cantly. Our method is still the best with a precision always
higher then 0.95 and a recall of at least 0.89.

Requiring a VOC score of 0.5 can be considered very
strict for assessing performance. For this reason we also
add an evaluation of the three methods with less strict cri-
teria. For each dataset we compute a recall-distance curve
similar to [12]. For each frame in every sequence we asso-
ciate ground truth detections with predicted ones using the
data association in Section 4. In Figure 5 we plot recall as
a function of distance threshold for considering detections
correct. To compute these curves we run the association
algorithm for a set of distance thresholds and compute the
recall for each threshold over the whole sequence.

In all experiments our curve is much steeper than the oth-
ers. We also see qualitatively from the frames in Figure 4
that our method extracts heads at more precise locations
than Latent SVM and its version exploiting foreground seg-
mentation. Recall that LSVM-based methods reach a value
close to 0.5 when the distance threshold is more than 300
mm. This means that LSVM-extracted heads are correlated
with the head locations. The lower maximum recall indi-
cates that LSVM labels fewer heads than our approach, and
thus suffers more in terms of recall than precision.

6. Discussion

In this paper we described a robust, real-time system
for people counting and crowd analysis. The main appli-
cation scenario envisaged is the control of access to desig-
nated areas of surveillance. Our approach uses RGB-D im-
agery, exploiting depth information to accurately segment
the foreground from the background and to segment per-
sons from each other even in crowded sequences. A multi-
target tracker using greedy data association is used to track
entrance and exit of people from a designated area. Ex-
perimental results show our approach to significantly out-
perform more complex detection techniques such as Latent
SVM for head localization.
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