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Abstract. Video stream compression, using lossy algorithms, is performed to
reduce the bandwidth required to transmit them. Typical cases in which this may
happen are commercial streaming services, video surveillance or camera enabled
IoT devices. In all these cases a solution to improve the video quality, either for
human view or for automatic video analysis, is to perform a post-processing that
eliminates the compression artifacts introduced by the compression algorithms.
Generative Adversarial Network have been shown to obtain extremely high qual-
ity results in image enhancement tasks; however, to obtain top quality results
high capacity large generators are usually employed, resulting in high computa-
tional costs and processing time. In this paper we present an architecture that can
be used to reduce the cost of generators, paving a way towards real-time frame
enhancement with GANs.
With the proposed approach, enhanced images appear natural and pleasant to the
eye. Locally high frequency patterns often differ from the raw uncompressed im-
ages. A possible application is to improve video conferencing, or live streaming.
In these cases there is no original uncompressed video stream available. There-
fore, we report results using popular no-reference metrics showing high natural-
ness and quality even for efficient networks.

1 Introduction

Every day a huge number of videos are produced, streamed and shared on the web,
and many more are produced and used within private systems and networks, such as
mobile phones, cameras and surveillance systems. To practically store and transmit
these video streams it is necessary to compress them, to reduce bandwidth and storage
requirements. Typically video is compressed using lossy algorithms, given the need to
deal with large quantities of data, especially when dealing with HD and 4K resolutions
that are becoming more and more common. The effect of these algorithms results in
a more or less strong loss of content fidelity with respect to the original visual data,
to achieve a better compression ratio. However, since one of the factors that accounts
for user experience is image quality, compression algorithms are designed to reduce
perceptual quality loss, according to some model of the human visual system.

A typical use case in which a high compression is desirable is that of video con-
ferencing, in which video streams must be kept small to reduce communication latency
and thus improve user experience. Another case is that of wireless cameras, in partic-
ular mobile and wearable ones, that may need to limit power consumption reducing
the energy cost of image transmission applying strong compression. Also in the case of
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entertainment video streaming, like Netflix or Amazon Prime Video, there is need to re-
duce as much as possible the required bandwidth, to reduce network congestion and op-
erational costs. Video conferencing and video surveillance require to spare bandwidth,
adding also the requirement of reduced latency, that can be achieved through compres-
sion. Another use case is that of videos encoded and transmitted from IoT devices and
drones, in which there is the low-energy constraint that calls for high compression of
the streams to reduce transmission time, to save battery power.

When compressing videos several artifacts appear as shown in Fig. 1. These arti-
facts are due to the different types of lossy compressions used. Considering MPEG-
based algorithms such as H.264 and H.265/AVC or AV1, the most common and recent
algorithm used nowadays, these artifacts are due to the chroma sub-sampling (i.e. drop-
ping some color information of the original image) and the quantization of the DCT
(or DST) coefficients; other artifacts are due to blocking processing of frames, due to
how the original uncompressed frame is partitioned for compression, but is also due
to erroneous motion compensated prediction [20]. These two causes are common also
in image compression algorithms such as JPEG. Finally, another source of artifacts is
associated with motion compensation and coding, such as flickering, caused by differ-
ences in frame reconstruction between intra-frames and inter-frames (i.e. key frames
encoded as images and frames reconstructed using motion compensation) [31].

An approach to improve the perceived image quality while maintaining a high com-
pression rate is to perform filtering on the reconstructed frames, to reduce the effect of
the various artifacts. The most recent codecs, such as H.265 and AV1 envisage stan-
dardised deblocking filtering.

In this work we propose a solution to artifact removal based on convolutional neu-
ral networks trained on large sets of frame patches compressed with different quality
factors. Our approach is independent with respect to the compression algorithm used to
process a video; it can be used as a post-processing step on decompressed frames and
therefore it can be applied on many lossy compression algorithms such as WebM, AV1,
H.264/AVC and H.265/HEVC.

One of the main advantages of improving video quality working on artifact removal
is that our method can be applied just on the receiving end of a coding pipeline, thus
avoiding any modification to the existing compression pipelines, that are often opti-
mized e.g. using dedicated hardware such as graphic cards, GPUs or SoCs. Another
important aspect is that often streaming services use a dynamic adaptive streaming ap-
proach, that compose video streams using different versions encoded at different bit
rates (and thus at different qualities) to cope with bandwidth availability; an example
of this is the Dynamic Adaptive Streaming over HTTP (DASH) [27]. This means that
we could not rely on an approach based on super-resolution, that would require image
sub-sampling also on the coding end.

2 Related Work

Improving image quality is a topic that has been vastly studied in the past, especially in
the case of compression artifact removal. Many approaches are based on image process-
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Fig. 1: Examples of video compression artifacts: top) blocking artifacts on the bottom part of the
green pole, color interpolation due to chroma sub-sampling on left and right of the umbrella; mid)
and bottom) ringing around the white on blue text in the street name sign; little vertical flickering
(1-2 lines) of numbers and letters (in particular N and 7) between two following frames.

ing techniques [5, 8, 14, 18, 19, 30, 32, 34, 35]. Recently, several learning based methods
have been proposed [6, 9, 10, 16, 21, 28, 29].

Best results have been obtained using Deep Convolutional Neural Networks (DCNN),
trained to restore image quality using couples of undistorted and distorted images. A
major strength of this type of approach is that once the degrading process is known,
e.g. video compression, generating data is extremely easy and does not requires hand
labeling, but just to generate degraded images from high quality input. Degraded im-
ages will be fed as input to restoration networks while high quality sources will be
regarded as ground truth or target images. Dong et al. [6] extended their previous work
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on super-resolution SRCNN with artifact removal CNN (AR-CNN) sharing a common
architecture with SRCNN, following sparse coding pipelines. Svoboda et al. [28] fol-
low a similar approach, obtaining improved results in image restoration by learning
a feed-forward CNN. The main difference with respect to [6] is that the CNN is a
standard multi-layered network in which the layers have no specific functions, using
residual learning and skip connections. Recent works [3,9,33] tend to use deeper archi-
tectures, often employing residual blocks. Cavigelli et al. [3] trained 12-layers CNN to
remove JPEG artifacts. Their CNN uses skip connection in a hierarchical fashion. Local
frequency classifier are trained and exploited by Yooet al. to condition and encoder-
decoder architecture in reconstructing JPEG compressed images [33]. Galteri et al. are
the first to propose a method that uses a GAN ensemble and a quality predictor that
allows them to restore images of unknown quality [9]. Their method shows superior
results in term of perceived quality.

To the best of our knowledge the only method restoring compressed video frames
is proposed by He et al. [13]. Their method, tightly bound to HEVC coding, exploits
coding unit to learn a two-stream CNN receiving a decoded frame and combines it with
a feature map computed from the partition data.

2.1 Contribution

Unfortunately all best performing artifact removal methods do not perform in real-time,
even on high-end GPUs. All the envisioned applications for such technology in video
quality improvement have a less or more strict real-time constraint. In this paper we
propose a GAN in which the generator is designed with efficiency in mind. Instead,
the discriminator can be made large at will, since it only affects training efficiency. We
show that on no-reference video and image quality assessment our approach produces
frames that have scores higher than compressed frames.

3 Methodology

Our approach consists in regarding a frame from a compressed video as an image which
has been distorted by some known process. Considering a raw frame It from a sequence
we consider ICt = C(It, It−1, It−2, . . . , θ) as its compressed version, where C(·) is
some compression algorithm for video sequences such as H.264/AVC configured ac-
cording to a parameters set θ.

Representing images as real valued tensors in RH×W×Ch, where W and H are
width and height of the frame, and Ch is the number of channels, we would like to
learn some function G(·) able to invert the compression process:

G
(
ICt
)
= IRt ≈ It (1)

where IRt denotes the restored version of ICt . In all models we use Ch = 3, since
we are training over and restoring RGB video frames. We define the function G(·) as
a fully convolutional neural network, whose weights are learned using a Generative
Adversarial Framework. Using fully convolutional networks has the great benefit of not
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having to stick to a precise input resolution for frames and most importantly allows
us to train the network over smaller frame crops and larger batches, speeding up the
training. Considering the fact that the noise process induced by compression is local,
our strategy does not compromise performance.

We apply adversarial training [12] which has recently shown remarkable perfor-
mances in image processing and image generation tasks [4,9,17]. GAN training consist
of the optimization of two networks named generator (G) and discriminator (D) where
the generator is fed some noisy input and has the goal to create “fake” images able
to induce the discriminator in mistakes. On the other hand the discriminator optimizes
a classification loss rewarding solutions that correctly distinguish fake from real im-
ages. In our case we are not aiming at generating novel unseen images sampled from
a distribution but our task regards the enhancement of a corrupted image. Interestingly
such task can be tackled with GANs by conditioning the training. Our end goal is to
obtain a G(·) function able to process compressed frames and remove artifacts. In our
conditional GAN we provide to the discriminator positive examples It|ICt and negative
examples IRt |ICt , where ·|· indicates channel-wise concatenation. This means that, in
case of samples of size N ×N × Ch, the discriminator receives a sample with dimen-
sions N ×N × 2 · Ch.

3.1 Generative Network

The architecture of our generator is based on MobileNetV2 [25], which is a very effi-
cient network designed for mobile devices to perform classification tasks. Differently
from [9], we replace standard residual blocks with bottleneck depth-separable convolu-
tions blocks, as shown in Table 1, to reduce the overall amount of parameters. We set
the expansion factor t to 6 for all the experiments.

Layer Output
Conv2d 1× 1, ReLU6 m× n× t ∗ c
Dw Conv2d 3× 3, ReLU6 m× n× t ∗ c
Conv2d 1× 1 m× n× c

Table 1: Bottleneck residual block used in our generator network.

After a first standard convolutional layer, feature maps are halved twice with strided
convolutions and then we apply a chain of B bottleneck residual blocks. The number
of convolution filters doubles each time the feature map dimensions are halved. We use
two combinations of nearest-neighbour up-sampling and standard convolution layer to
restore the original dimensions of feature maps. Finally, we generate the RGB image
with a 1 × 1 convolution followed by a tanh activation, to keep the output values be-
tween the [−1, 1] range. In all our trained models we employed Batch Normalization to
stabilize the training process. Table 2 reports the number of filters, blocks and weights
of the GAN used in a previous work [9], and two variations of the proposed network,
called “Fast” and “Very Fast” since they are designed to attain real-time performance. It
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can be observed that the new GAN architectures have much smaller number of parame-
ters, resulting in reduced computational costs, that allow to reach the required real-time
performance.

Model # Filters # Blocks # Params
Galteri et al. [9] 64 16 5.1M
Our Fast 32 12 1.8M
Our Very Fast 8 16 145k

Table 2: Parameters of the different GANs used. Compared to the previous work [9], our new
“Fast” and “Very Fast” networks have much smaller number of parameters, resulting in improved
computation time.

3.2 Discriminative Network
The structure of the discriminator network comprises mostly convolutional layers fol-
lowed by LeakyReLU activation, with a final dense layer and a sigmoid activation.
Since the complexity of this network does not affect the execution time during test
phase, we have chosen for all our trainings a discriminator with a very large number of
parameters, thus increasing its ability to discriminate fake patches from real ones. As
in [9, 10], sub-patches are fed to this network rather than whole images, because image
compression operates at sub-patch level and those artifacts we aim to remove are gen-
erated inside them. The set of weights ψ of the D network are learned by minimizing:

ld =− log
(
Dψ

(
I|IC

))
− log

(
1−Dψ

(
IR|IC

))
(2)

where D(x) is taken from of the sigmoid activation of the discriminator network,
with x indicating the concatenation on channels axis between the distorted input IC

and the correspondent real image I or the synthetic one IR.

3.3 Content Losses
Here we describe the content losses used in combination with the adversarial loss for
the generator. Content losses have the goal to limit the set of distributions to be modeled
via the adversarial learning process inducing the generator to produce consistent image
enhancement behavior.

Pixel-wise MSE Loss Mean Squared Error loss (MSE) is defined as:

lMSE =
1

WH

W∑
x=1

H∑
y=1

(
Ix,y − IRx,y

)2
. (3)

This loss is commonly used in image reconstruction and restoration tasks [6, 21, 28].
lMSE recovers low frequency details from a compressed image, but the drawback is
that high frequency details are suppressed.
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Perceptual Loss Many contributions on image enhancement, restoration and super-
resolution have employed the perceptual loss to optimize the network in a feature space
rather than the pixel space [2, 7, 11, 15]. We used such loss in our adversarial training
to encourage reconstructed images and target ones to have similar feature representa-
tions. The similarity measure between two images is obtained by projecting I and IR

on a feature space of a pre-trained network, hence extracting some meaningful feature
maps. The perceptual loss is the Euclidean distance between the extracted feature rep-
resentations:

lP =
1

WfHf

Wf∑
x=1

Hf∑
y=1

(
φj (I)x,y − φj

(
IR
)
x,y

)2
(4)

where φj(I) indicates the activations of some j-th layer of the pre-trained network for
an input image I , and Wf and Hf are respectively the width and the height of the
feature maps. In this work we have chosen the VGG-19 model [26] as feature extractor,
using the outputs of the pool4 layer of this network.

Adversarial Loss The total loss of our generator is a weighted combination of the
aforementioned losses:

lAR = lMSE + λ1lP + λ2ladv. (5)

where ladv is the standard adversarial loss:

ladv = − log
(
Dψ

(
IR|IC

))
(6)

that rewards solutions that are able to “fool” the discriminator.

4 Experimental Results

We test our novel architectures with three popular no reference metrics. No reference
(NR) image quality assessment (IQA) is the task of providing a score for an image,
which has been possibly distorted by an unknown process, without having access to
the original image. These metrics are designed to identify and quantify the presence
of different types of artifacts that may be present in the image being analyzed, like
blurriness, blocking, lack of contrast or saturation, etc.

All models are trained on DIV2K dataset [1]. DIV2K training set comprises 800
high resolution uncompressed images, which we compress using H.264 to generate
degraded frames. As an augmentation strategy, considering the small size of DIV2K,
we resize images at 256, 384 and 512 on their shorter side and then we randomly crop
a patch of 224 × 224 pixels with random mirror flipping. This procedures allows to
increase dataset size and increase diversity of pattern scales.

Looking at qualitative examples in Fig. 2 and Fig. 3, it can be seen that the quality of
imagery is largely improved by our networks in comparison with the source compressed
frame; in particular finer details of the wings and hair of the bee and texture of water and
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Fig. 2: Qualitative comparison of (leftmost) compressed frame with H.264 (CRF 28), (b-d) our
Very Fast, Fast and Galteri et al. [9] networks with (e) uncompressed frame. Large frame obtained
by our Fast network. Note the fine details of the wings and hairs of the bee obtained by the GAN
based approaches, compared to the standard compressed version.

feathers, as well as reduced ringing and blocking in the body of the duck. As also shown
in [9, 10, 33], GAN image enhancement can lead to low performance in full reference
metrics due to the fact that the overall pictures is improved by semantically consistent
textures which, pixel-wise, may differ from the original uncompressed image.

As a test dataset we pick the following videos: Mobile Calendar, Park Run, Shields,
River Bed, Sunflower, Rush Hour, Tractor Pedestrian Area,Blue Sky and Station from
the Derf collection1, since it consists of high resolution uncompressed videos allowing
us to test the effect of compression on frames that have not undergone any corruption

1 https://media.xiph.org/video/derf/
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Fig. 3: Qualitative comparison of (a) compressed frame with H.264 (CRF 28), (b-d) our Very Fast,
Fast and Galteri et al. [9] networks with (e) uncompressed frame. Large frame obtained by our
Fast network. Note the fine details of the texture of the water and feathers of the duck obtained
by the GAN based approaches, compared to the standard compressed version. Also ringing and
blocking artifact in the body of the duck, that are present in the standard compressed version are
eliminated.

due to the compression process. We compress video aggressively, setting the constant
rate factor (CRF) to 28; in comparison to a more high quality CRF setting (e.g. 10) this
results in a ∼ 10×–20× reduction of video size.

We use two image based no reference metrics (BRISQUE [22] and NIQE [24])
and a video specific no reference metric (VIIDEO [23]). We use different metrics since
typically NR IQA methods are defined to handle specific types of artifacts. We report
results in Tab. 3, for all metrics a lower score corresponds to a better image quality.
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For all the image quality enhancement approaches we report their time performance in
terms of FPS, computed on videos at 720p resolution.

Interestingly our networks, even our “Very Fast”, consistently improve image qual-
ity metrics. We run all experiments using a NVIDIA Titan Xp GPU card and our Tensor-
Flow implementation. No further optimizations have been made such as using quantized
networks or employing faster inference engines such as Caffe or TensorRT. We use as
baseline the GAN presented in [9], which runs at 4 FPS. Interestingly our “Fast” net-
work, running at 20 FPS, obtains comparable results. Our “Very Fast” network, running
at 42 FPS is able to improve the compressed frames according to all metrics but does
not reach the quality of original frames. When processing HD frames (i.e.1080p reso-
lution) the GAN used in [9] reaches 2 FPS, while our “Very Fast” still obtains real-time
performance at 20 FPS.

It can be noted that for NIQE and BRISQUE measures the score measured on en-
hanced frames for Galteriet al. [9] and the Fast network exceeds the one of raw frames.
We believe that this must be read with obvious caution, and is likely to be motivated by
the fact that these two metrics are assessing frames independently. Looking at the VI-
IDEO measure all of the proposed networks obtains improve consistently with respect
to the compressed frames, but are not better quality than the raw frames.

VIIDEO [23] NIQE [24] BRISQUE [22] FPS@720p
H.264 0.520 4.890 41.93 -
Our Very Fast 0.388 4.574 25.12 42
Our Fast 0.350 3.714 16.95 20
Galteri et al. [9] 0.387 3.594 17.58 4

Uncompressed 0.276 4.329 23.73 -
Table 3: No reference quality assessment of our compression artifact removal networks. VIIDEO
is specifically designed for sequences, while NIQE and BRISQUE are geared towards images.
For all metrics lower figure is better.

5 Conclusion

Many applications based on video streaming impose a strict real-time constraint. Un-
fortunately existing image quality methods, that improve the quality of reconstruction
of compressed frames, are not able to satisfy it. In this paper we move the first steps
towards Real-Time GANs for image enhancement. Our Fast network is able to run at
20 FPS with no deterioration on the final results according to three popular image qual-
ity measures. Qualitative inspection of our frames confirm quantitative results, showing
pleasant highly detailed frames.

Further speed-up can be obtained by exploiting specialized inference engines such
as TensorRT and quantizing the models on 8bit. Our current solution do not employ
any temporal coherence schema, we expect that adding a loss imposing frame-by-frame
coherence may enhance further video quality.
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