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Abstract
Autonomous driving is advancing at a fast pace, with driving algorithms becoming more and more accurate and reliable. 
Despite this, it is of utter importance to develop models that can offer a certain degree of explainability in order to be trusted, 
understood and accepted by researchers and, especially, society. In this work we present a conditional imitation learning 
agent based on a visual attention mechanism in order to provide visually explainable decisions by design. We propose dif-
ferent variations of the method, relying on end-to-end trainable regions proposal functions, generating regions of interest to 
be weighed by an attention module. We show that visual attention can improve driving capabilities and provide at the same 
time explainable decisions.

Keywords  Autonomous driving · Explainability

1  Introduction

Although autonomous driving vehicles are starting to 
become a reality, their diffusion worldwide is still slowed 
down by how such advancements are perceived by society. 
To ensure the pervasivity of automotive in everyday life, it 
is fundamental that algorithms and learning models guid-
ing the decisions of autonomous vehicles are trustworthy, 
transparent and fully understandable. In other words, it is 
of paramount importance that the technologies that the 
end user will rely on must be explainable. Explainability 
in autonomous driving has been largely studied in recent 

years, especially regarding machine learning and computer 
vision algorithms that make autonomous navigation possi-
ble (Omeiza et al. 2021; Zablocki et al. 2021; Cultrera et al. 
2020). Explanations can be provided in different forms and 
styles, e.g. presenting factual, contrastive or counterfactual 
evidence to support cause effect relationships (Lim and Dey 
2009) or showing the sensitivity of the decision with refer-
ence to parts of the input (Omeiza et al. 2021).

A simple yet effective way to interpret decisions, espe-
cially for computer vision based applications, is to provide a 
visual explanation of what the model is focusing on. Ex-post 
methods, such as Grad-cam (Selvaraju et al. 2017), attempt 
to demystify “black-box” models locating the most relevant 
pixels in the input image that lead to a decision. Such works, 
however, despite being largely used for explaining pre-
trained classifiers, have been shown to be hard to adapt for 
regression tasks (Letzgus et al. 2021). A better alternative 
is to exploit a model specifically designed to be explainable. 
Visual attention has been largely used for this purpose, inte-
grating in a model a mechanism to weight regions or parts of 
the input to establish their importance explicitly (Anderson 
et al. 2018).

In this work, we present a study on how different types of 
visual attention can be exploited to explain the decisions of 
a driving agent. We propose a conditional imitation learn-
ing approach capable of learning driving policies from RGB 
frames, trained with an attention block that weighs image 
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regions based on their importance for the task. We design 
different region proposals, trained end-to-end along with 
the driving agent. A preliminary version of this work was 
described in Cultrera et al. (2020), introducing the first vis-
ual attention based driving agent in the literature that learned 
to assign attention weights to a static grid of regions of inter-
est in the input image. This work differs substantially from 
Cultrera et al. (2020) in several aspects: (i) we overcome the 
limitation of having static proposals by developing different 
dynamic region proposal functions based on either Region 
Proposal Networks (Girshick 2015) or Spatial Transformer 
Networks (Jaderberg et al. 2015); ii) we provide a com-
parison with ex-post explainability methods, showing the 
importance of explicitly modeling visual attention to obtain 
meaningful interpretations; (iii) we show that the learned 
attention maps can be used to retrieve hard examples fram-
ing the problem as an anomaly detection task.

2 � Related works

Imitation learning is an approach for learning a policy that 
reflects a behaviour by analyzing demonstrations performed 
by an expert. Prior work has often exploited this paradigm 
for automotive, where a driving policy can be learned by 
attempting to replicate steering commands for urban naviga-
tion (Bojarski et al. 2016) or following high level commands 
such as turn or go straight (Codevilla et al. 2018). This type 
of task has also been addressed by Liang et al. (2018) with 
reinforcement learning. Such approaches learn a mapping 
between what is perceived by the ego-vehicle and the out-
put controls. However, to foster generalization an interme-
diate representation can be used such as low-dimensional 
affordance as in Sauer et al. (2018) or perception indicators 
related to the surrounding environment as proposed by Chen 
et al. (2015).

Different types of sensor data are often exploited and 
additional synthetic data can be gathered from simulators 
to train driving models (Codevilla et al. 2018; Berlincioni 
et al. 2019; Lee et al. 2018; Berlincioni et al. 2021). Several 
approaches exploit additional data rather than RGB frames 
alone, e.g, considering depth (Xiao et al. 2019), semantic 
segmentation (Li et al. 2018) or LiDAR data (Haris and 
Glowacz 2022) as inputs or to perform multi-task learning 
(Xiao et al. 2019; Yang et al. 2018; Codevilla et al. 2019; 
Ishihara et al. 2021; Greco et al. 2022). The importance of 
model architecture and image features has also been stressed 
in the literature, benchmarking different convolutional net-
works (Orden and Visser 2021) or learning to generate fea-
tures capable of generalizing across different environmen-
tal conditions (Guo et al. 2021). Temporal modeling is also 
used by Eraqi et al. (2017), George et al. (2018) and Xu et al. 
(2017). Zhang and Cho (2016), instead, developed an agent 

that can gracefully fallback to a safe policy when dangerous 
scenarios emerge.

One of the biggest problems of training imitation learn-
ing methods end-to-end is the inability to explain a model’s 
behaviour. In fact, being a safety critical domain, explain-
ability is becoming of prominent interest in automotive 
(Kim and Canny 2017; Xu et al. 2020; Marchetti et al. 2022; 
Bojarski et al. 2017). Xu et al. (2020) predict vehicle actions 
such as slowing down and provide a textual explanation. 
Marchetti et al. (2022) exploit memory augmented neural 
networks to forecast agent positions and reason about cause-
effect relationships in motion patterns. In Kim et al. (2020), 
a model is proposed to generate advice (e.g., “wet road”) that 
are then converted into actions (e.g. “slow down”).

Qualitative explanations are also a common way of pro-
viding interpretable results by letting the model attend to 
portions of the input image. Examples can be found in Kim 
and Canny (2017) and Chen et al. (2017). In the former, 
salient regions are extracted from a saliency model to con-
dition the output by weighing feature maps, whereas the 
latter exploit a biologically inspired cognitive model. How-
ever, both are not end-to-end trainable and require separate 
training steps to compute attention. Differently from these 
approaches, we learn attention end-to-end instead of using 
an external source of saliency to weigh intermediate network 
features. Dong et al. (2021) use a transformer’s self atten-
tion mechanism to correlate frames to previously observed 
images and infer the action to be taken. In our work, instead, 
we learn to generate region proposals that are scored to high-
light the most relevant regions of the observed scene. This 
indicates how well steering controls can be predicted based 
on the corresponding attended regions.

Proposals have been introduced in literature for object 
detection tasks by leveraging low-level image characteris-
tics to localize salient regions (Uijlings et al. 2013; Zitnick 
and Dollár 2014; Cuffaro et al. 2016). Learning strategies 
have also been proposed, such as Region Proposal Networks 
(RPN) (Ren et al. 2015) where the network is trained as a 
class-agnostic detector. Similarly, Spatial Transformer Net-
works (STN) (Jaderberg et al. 2015) learn to focus on salient 
parts of the image by learning affine transformations instead 
of generating proposals. In this work we integrate both RPNs 
and STNs in our visual attention module to highlight regions 
relevant for the driving taks.

3 � Problem statement

We address the autonomous driving problem in urban envi-
ronments with a vision-based imitation learning strategy. In 
imitation learning an agent is trained to learn a policy � by 
attempting to replicate demonstrations D performed by an 
expert (Attia and Dayan 2018). Demonstrations are made of 
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the ith state observation zi and the action performed at that 
instant ai . Therefore a demonstration is an input–output pair 
D = (zi, ai) . The goal is to learn a policy function � capable 
of mapping the observations to output actions � ∶ Z → A . 
Here Z is the set of possible observations and A represents 
the possible actions (Argall et al. 2009). In an automotive 
context, the expert is a human driver and the policy to be 
learned is “driving safely”. In general, the agent has access 
only to a representation of the surrounding environment, 
e.g., an RGB frame of the scene from an egocentric point 
of view. Actions, instead, are driving controls that allow 
the vehicle to follow the desired path, e.g. steering angle 
and throttle. In practice, the imitation learning framework is 
made possible by pre-recorded driving sessions performed 
by expert drivers, which yield a collection of (frame, driv-
ing-controls) pairs, acting as demonstrations.

This end-to-end approach is particularly effective for its 
ability to learn a safe driving policy without the need to 
provide explicit safe driving rules, such as ‘to turn right 
follow the right edge of the roadway’. Yet this hinders a true 
understanding of the reasons why a certain driving action is 
adopted and this contrasts with the increasing demand for 
explainability that is rapidly emerging in the autonomous 
driving domain.

3.1 � Model overview

The goal of our proposed model is to learn a driving policy 
capable of imitating the expert by producing the steering 
angle values required to comply with a given high level 
command. Following prior works (Codevilla et al. 2018; 

Sauer et al. 2018), to ensure system scalability on high-
level input commands, we divide our architecture into 
multiple branches, with a separate head for each type of 
command.

We equip each branch with a visual attention mecha-
nism to make the model interpretable so to explain the 
estimated maneuvers. In particular, we rely on a region 
proposal function R that generates Regions of Interest 
(RoI) in the input image. The visual attention module then 
scores each RoI, assigning an importance to each region, 
thus highlighting portions of the image that are relevant 
for addressing the driving task. The model, which is end-
to-end trainable, first extracts a global feature map f from 
the input image with a convolutional neural network back-
bone. Based on f, the region proposal function R outputs 
a set of R relevant RoIs {BBi}

R
i=1

 in the form of bounding 
boxes BBi = [xi, yi, hi,wi] , where xi and yi denote the upper-
left coordinates and hi and wi its height and width.

At this point, we obtain a region descriptor ri for each 
RoI in the image by applying RoI Pooling (Girshick 2015) 
on the feature map generated by the convolutional back-
bone. The pooling is applied only on the portion of the 
convolutional feature map identified by the ith bounding 
box. Pooled features are then weighed using an attention 
layer and concatenated together, yielding a global descrip-
tor which is condensed into a lower dimensional space 
with a dense block. The block is followed by a dense 
regressor that generates steering angle predictions as 
outputs.

The multi-head architecture that we propose is depicted 
in Fig. 1.

Fig. 1   A convolutional backbone generates a feature map. Then, a 
region proposal function extracts RoIs that are pooled and weighed 
by an attention layer. Separate region proposal and attention modules 

are trained for each high level command in order to focus on different 
regions and output the appropriate steering angle
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3.2 � Visual attention

An attention scheme allows a model to attend only on 
relevant parts of the input. When the input is an image, 
this translates into a task driven saliency over pixels or 
image regions. In automotive, explicitly attending to spe-
cific parts of the observed scene aids the decision mak-
ing process by taking into account environmental cues 
or surrounding objects, such as turns, intersections or 
other agents. Thus, a visual attention must weigh RoIs 
by generating a probability distribution according to their 
importance for the driving task. To make the attention 
task-driven, we learn it directly from the data with an end-
to-end training, that is using an attention layer inside a 
model that generates driving commands from the input 
image. To foster the model’s interpretability, we use a 
branched architecture with multiple prediction heads. 
Each head generates driving steering angles for different 
high level commands. As a consequence, by integrating a 
separate attention layer in each head, we obtain different 
ways of attending to elements in the scene, depending on 
the high level command.

To perform attention over image regions, we first flat-
ten all RoI-pooled region features ri and we stack them 
in a single vector r, describing the whole scene. We 
feed r to a dense layer that generates a different logit 
for each image region. Logit are then normalized using 
a softmax activation function, yielding a set of RoI 
weights � = �1,… , �R , where R is the number of regions: 
� = Softmax(r ⋅Wa + ba) . Here Wa and ba are respectively 
the weights and biases of the fully connected attention 
layer. We use the softmax function since it dampens the 
logits while sharpening the most relevant ones. This means 
that the model is able to concentrate only on a restricted 
subset of regions. We obtain a final feature ra , where the 
importance of each region is weighed by the respective 
attention value, by concatenating RoI features scaled with 
� : ra = concat(ri ⋅ �i) for i ∈ [1,… ,R] . Our attention block 
architecture is shown in Fig. 2.

3.3 � Multi‑head architecture

To comply with different high level commands, the autono-
mous vehicle must exhibit different behaviors. For example, 
when reaching an intersection the agent can turn left or right 
or can keep going straight, depending on the route it has to 
follow. To keep our architecture as flexible and extensible as 
possible, we structure our model as a branched multi-head 
regressor where each head predicts steering values for dif-
ferent high level commands. This allows new heads to be 
easily plugged in to address additional high level commands. 
This is a common trend which has been shown to outperform 
single-headed models (Codevilla et al. 2018; Sauer et al. 
2018). We use an attention layer in each head, so that the 
model can learn to addend to different cues, depending on 
the command. This solution has the advantage of improving 
the explainability of the model, since the attention maps are 
conditioned on the commands, highlighting what is impor-
tant for different tasks.

To decide which head to use, we feed the command as 
input to the model as we use it as a selector to pick the 
correct branch. This has the effect of guiding backpropa-
gation only through the part of the model that is actually 
used to generate the output while training the network. At 
the same time, the convolutional backbone is shared among 
commands, so it will get updated for ecah sample, regard-
less of the high-level command. This enables an end-to-end 
training of the model.

4 � Region proposals

The shared convolutional backbone, after extracting features 
from input images, is followed by a RoI pooling layer (Gir-
shick 2015). Each Region of Interest generated by the region 
proposal function R can exhibit different sizes and aspect 
ratios. The RoI pooling layer extracts a fixed-size descriptor 
ri for each proposal by dividing the region into a number of 
cells on which a pooling function is applied. Here we adopt 
the max-pooling operator over 4 × 4 cells.

RoI generation is a fundamental step in our pipeline 
since extracting good RoIs allows the attention mechanism, 
explained in Sect. 3.2, to correctly select salient regions of 
the image. We propose different formulations for R . First, 
we use a static grid of fixed boxes at different scales. We 
then propose a fully learnable formulation, making R a 
neural network capable of generating task-driven dynamic 
proposals, depending on image content. In this case, we fol-
low two alternative approaches to build the region proposal 
function, relying on Region Proposal Networks (RPN) (Ren 
et al. 2015) and Spatial Transformer Networks (STN) (Jad-
erberg et al. 2015). In the following we provide an overview 

Fig. 2   Attention block. A weight vector � is generated by a linear 
layer with softmax activation. The final descriptor is a concatenation 
of RoI features scaled with attention weights
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of the static and dynamic formulations to build the region 
proposal function R.

4.1 � Static proposals

The simplest formulation to obtain a set of region proposals, 
is to let R yield a static grid of fixed handcrafted RoIs. To 
obtain meaningful RoIs we use a multi-scale regular grid 
spanning across the image. Here, we assume the image to 
have height H and width W. We generate the grid by sliding 
variable size boxes on the input image with a given stride. 
For this purpose we used four types of windows as explained 
in Fig. 3:

–	 BIG
H—horizontal boxes with height H/2 and width W; 

these boxes cover the whole width of the image, spanning 
from top to bottom with a 60px vertical stride;

–	 BIG
V—vertical boxes with height H, width W/2 and 

an horizontal stride equal to W/2; it yields two regions 
dividing the image into a left and right side;

–	 MEDIUM—boxes with height H/2 and width W/2, with an 
area equal to a quarter of the image; we slide the box on 
the two horizontal halves of the image with an horizontal 
stride of 60px;

–	 SMALL—boxes with height H/2 and width W/4, with a 
3px stride in the horizontal and vertical directions.

The shape of the four boxes is designed to consider different 
aspects of the scene. The BIG scale is coarse and is intended 
to focus on structural elements in the scene (e.g. vertical 
for traffic signs or buildings and horizontal for forthcoming 
intersections). The MEDIUM and SMALL scales instead focus 
on smaller details such as approaching vehicles or distant 
turns. Overall, we use a grid of 48 image regions: 2 BIGV , 6 
BIG

H , 8 MEDIUM and 32 SMALL.

4.2 � Dynamic proposals

Casting R as a static proposal generator has evident limita-
tions since we are posing a strong prior on the regions that 
the model can attend to. However, dynamically generating 

region proposals is not trivial. In fact, once proposals are 
cropped, all the spatial information is lost. Indeed, when 
the proposals are static, the network learns to correlate the 
relative position of each feature with its underlying seman-
tics. This is possible since the ith feature to be attended will 
always correspond to the same spatial coordinates. The fact 
that the model is learning positional cues based on the order 
in which RoI features are presented to the attention model 
can be easily demonstrated by shuffling the boxes during 
inference. In Sect. 9, we show that by doing so, the model is 
unable to generate meaningful steering commands.

To overcome this limitation, we simply concatenate 
a spatial cue to the input image by adding two additional 
channels containing x and y normalized frame coordinates. 
This allows the model to take into account absolute RoI 
positions and be invariant to proposal ordering. We adopt 
this technique to enable the generation of dynamic propos-
als that vary depending on the image content. We propose 
two different, alternative, formulations for R : Region Pro-
posal Networks (Girshick 2015) and Spatial Transformer 
Networks (Jaderberg et al. 2015).

Region Proposal Networks—Region Proposal Network 
(RPN) (Ren et al. 2015) is a convolutional architecture for 
generating proposals given a convolutional feature map of 
an image. An RPN has a regression and a classification layer. 
The regression layer modifies some anchors with predefined 
sizes and aspect ratios to generate bounding boxes coor-
dinates. The classification head instead is used to assign 
objectness scores to proposals.

Although RPN represents an effective method to generate 
RoIs, its original formulation appears to have limitations: (i) 
a strong supervision signal is needed, namely ground truth 
bounding-boxes; (ii) it relies on RoI Pooling to extract fea-
tures, which is non differentiabile. The authors originally 
overcame these limitations for an object detection task by 
adopting a two step-training, i.e. pretraining the RPN with 
ground truth class-agnostic boxes. Since we do not know 
a-priori which regions might be considered useful by the 
model, for the purpose of our work it is essential that the 
model can be trained end-to-end and discover relevant pro-
posals in a task driven fashion.

As a solution, instead of standard RoI Pooling, we use 
a differentiable RoI pooling layer called Precise RoI Pool-
ing (Jiang et al. 2018). Precise RoI Pooling is an integra-
tion-based pooling strategy based on bilinear interpolation 
and allows the gradient to be backpropagated through the 
bounding-box coordinates. This makes the regression head 
differentiable and allows the proposal generation to be fully 
task-driven.

In addition, unlike Faster R-CNN (Girshick 2015), which 
generates a large number of boxes and then thresholds them 
based on the predicted objectness, we completely remove 
the classification head and retain all the generated proposals. 

Fig. 3   Four sliding windows are used to generate a multi-scale grid of 
RoIs. Colors indicate the box type: BIGV (red), BIGH (green), MEDIUM 
(yellow) SMALL (blue)
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This stems from the fact that without a direct supervision, 
the classification head is unable to provide effective object-
ness scores. To control the number of boxes we act on the 
stride of the convolutions and on the number of anchors 
used to generate the proposals. Further details are provided 
in Sect. 5.

Spatial Transformer Networks—Spatial Transformer Net-
works (STN) (Jaderberg et al. 2015) allow a model to learn 
spatial transformations on input feature maps. The effective-
ness of STN derives from the fact that transformations are 
learned without a direct supervision, in a task-driven fash-
ion. In detail STN is made up of three main blocks. A Local-
ization Network is responsible for predicting the parameters 
� of the transformation matrix T

�
 . It takes a feature map as 

input and is formed by a convolutional or fully connected 
block followed by a regressor. A Grid Generator then uses 
the affine transformation matrix T

�
 to output a parameterized 

sampling grid T
�
(G) , where G is a regular grid correspond-

ing to image coordinates. The final output transformation 
is obtained using a Grid Sampler which applies the sam-
pling grid T

�
(G) on the input feature map. This operation is 

achieved through bilinear interpolation. Overall, the trans-
formation performed by the STN is an affine transformation 
that maps points in the input feature map into warped posi-
tions. Therefore, using an STN as region proposal function, 
does not require a RoI Pooling step as the transformation 
directly outputs the features of the region of interest.

We constrain the transformation to avoid skew and rota-
tion, making it of the form:

where s is the scale factor, and Tx , Ty are the translation 
parameters. In our model, each branch dedicated to a high-
level command is equipped with an STN generating R spa-
tial transformations (e.g. proposals).

5 � Training details

The shared backbone is composed of five convolutional layers 
with ELU activations. The first three layers have respectively 
24, 36 and 48 5 × 5 kernels with stride 2 and are followed by 
two other layers with 64 3 × 3 filters with stride 1. All input 
images are resized to a resolution of 200 × 88 pixels. In the 
RPN model we control the number of boxes by changing the 
stride in the convolutional block. In particular we use stride 2 
to generate 108 boxes. Anchor size and aspect ratio parameters 
used for training are respectively {64, 80, 100} and {0.5, 1} . 
RPN produces a feature map of size 1024 for each box. A lin-
ear reduction layer is used to reduce its size to 512. Unlike the 
other models, STN does not use RoI pooling but a localization 

(1)T
�
=

[

s 0 Tx
0 s Ty

]

network instead: a convolutional layer with 64 channels with 
stride 1 and ReLU activation function, followed by a linear 
layer with dimension 64 and tanh activation function. Finally 
a linear layer predicts the transformation parameters for the 
desired number of proposals. STN produces a feature map of 
size 4608 for each proposal. A linear reduction layer is used 
to reduce its size to 512. As for the attention block, it is com-
posed of fully connected layers of decreasing size, i.e. 1024, 
512, 128, 10. A final fully connected layer outputs the steering 
angle necessary to comply with the given high level command. 
As a loss function we use Mean Squared Error (MSE) for all 
architectures. To train the model, we use Adam as optimizer 
with a learning rate of 0.0001 for 50 epochs and a batch size 
of 64. 

6 � Dataset

To train and evaluate our autonomous agent, we use the 
CARLA Simulator (Dosovitskiy et al. 2017). Carla is an 
open-source platform conceived and designed for research 
in autonomous driving. It provides a realistic reconstruc-
tion of an urban and suburban environment that includes 
two Towns. It also offers the possibility of setting different 
weather conditions and daytimes. We use data from Codev-
illa et al. (2018), in which Town01 is used as training and 
Town02 as validation. The dataset was recorded using four 
different weather conditions. For each example in the train 
set, measurements concerning the value of steering, throt-
tle, brake, and high-level command are provided. To test 
the abilities of an autonomous agent, Codevilla et al. (2018) 
also released a test benchmark composed of separate driv-
ing episodes. The benchmark is goal-oriented: for each epi-
sode the autonomous agent is asked to reach a goal point on 
the map, given a starting point, within a certain time limit. 
Both Towns are included. For each Town the benchmark 
is divided into four tasks: (i) Go Straight—driving along 
a straight road; (ii) One Turn—the destination is reached 
by making either a right or left turn; (iii) Navigation—to 
reach the destination an agent has to drive along a longer 
route, in which there might be several turns; (iv) Navigation 
dynamic—the same as Navigation but with other vehicles 
and pedestrians. For each task, there are 25 episodes, rep-
licated in six different weather conditions, four of which 
already seen in training, and two used only for testing. In 
total, the benchmark consists of 600 episodes for Town01 
and 600 for Town02 for a total of 1200 episodes.

7 � Experimental results

In this section we discuss experimental results obtained by 
our proposed models. First of all, we compare the driving 
success rates on the CARLA Benchmark using different 
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types of attention. In Table 1 we compare results of a vanilla 
model without attention against models with static and 
dynamic proposals. The model without attention does not 
generate any proposals and directly feeds the global fea-
ture map to the final multi-head architecture. Explicitly 
modeling attention leads to significantly increased driving 
performance. Interestingly, the model with the static pro-
posal function obtains good results, improving by a large 
margin compared to the attention-less baseline. As for the 
dynamic proposal functions, the STN proposal obtains the 
best overall success rate, with the notable exception of New 
weather and new Town where static proposals yield slightly 
better results. Surprisingly, RPN perform worse than all the 
other proposal-based methods. We impute this to multiple 
factors: (i) proposals are generated based on local features 
corresponding to anchors, whereas STN performs global 
reasoning; (ii) anchors which must be handcrafted, thus 
diminishing the expressiveness of the model; (iii) training 
an RPN without direct supervision on box positions may not 
be enough, especially since there is no specific foreground 
object the box coordinate regressor can adhere to.

It must be noted that in this work we are not interested 
in obtaining the best results on a driving benchmark, but 
rather to offer a comprehensive analysis on how attention 
mechanisms can be integrated into a driving model and 
which benefits this can provide. Nonetheless, in Table 2, we 
provide a comparison with other state of the art methods. 
Since our focus is on explainability and attention, our model 
does not come equipped with bells and whistles like data 
augmentation or exploiting high-level input representations 
(e.g., depth, semantic segmentation).

An additional characterization of the results, further 
motivating the success of STN over RPN, can be given 
looking at the proposals generated by the models along 

with their attention weights. This is of particular interest 
since it provides a degree of explainability with respect to 
the outputs of the model. Figure 4 shows attention heat-
maps obtained by cumulating the top 5 proposals over the 
entire validation set consisting of 74,000 frames. STN 
offers spatially fine grained explanations compared to the 
other methods. Attention is focused on the horizon and 
sidewalks for the follow command, the center line for the 
straight command and the bottom left centerline for the 
left and right commands. For the turn left command the 
model looks at the centerline when the road is still straight, 
yet also focusing ahead on the left side to anticipate the 
curve. On the contrary, for the turn right command, the 
model keeps the lane by following the bottom left part of 
the centerline and looks on the right side when the curve 
is visible. Interestingly, often in Carla the centerline inter-
rupts at intersections. The model is therefore exploiting 
this cue to perform the driving task. This bimodal distri-
bution of attention is even more visible in Fig. 5, which 
shows the distribution of all the proposals generated for 
each model. For RPN, instead, the distribution of the boxes 
is mostly focused on the left and right edge of the road 
at the horizon, using bigger and coarser RoIs. The static 
model, on the other hand, yields an attention map that has 
a regular, axis aligned distribution, with the right side of 
the road getting higher attention for all the high level com-
mands. Samples of attentions in single frames are shown 
in Fig. 6. A frame-by-frame breakdown of a right turn is 
also provided to show how the attention changes when 
approaching an intersection in Fig. 7.

Table 1   Percentage of completed tasks using static proposals, RPN and STN

Bold values indicate the best results
We also show a baseline without attention

Training conditions New weather

Model Straight Turn Nav Nav. D Mean Straight Turn Nav Nav. D Mean
Ours no att 100 91 80 79 87.50 100 96 76 72 86.00
Ours static 100 95 91 89 93.75 100 100 92 92 96.00
Ours RPN 100 93 84 82 89.75 100 84 82 80 86.50
Ours STN 100 100 95 90 96.25 100 100 94 94 97.00

New Town New weather and new town

Model Straight Turn Nav Nav. D Mean Straight Turn Nav Nav. D Mean
Ours no att 94 37 25 18 43.50 92 52 52 36 58.00
Ours static 99 79 53 40 67.75 100 88 67 56 77.75
Ours RPN 90 60 50 48 62.00 98 64 50 48 65.00
Ours STN 95 77 67 51 72.50 90 80 70 54 73.50
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Table 2   Comparison with the state of the art, measured in percentage of completed tasks

Bold values indicate the best results
Additional sources of data used by a model are identified by superscripts: ⧫ (depth), ⋄ (semantic segmentation), † (temporal modeling), ⋆ (dif-
ferent training data). The best result per task is shown in bold for methods using only RGB frames as input

Training conditions New weather

Model Straight Turn Nav Nav. D Mean Straight Turn Nav Nav. D Mean
MP

⋄ Dosovitskiy et al. (2017) 98 82 80 77 84.25 100 95 94 89 94.50
MT

⋄⧫ Li et al. (2018) 98 87 81 81 86.75 100 88 88 80 89.00

CAL
† Sauer et al. (2018) 100 97 92 83 93.00 100 96 90 82 92.00

EF
⧫ Xiao et al. (2019) 99 99 92 89 94.75 96 92 90 90 92.00

CEF
⧫ Haris and Glowacz (2022) 98 99 92 89 94.50 96 94 91 86 87.25

MTL
⋄⧫ Ishihara et al. (2021) 100 100 100 99 99.75 100 99 97 97 98.25

CILRS
⋆ Codevilla et al. (2019) 96 92 95 92 93.75 96 96 96 96 96.00

RL Dosovitskiy et al. (2017) 89 34 14 7 86.00 16 2 2 36 26.50
IL Codevilla et al. (2018) 95 89 86 83 88.25 98 90 84 82 88.50
EF-RGB Xiao et al. (2019) 96 95 87 84 90.50 84 78 74 66 75.50
CIRL Liang et al. (2018) 98 97 93 82 92.50 100 94 86 80 90.00
Ours STN 100 100 95 90 96.25 100 100 94 94 97.00

New town New weather and new town

Model Straight Turn Nav Nav. D Mean Straight Turn Nav Nav. D Mean
MP

⋄ Dosovitskiy et al. (2017) 92 61 24 24 51.25 50 50 47 44 47.70
MT

⋄⧫ Li et al. (2018) 100 81 72 53 76.50 96 82 78 62 79.50

CAL
† Sauer et al. (2018) 93 82 70 64 77.25 94 72 68 64 74.50

EF
⧫ Xiao et al. (2019) 96 81 90 87 88.50 96 84 90 94 91.00

CEF
⧫ Haris and Glowacz (2022) 96 79 90 84 87.25 97 82 92 94 91.00

MTL
⋄⧫ Ishihara et al. (2021) 99 98 93 91 95.25 99 99 96 91 96.25

CILRS
⋆ Codevilla et al. (2019) 96 84 69 66 78.75 96 92 92 90 92.50

RL Dosovitskiy et al. (2017) 74 12 3 2 22.75 68 20 6 4 24.50
IL Codevilla et al. (2018) 97 59 40 38 58.50 80 48 44 42 53.50
EF-RGB Xiao et al. (2019) 82 69 63 57 67.75 84 76 56 44 65.00
CIRL Liang et al. (2018) 100 71 53 41 66.25 98 82 68 62 80.00
Ours STN 95 77 67 51 72.50 90 80 70 54 73.50

Follow Lane Go Straight Turn Left Turn Right

Static

RPN

STN

Fig. 4   Heatmap for the top five boxes, ranked by attention. The heatmap is the result of cumulating top proposals over the entire validation set
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8 � Comparison with feature attribution 
methods

Our proposed model has been specifically designed to 
provide visual explanations of its predictions. What the 
model is performing is therefore an importance attribu-
tion of regions in the pixel space. Nonetheless, several 
methods for feature attribution exist in literature and have 
been successfully used to provide ex-post visual explana-
tions of deep learning models (Bach et al. 2015; Selva-
raju et al. 2017; Shrikumar et al. 2017; Sundararajan et al. 
2017). Here, we compare the attributions provided by our 

model, previously discussed in Fig. 6, with off-the-shelf 
feature attribution methods, namely DeepLift (Shrikumar 
et al. 2017), LRP (Bach et al. 2015) and Integrated Gra-
dients (Sundararajan et al. 2017). We apply such methods 
on the baseline architecture without the explicit attention 
module.

Qualitative results for the explainability models described 
above are shown in Fig. 8. DeepLift (Shrikumar et al. 2017), 
LRP (Bach et al. 2015) and Integrated Gradients (Sundara-
rajan et al. 2017) generate a sparse attention that focuses 
mostly on the road surface. Despite this being a compre-
hensible behavior for a model without attention, it does not 
suggest much in terms of interpretability. Overall attention 

Follow Lane Go Straight Turn Left Turn Right

RPN

STN

Fig. 5   Heatmap proposal distribution. The heatmap is obtained cumulating all proposals irrespectively of their attention weight on the validation 
set

Follow Lane Go Straight Turn Left Turn Right

Static

RPN

STN

Fig. 6   Attention patterns for the proposed models

Fig. 7   Turn right example. The attention is first on the centerline to 
keep the lane. When the centerline disappears, the model looks at 
the whole road horizontally. As soon as the intersection is visible the 

model shifts its attention to the right and again on the centerline to 
start following the new lane. Best viewed in color on a screen
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maps are quite similar between the various explainability 
models, moreover it is difficult to identify patterns that can 
help to understand the motivations of a particular behavior. 
This experiment suggests that using attention mechanisms 
based on proposal generation rather than ex-post explanation 
methods allows us to obtain a visual explanation of what 
leads to a prediction. Furthermore, it should be considered 
that these ex-post explainability methods have limitations. 
In particular, they are not well suited for regression models. 
Evidence of these limitations can be found in the work of 
Letzgus et al. (2021). This consideration is further confir-
mation that using an explicit attention mechanism leads to 
considerable benefits in terms of interpretability.

9 � Ablation studies

In this section we validate the importance of some of the 
components of our proposed models. Here, we perform the 
experiments on a subset of the CARLA driving benchmark, 
namely testing only using the Training conditions and New 
weather splits. First of all we experimentally validate the 
intuition, introduced in Sect. 4.2, according to which the 
model based on a static proposals learns to derive spatial 
information from the order of the boxes. In Table 3 we show 
that simply shuffling the order in which the boxes are pre-
sented makes the model unable to emit meaningful steering 

commands. To overcome this limitation, we retrain the 
model adding two additional channels to the input, repre-
senting normalized spatial coordinates ranging from 0 to 1. 
The overall success rate is almost on par with the original 
method, even if the order of the boxes is shuffled.

We now study the effect of the number of boxes in our 
dynamic proposal functions. Controlling the number of 
boxes with STN is straightforward since the STN can be 
modified to generate multiple transformation matrices. For 
RPN instead, since we do not use the classification head, we 
change the number of boxes by modifying the stride of the 
convolutions and the number of anchors. In particular we use 
stride = 1 to generate 432 boxes and stride = 3 to generate 
72 boxes. The reference RPN model, used in Table 1, has 
stride = 2 to generate 108 boxes, which is comparable to 
STN which uses 100 boxes. In Table 4 we show the results of 
the models varying the number of boxes for STN and RPN. 
In both cases, when using approximately 100 proposals we 
obtain the best results.

10 � Retrieving failed episodes

Indeed, the proposed attention mechanism is beneficial to 
the explainability of the driving behaviour and can also sup-
port the identification of anomalous conditions anticipating 
possible driving failures. Inspired by prior work (Yang et al. 

Follow Lane Go Straight Turn Left Turn Right

IG

DL

LRP

Fig. 8   Each row shows ex-post explanations through attention maps, divided by high level command. We report attention maps for Integrated 
Gradients (IG) (Sundararajan et al. 2017), DeepLift (DL) (Shrikumar et al. 2017) and LRP (Bach et al. 2015)

Table 3   Ablation study. 
Shuffling the proposals makes 
the model unable to drive since 
spatial relations are broken. 
This issue is avoided by adding 
spatial coordinates as inputs, 
which makes the model able to 
retain approximately its original 
accuracy even when proposals 
are shuffled

Training conditions New weather

Task Static Shuffle Shuffle + 
Coords

Static Shuffle Shuf-
fle + 
Coords

Straight 100 40 100 100 40 100
One turn 95 12 97 100 8 100
Navigation 91 8 85 92 4 84
Navigation dynamic 89 4 84 92 4 84
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2022), we address the problem of detecting anomalies using 
convolutional autoencoders. We have trained two networks 
with the same architecture, the first fed with RGB frames 

and the second with attention maps produced by our model. 
We generate attention maps using the STN model, overlay-
ing each generated box on a reference black image, weighing 
the RoI with the corresponding attention value.

To test the models we used a test set consisting of 600 epi-
sodes extracted from the CARLA benchmark, 300 of which 
were successfully completed by the model. Failed episodes 
contain collisions with pedestrians, cars, other objects and/or 
unusual maneuvers. Our assumption is that failed episodes 
will contain out of the ordinary events, making the predicted 
attention anomalous. We thus leverage the reconstruction 
error of the autoencoders to detect such anomalies. We treat 
this task as a retrieval task, aiming at automatically identify-
ing failed episodes. To evaluate the task, for each episode we 
take the maximum reconstruction error and use it to gener-
ate precision recall curves, as shown in Fig. 9. The model 
trained on attention maps reaches an AUC on the precision-
recall curve of 71.53, while the model trained on RGB only 
50.06. Similarly, computing Average Precision, we obtain 
56.24 using attention maps and 37.97 with RGB frames. 
This experiment demonstrates that modeling attention is 

Table 4   Ablation study. We 
vary the number of proposals 
produced by STN and RPN. 
Both STN and RPN perform 
better using a number of boxes 
around 100. In general, STN can 
obtain higher driving accuracy 
even with a low number of 
proposals, compared to RPN

Training conditions New weather

STN RPN STN RPN

Num boxes 50 100 300 72 108 432 50 100 300 72 108 432

Straight 100 100 100 100 100 100 100 100 100 100 100 100
One turn 100 100 98 80 93 93 94 100 96 84 84 84
Navigation 88 95 91 66 84 84 88 94 86 70 82 72
Navigation dynamic 87 90 90 64 82 84 84 94 86 68 80 76

Fig. 9   Precision-recall curves for detecting failed episodes

Fig. 10   AutoEncoder architecture
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also effective in retrieving challenging episodes, which can 
be used to retrain the model and improve its performance. 
Details of the autoencoder architecture are shown in Fig. 10.

11 � Conclusions

In this paper we describe the architecture of an end-to-end 
trainable driving system capable of generating driving con-
trols (e.g. steering angle) from an RGB frame represent-
ing the scene captured by a vision system. The architec-
ture is designed to implement an attention mechanism that 
induces a selection of regions of the RGB frame that are 
most relevant for the prediction of the driving controls. This 
contributes to the explainability of the model by showing 
which regions of the observed scene are used for driving. 
Such an indication can help improving the training pro-
cess but also entails the potential for detecting anomalies 
in the observed scene, anticipating potential driving fail-
ures. The accuracy of different region proposal mechanisms 
is reported by measuring the driving success rate on the 
CARLA Benchmark and demonstrating that region proposal 
by STN (Jaderberg et al. 2015) yields the best overall suc-
cess rate compared both to RPN (Ren et al. 2015) and to a 
fixed frame partitioning scheme. Reported experiments also 
demonstrate that the proposed attention mechanism leads to 
considerable benefits in terms of interpretability compared 
to methods providing ex-post visual explanations of deep 
learning models (Shrikumar et al. 2017; Bach et al. 2015; 
Sundararajan et al. 2017).
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