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a b s t r a c t

In this paper we propose an approach for anomaly detection and localization, in video surveillance
applications, based on spatio-temporal features that capture scene dynamic statistics together with
appearance. Real-time anomaly detection is performed with an unsupervised approach using a non-
parametric modeling, evaluating directly multi-scale local descriptor statistics. A method to update scene
statistics is also proposed, to deal with the scene changes that typically occur in a real-world setting. The
proposed approach has been tested on publicly available datasets, to evaluate anomaly detection and
localization, and outperforms other state-of-the-art real-time approaches.
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1. Introduction and previous work

The real-world surveillance systems currently deployed are pri-
marily based on the performance of human operators that are ex-
pected to watch, often simultaneously, a large number of screens
(up to 50 [2]) that show streams captured by different cameras.
One of the main tasks of security personnel is to perform proactive
surveillance to detect suspicious or unusual behavior and individu-
als [3] and to react appropriately. As the number of CCTV streams
increases, the task of the operator becomes more and more difficult
and tiring: after 20 min of work the attention of an operator de-
grades [4]. Operators usually take into account specific aspects of
activity and human behavior in order to predict possible perilous
events [2], although often they can not explain their own criteria
used to detect an unusual situation [3], or do not recognize unusual
behaviors because they have not gathered enough knowledge of the
environment and of the common behaviors they have to watch [5].

Video analytics techniques that automatically analyze video
streams to warn, possibly in real-time, the operators that unusual
activity is taking place, are receiving much attention from the
scientific community in recent years. The detection of unusual
events can be used also to guide other surveillance tasks such as
human behavior and action recognition, target tracking, and
person and car identification; in this latter case it is possible to
use pan-tilt-zoom cameras to capture high resolution images of
the subjects that caused the anomalous events.
ll rights reserved.

ference proceeding [1].
Anomaly detection is the detection of patterns that are unusual
with respect to an established normal behavior in a given dataset,
and is an important problem studied in several diverse fields [6].
Approaches to anomaly detection require the creation of a model
of normal data, so to detect deviations from the model in the ob-
served data. Three broad categories of anomaly detection tech-
niques can be considered, depending on the approach used to
learn the model: supervised [7–14], semi-supervised [15,16] or
unsupervised [17–28]. In this work we follow an unsupervised ap-
proach, based on the consideration that anomalies are rare and dif-
fer amongst each other with unpredictable variations.

The model can be learned off-line as in [7,8,10,29] or can be
incrementally updated (as in [19,20,22,26]) to adapt itself to the
changes that may occur over time in the context and appearance
of a setting. Our approach continuously updates the model, to
gather knowledge of common events and to deal with changes in
‘‘normal’’ behavior, e.g. due to variations in lighting and scene
setting.

Most of the methods for identifying unusual events in video se-
quences use trajectories [8–10,13,15–17,23,28–30] to represent
the activities shown in a video. In these approaches objects and
persons are tracked and their motion is described by their spatial
location. Blob features have been used in [20,27,31], without track-
ing the blobs. The main drawback of tracking-based approaches is
the fact that only spatial deviations are considered anomalies, thus
abnormal appearance or motion of a target that follows a ‘‘normal’’
track is not detected.

Optical flow has been used to model typical motion patterns in
[11,19,21,22,31], but, as noted in [29], this measure also may be-
come unreliable in presence of extremely crowded scenes; to solve
this issue a dense local sampling of optical flow has been adopted
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in [12,19]. Local spatio-temporal descriptors have been success-
fully proposed in [32,33] to recognize human actions, while more
simple descriptors based on spatio-temporal gradients have been
used to model motion in [18,29] for anomaly detection. Dynamic
textures have been used to model multiple components of differ-
ent appearance and dynamics in [25,34].

Another issue that is common to both tracking and blob-based
approaches is the fact that it is very difficult to cope with crowded
scenes, where precise segmentation of a target is impossible. It is
also important to consider that trajectory based methods rely on
a long chain of algorithms (blob detection, data association, track-
ing, ground plane trajectory extraction) each of which may fail,
leading to the failure of the whole anomaly detection system. In-
stead, approaches that are purely pixel-based, learning a scene rep-
resentation independently of the explicit modeling of object
motion, allow to skip the chain of intermediate decisions required
by the chain of algorithms, and detect an event directly from the
representation of frames.

Some recent works consider the fact that, in some cases, an
event can be regarded as anomalous if it happens in a specific con-
text; for example the interaction of multiple objects may be an
anomaly even if their individual behavior, if considered separately,
is normal. These works consider the scene [27,22,29], typically
modeled with a grid of interest points, or the co-occurrence of
behaviors and objects [14,21,25,28] like persons and vehicles.

In this work we propose a multi-scale non-parametric approach
that detects and localize anomalies, using dense local spatio-tem-
poral features that model both appearance and motion of persons
and objects. Real-time performance is achieved using a careful
modeling of dense sampling of overlapping features. Using these
features it is possible to cope with different types of anomalies
and crowded scenes. The proposed approach addresses the prob-
lem of high variability in unusual events and, using a model updat-
ing procedure, deals with scene changes that happen in real world
settings. The spatial context of the spatio-temporal features is used
to recognize contextual anomalies.

The rest of this paper is structured as follows: scene representa-
tion, spatio-temporal descriptor and feature sampling are de-
scribed in Section 2; in Section 3 is presented the real-time
anomaly detection method, with multi-scale integration, context
modeling and model updating procedure; finally experimental re-
sults, obtained using standard datasets are discussed in Section 4.
Conclusions are drawn in Section 5
2. Scene representation

Modeling crowd patterns is one of the most complex contexts
for detection of anomalies in video surveillance scenarios. Describ-
ing such statistics is extremely complex since, as stated in Section
1, the use of trajectories does not allow to capture all the possible
anomalies that may occur, e.g. due to variations of scene appear-
ance and the presence of unknown objects moving in the scene;
this is due to the fact that object detection and tracking are often
unfeasible both for computational issues and for occlusions. On
the other hand, global crowd descriptors are not able to describe
anomalous patterns which often occur locally (e.g. a cyclist or a
person moving in an unusual direction among a crowd). The most
suitable choice in this context is to observe and collect local space–
time descriptors.
2.1. Feature sampling

Surveillance scenes are typically captured using low frame rate
cameras or at a distance, leading to a short temporal extent of
actions and movements (often just 5–10 frames). Therefore, it is
necessary to sample these features densely in order to obtain as
complete as possible coverage of the scene statistics. This approach
is also motivated by the good performance obtained using dense
sampling in object recognition [35] and human action recognition
[36].

The solution adopted in this work is to use spatio-temporal fea-
tures that are densely sampled on a grid of cuboids that overlap in
space and time. Fig. 1 shows an example of spatial, temporal and
spatio-temporal overlaps of cuboids, and an example of application
of overlapping spatio-temporal cuboids to a video. This approach
permits localization of an anomaly both in terms of position on
the frame and in time, with a precision that depends on the size
and overlap of cuboids; it also models the fact that certain parts
of the scene are subject to different anomalies, illumination condi-
tions, etc., and is well suited for the typical surveillance setup
where a fixed camera is observing a scene over time. Considering
the position of the cuboids on the grid it is also possible to evaluate
the context of an anomaly, inspecting the nearby cuboids. More-
over, it makes it possible to reach real-time processing speed, since
it does not require spatio-temporal interest point localization. In
our previous work [1] we have investigated how the overlap affects
the performance of the system, and determined that a 50% spatial
overlap provides the best performance, detecting more abnormal
patterns without raising false positives, because spatial localiza-
tion of the anomaly is improved. On the other hand temporal over-
lap does not provide an improvement and, instead, may increase
false detections.

2.2. Spatio-temporal descriptors

To compute the representation of each spatio-temporal volume
extracted on the overlapping regular grid, we define a descriptor
based on three-dimensional gradients computed using the lumi-
nance values of the pixels (Fig. 1). Each cuboid is divided in subre-
gions. Each subregion is described by spatio-temporal image
gradient represented in polar coordinates as follows:

M3D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y þ G2

t

q
; ð1Þ

/ ¼ tan�1 Gt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q� �
; ð2Þ

h ¼ tan�1ðGy=GxÞ; ð3Þ

where Gx, Gy and Gt are computed using finite difference
approximations:

Gx ¼ Lrd
ðxþ 1; y; tÞ � Lrd

ðx� 1; y; tÞ; ð4Þ
Gy ¼ Lrd

ðx; yþ 1; tÞ � Lrd
ðx; y� 1; tÞ; ð5Þ

Gt ¼ Lrd
ðx; y; t þ 1Þ � Lrd

ðx; y; t � 1Þ: ð6Þ

Lrd
is obtained by filtering the signal I with a Gaussian kernel of

bandwidth rd to suppress noise; in all the experiments we have
used rd = 1.1, a value which proved to be effective in representing
space–time patches in our previous work in human action recogni-
tion [37]. We compute two separate orientation histograms by
quantizing / and h and weighting them by the magnitude M3D.

It can be observed that if the overlap of cuboids precisely
matches the subregions of nearby cuboids we can reuse the com-
putations of these subregions for different cuboids’ descriptors
(Fig. 2). Using a number of spatial subregions that is a multiple
of the overlap reduces the computational cost of the descriptors
[38]: considering that a 50% overlap of cuboids is optimal then it
is convenient to use an even number of spatial regions, since it is
possible to reuse 50% or, depending on the position of the cuboid,
75% of the descriptors of nearby cuboids.

Therefore, we have divided the cuboid in 8 subregions, two
along each spatial direction and two along the temporal direction.
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Fig. 1. Examples of cuboids for spatio-temporal descriptors extraction, darker areas show the common parts due to the overlap of cuboids, if any. (a) spatial dimensions (X
and Y) and temporal dimension (Time); (b) 2 � 2 � 1 cuboids with no overlap; (c) 2 � 2 � 1 cuboids with spatial overlap and no temporal overlap; (d) 1 � 1 � 2 cuboid with
temporal overlap and no spatial overlap; (e) 2 � 2 � 2 cuboids with spatio-temporal overlap; (f) 2 � 2 � 2 cuboids with spatio-temporal overlap, applied to a part of a frame
of a surveillance video, to compute the spatio-temporal descriptors.
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Fig. 2. Example of two overlapping cuboids: (A and B) The subregions 2, 5, 8 (and
another one below 8) are common to both cuboids, and their computation for
cuboid B can skipped, once they have been computed for cuboid A.

322 M. Bertini et al. / Computer Vision and Image Understanding 116 (2012) 320–329
This choice increases the speed of the system of about 50%, with re-
spect to a division of cuboids in 3 � 3 � 2 regions [1].

This descriptor jointly represents motion and appearance, and it
is robust to illumination and lighting changes, as required in a sur-
veillance context in which a video might be recorded over a large
extent of time. We do not apply a re-orientation of the 3D neigh-
borhood, since rotational invariance, otherwise useful in object
detection and recognition tasks, is not desirable in a surveillance
setting. The / (with range � p

2 ;
p
2) and h (�p, p) are quantized in

four and eight bins, respectively. The overall dimension of the
descriptor is thus 2 � 2 � 2 � (8 + 4) = 96. Fig. 3 shows three
descriptors of cuboids containing a walking person, a cyclist and
a moving cart.This construction of the three-dimensional
histogram is inspired, in principle, by the approach proposed by
Scovanner et al. [39], where they construct a weighted three-
dimensional histogram normalized by the solid angle value (in-
stead of separately quantizing the two orientations) to avoid dis-
tortions due to the polar coordinate representation. However, we
have found that our method is computationally less expensive,
equally effective in describing motion information given by
appearance variation, and shows an accuracy of human action rec-
ognition that is above or in line with other state-of-the-art descrip-
tors [40], but without requiring tuning of descriptor parameters. In
fact, we cannot afford any descriptor parameter learning since our
setting is completely unsupervised.

3. Real-time anomaly detection

Our system is able to learn from a normal data distribution fed
as a training set but can also start without any knowledge of the
scene, learning and updating the ‘‘normal behavior’’ profile dynam-
ically, almost without any human intervention. The model can al-
ways be updated with a very simple procedure. Despite the simple
formulation of this approach our system is able to model complex
and crowded scenes, including both dynamic and static patterns.

Our technique is inspired by the one proposed in [24], where
the proposed scene representation is global and static, based on
global histograms of oriented gradients of single frames. Instead,
in our approach, we use local spatio-temporal features as a scene
representation and we exploit the idea of the adaptive threshold
in order to learn, over time, local models for different portions of
the scene. Another significant difference with respect to [24] is
the use of pure data instead of clusters. We do not perform cluster-
ing on data since we prefer not to corrupt data distribution in order
to produce a more accurate estimation of the distance threshold
used to detect anomalies. Also the model update procedure is
different: since we are not applying any clustering procedure to



0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 3. Example of three descriptors computed on cuboids containing a moving person, a cyclist and a moving cart.
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data, our model update can be performed just by analyzing the de-
tected anomalies stored over time; therefore it can be performed
more frequently, without the need to operate either in detection
mode or in maintenance mode.

As specified in Section 2 the use of local space–time gradients
allows us to detect a wider range of anomalies while an appearance
based method restricts the anomalies that can be detected only to
significant changes in a scene, e.g. a car parked in a wrong place,
the presence of a fire truck or an unseen weather condition (rain,
snow or fog).

3.1. Non-parametric model

In anomaly detection tasks a certain amount of normal data is
usually available; our system can exploit this data as a training
set to bootstrap itself and run in a semi-supervised fashion. Our
system can also be run on-line with no previous knowledge of
the scene, since a model update procedure is used. To jointly cap-
ture scene motion and appearance statistics we use the robust
space–time descriptor, with dense sampling, described in Section
2. In order to decide if an event is anomalous we need a method
to estimate normal descriptor statistics. Moreover, since no
assumptions are made on the scene geometry or topology, it is
important to define this normal descriptor distribution locally with
respect to the frame.

Given a set of triples composed of descriptors dq, their locations
lq and their scales sq extracted from the past T frames, we would
like to evaluate the likelihood of this data given the previously ob-
served triples hd, l,si, i.e. p(dq, lq,sqjd, l,s). The following assumptions
are made: descriptors computed from neighboring cells and from
cells extracted at different scales are considered independent: this
is a common Markovian assumption in low-level vision [41] that,
even if may not hold for overlapping cells, allows to simplify the
model and indeed proved to be effective, as reported in the exper-
iments. We do not pose any prior on the locations, i.e. we do not
consider any region of the frame more likely to generate anoma-
lous descriptors. Since we consider a sequence of frames anoma-
lous if at least a cell of the frame is considered as such, then the
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whole frame probability is obtained by marginalizing out the cell
locations i. In the case of a single scale model we have:

pðdq; lq; sqjd; l; sÞ /
X

i

p di
q; l

i
qjd

i
; li

� �
: ð7Þ

For multi-scale models, we assume descriptors computed at differ-
ent scales independent (even if overlapped), therefore we obtain:

p dq; lq; sqjd; l; s
� �

/
X

i

Y
j2Oi

p di
q; l

i
q; s

i
qjd

i
; li
; sj

� �
; ð8Þ

where Oi represent the set of patches overlapping region i.
To model the contextual anomalies, we need to compute the

likelihood of a given descriptor with respect to its neighboring ob-
served cells; since we consider neighboring models independent
we obtain the following likelihood:

pðdq; lq; sqjd; l; sÞ /
X

i

Y
j2Oi

Y
k2Nij

p di
q; l

i
q; s

i
qjd

k
; lk
; sj

� �
; ð9Þ

where Nij represents the set of neighboring locations at the same
scale. The evaluation of probabilities in Eqs. (7)–(9) are performed
through non-parametric tests, as described in the following.

3.2. Implementation

Given a certain amount of training frames for each cell in our
grid, space–time descriptors are collected and stored using a struc-
ture for fast nearest-neighbor search, providing local estimates of
anomalies; an overview of this schema is shown in Fig. 4. The
training stage is very straightforward, since we do not use any
parametric model to learn the local motion and appearance; in-
stead we represent scene normality directly with descriptor
instances.

A simple way to decide if an event happening at a certain time
and location of the video stream should be considered anomalous,
is to perform a range query on the training set data structure to
look for neighbors. In this work we have used a fast approximate
nearest-neighbor search over k-means trees, provided by the
Fig. 4. System overview. For each cell at each scale cuboids features are stored in efficie
underneath represent in a simplified view the high dimensional feature space. Anoma
integration mechanism reduces false alarms and provides a refined localization of the a
FLANN library [42]. A k-means tree is a hierarchical indexing data
structure obtained by recursively splitting data. Once an optimal
radius for each image location is learned, all patterns for which
the range query does not return any neighbor are considered
anomalies. The problem with this technique is the intrinsic impos-
sibility of selecting a priori a correct value for the radius. This hap-
pens for two reasons: firstly, each scene location undergoes
different dynamics, for example a street will mostly contains fast
unidirectional motion generated by cars and other vehicles, while
a walkway will have less intense motion and more variations of
the direction; moreover a static part of the scene, like the side of
a parking lot, will mostly contain static information. Secondly,
we want to be able to update our model dynamically by adding
data which should be considered normal given the fact that we ob-
served that kind of pattern for a sufficient amount of time; there-
fore, since scene statistics must evolve over time, the optimal
radius will evolve too. Finally, we also would like to select a value
that encodes the system sensitivity, i.e. the probability that the ob-
served pattern is not generated from the underlying scene descrip-
tors distribution.

To estimate the optimal radius for each data structure we ex-
ploit CDF�1

i , the inverse of the empirical cumulative distribution
of nearest-neighbor distances of all features in the structure of
the cell i of the overlapping grid (Fig. 5 shows an example for
two grid cells). The estimate of the CDF of a random variable d
for a value t is:

CDFðtÞ ¼
Xn

i¼1

1fdi 6 tg; ð10Þ

where 1{E} is the indicator of event E and di are realizations of d. A
practical and efficient procedure to directly estimate the inverse
empirical cumulative distribution CDF�1 of a set D of realizations of
univariate random variables di, which share their density function,
is the following: (1) sort di in ascending order, (2) remove duplicate
values from the sorted list (usually needed for discrete variables) and
store the sorted unique values in a vector Dsu, (3) obtain
CDF�1ðpÞ ¼ Dsu

k , where k = bp � jDsujc, p is a probability, jDsuj is the car-
dinality of the set Dsu and vi denote the ith element of vector v.
nt indexes based on k-means tree (fine on the left, coarse on the right). The planes
ly detection may occur in different cells depending on the scale; the multi-scale
nomaly (e.g. the cart on the walkway, see Fig. 6).



Fig. 5. CDFs of different spatio-temporal cells: left) frame with highlighted positions of two cells, center) CDF of the blue (upper left) cell, right) CDF of the red (centered) cell.

Fig. 6. Single scale anomalies detections and localizations, before integration.
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Given a probability pa below which we consider an event anom-
alous, we choose the radius r̂i for cell i as:

r̂i ¼ CDF�1
i ð1� paÞ: ð11Þ

The anomaly probability pa can be set to 10�2,10�3,10�4,10�5, . . .

depending on the user’s need to obtain a more or less sensitive sys-
tem. After setting such value pa, optimal radii are estimated for each
cell with likely different values. This optimal radius formulation al-
lows easy data-driven parameter selection and model update.

3.3. Multi-scale integration

Anomalous events are generated by objects moving in differ-
ent parts of the scene, therefore their scale can be subject to high
variations due to the distance from the camera; moreover, we do
not know the kind and the size of the objects that will generate
anomalies. It is thus necessary to analyze video at multiple scales.
In some initial experiments we observed that models based on
smaller patches have a higher segmentation accuracy but suffer
from false positives, while for models with bigger patches we ob-
serve the opposite behavior. We propose to improve our previous
work [1] by exploiting a late fusion of the detection results of
multiple models. This captures the abnormal patterns at different
resolution. Since we aim at real-time performance, a dense patch
sampling in scale is not computationally feasible; therefore, we
limit the use of scales to two levels. Models are trained with
patches of different size, with a factor of 4� difference. Anomaly
detection is performed using the radius search with the optimal
learned distance and the final detection result is obtained from
the intersection of all the detections. This allows the system to fil-
ter spurious small false positives and increases the capability of
the system to accurately localize even smaller objects (i.e. pedes-
trians, cyclists). Moreover, space–time patterns that span more
than one overlapping cell will be more likely considered anoma-
lous, while a single isolated patch will be suppressed by the inte-
gration procedure. From a probabilistic point of view two
likelihood maps are generated non-parametrically. These maps
represent how likely it is that a given space–time pattern it is
an outlier for the observed statistic; the final likelihood map is
generated via a product rule, resulting in the spatial intersection
of the two detected areas. In our implementation, in order to keep
the system executing in real-time, we used the following scales:
40 � 40 and 10 � 10, with a 50% overlap of 20 pixels and 5 pixels,
respectively. Fig. 6 shows different anomaly localizations at these
scales.
3.4. Context modeling

A purely data-driven method, as the approach proposed in this
work, can suffer from the lack of data in the case that statistics of
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Fig. 7. ROC curve to compare our method with state-of-the-art approaches on the
Peds1 dataset. The dashed diagonal is the EER line.
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Table 1
Summary of quantitative system performance and comparison with state-of-the-art
(lower values are better). EER is reported for frame level anomaly detection on Peds1
and Peds2 datasets together with the average over the two datasets.
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patches from a region is too complex. This is a well known problem
in all instance based methods like k-NN. To moderate this effect,
we extend our model by considering the anomaly likelihood of a
patch with respect to the observations of the nearby patches.
Therefore we test the patch descriptor also against the models of
the eight neighboring cells. With this technique we increase the
amount of data available for learning the local model of a part of
the scene in a sensible way; in fact a patch that it is anomalous
for a region but not for the neighboring ones would not be consid-
ered as such, while patches that are outliers for all the neighboring
regions will be considered anomalies. The result of the detection is
again obtained by product rule, therefore a patch is anomalous if
and only if it is evaluated as such by all the models in its
neighborhood.

3.5. Model update

Since applications for anomaly detection in video surveillance
are designed to be executed for a long time, it is very likely that
a scene will change its appearance over time; very simple exam-
ples are the event of a snowstorm, the cars that enter and exit a
parking lot or the placement of temporary structures in a setting.
It is therefore very important to provide a way to update our
model. Again, we propose a very straightforward data-driven
technique.

Together with the data-structure for each overlapping grid cell,
we keep a list of anomalous patterns. We exploit the same range
query approach presented in the previous subsection to look for
normality in the abnormality list. This list is inspected on a regular
basis, and new data is incorporated by applying the following pro-
cedure. If an event happens very frequently it is likely that it will a
have certain amount of neighbors in feature space, while truly
anomalous event will still be outliers. After the estimation of an
optimal radius for the anomalous pattern list, we discard all outli-
ers in this list and incorporate all other data in the cell i training
set. The optimal radius r̂i for the updated cell is then recomputed.

Even if it is not required, since they can be used with default
values, two parameters of the system can be tuned to adapt them
to a particular scenario: grid density and overlap of cuboids.
Reducing cuboid overlap can increase the detection performance,
while using a more or less dense spatio-temporal grid can serve
also as a system adaptation for a specific camera resolution or
frame rate. These two parameters are directly bound to physical
and technical system properties (e.g. camera resolution and com-
puter processing speed) that the user can easily adjust to figure
out a proper configuration. Instead, the system automatically com-
putes the optimal radius parameter, that is a quantity that is extre-
mely task, scene and time dependent.
UCSPed1 (%) UCSPed2 (%) Average (%)

Single scale 34 32 33
Multi-scale 32 31 32
Context + multi-scale 31 30 30

MDT [34] 25 25 25
MPPCA [22] 40 30 35
Social Force [21] 31 42 37
Adam et al. [19] 38 42 40
4. Experimental results

We tested our approach on the UCSD1 anomaly dataset pre-
sented in [34], which provides frame-by-frame local anomaly anno-
tation. The dataset consists of two subsets, corresponding to
different scenes using fixed cameras that overlook pedestrian walk-
ways: one (called Peds1) contains videos of people moving towards
and away from the camera, with some perspective distortion; the
other (called Peds2) shows pedestrian movement parallel to the
camera. Videos are recorded at 10 FPS with a resolution of
238 � 158 and 360 � 240, respectively. This dataset mostly contains
sequences of pedestrians in walkways; annotated anomalies, that
are not staged, are related to appearance and behavior. In particular,
they are non-pedestrian entities (cyclists, skaters, small carts)
1 http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm.
accessing the walkway and pedestrians moving in anomalous mo-
tion patterns or in non-walkway regions. The first subset contains
34 training video samples and 36 testing video samples, while the
latter contains 16 training video samples and 12 testing video sam-
ples. Each sequence lasts around 200 frames, for a total dataset dura-
tion of �33 min. 10 videos of the Peds1 subset have manually
generated pixel-level binary masks, which identify the regions con-
taining anomalies. We tested our approach on the whole UCSD data-
set. Each anomalous frame in the testing set is annotated; for each

http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
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Fig. 9. ROC curve to compare the localization accuracy of our method with state-of-
the-art approaches using Peds1 dataset. The dashed diagonal is the EER line (note
that the plot of a random classifier is not diagonal in this case, but close to zero).
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cuboid classified as anomalous, we flag as anomalous each region of
the frames from which it was created; frames that contain at least
one anomalous region are considered anomalous. We follow the
evaluation procedure of [34]: in the frame level evaluation an abnor-
mal frame is considered correctly detected if at least one pixel of the
frame is detected as anomalous; in the pixel level evaluation an
abnormal frame is considered correctly detected only if at least the
40% of the anomalous pixels are detected correctly and considered
a false positive otherwise. A ‘‘lucky guess’’ happens when a region
different from the one that generated the anomaly is detected as
anomalous in the same frame. The frame level detection evaluation
does not takes into account this phenomenon. In our previous work
[1] we evaluated the best parameters for dense sampling and over-
lapping of the spatio-temporal descriptors; the best results were ob-
tained for cuboids of 40 � 40 pixels, with 8 frames of depth, a spatial
overlap of 50% and no temporal overlap. In these experiments we
used the same parameters.

We compare our system with results of other state-of-the-art
approaches, as reported in [34]: MPCCA [22], Adam et al. [19], Meh-
ran et al. [21] and Mahadevan et al. [34]. Results are reported using
Table 2
Detection rate on the anomaly localization task (higher values are better).

Single scale Multi-scale Context + multi-scale

27% 28% 29%

Fig. 10. Anomaly localization results (top) compared with the b
the ROC curve and the Equal Error Rate (EER) – that is the rate at
which both false positives and misses are equal. Both multi-scale
integration and contextual modeling help in lowering the EER, with
respect to our previous work [1]. Our approach achieves a similar
performance on both Peds1 and Peds2 datasets, showing the flexi-
bility of the representation that is able to cope with diverse settings
and types of anomalies. The other competing real-time approaches
have a EER performance in the two datasets that varies between 6%
and 11%; it can also be noted that these performance variations of
the other systems are not uniform, thus there is no hint that a data-
set is ‘‘more difficult’’ than the other. Figs. 7 and 8 and Table 1 report
the results for anomaly detection in Peds1 and Peds2. Fig. 9 and
Table 2 report results for anomaly localization on Peds1.

Our approach, with the use of multiple scales and contextual
queries, obtains the second best result both in temporal and spatial
anomaly detection after the method proposed in [34], and is far
superior to all the others in terms of spatial localization and frame
level localization (except the close result of Social Force for Peds1).
However, it has to be noted that the approach of [34] is not suitable
for real-time processing since it takes 25 s to process a single frame
on a computer with a computational power (3 GHz CPU with 2 GB
of RAM) comparable to the one used in our experiments (2.6 GHz
CPU with 3 GB of RAM). The good results in spatial anomaly local-
ization imply that we are not taking advantage of lucky guesses,
but that we accurately localize the abnormal behaviors in space
and time. Fig. 10 shows a qualitative comparison of anomaly
localization of our approach with state-of-the-art off-line approach
[34].

Since our approach aims at real-time processing, we have eval-
uated the impact of the dense sampling of cuboids, computing the
average number of processed frames per second while varying the
spatial overlap of cuboids. The plot in Fig. 11 shows how the steps
of our method affect the performance. The use of multiple scales
degrades the performance the most, almost halving the frame rate.
The overhead of context modeling depends on the amount of fea-
tures extracted, in particular it has little influence for the single
scale algorithm but it strongly affects the multi-scale one since
the complexity of that step depends linearly on the amount of fea-
ture extracted. We also measured the anomaly detection overhead
by computing the different frame rate in training (i.e. feature
extraction and computation only) and testing and we found that
for the single scale approach, without exploiting the context, it is
MDT MPPCA SF Adam

45% 18% 21% 24%

est performing method [21] (bottom) on the UCSD dataset.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

90

overlap %

Fr
am

es
 p

er
 s

ec
on

d

Single scale w/o context
Single scale w/ context
Multi scale w/o context
Multi scale w/ context

Fig. 11. Comparison of the number of frames per second (FPS) processed while
varying the spatial overlap of cuboids, using single-scale and multi-scale approach
on the Peds1 dataset.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

 

 

Peds1 (Break−even .71)

Peds2 (Break−even .87)

Fig. 12. Precision/recall curve of our approach for the two datasets. Break-even, i.e.
the intersection with the dashed line, is reported in the legend.

328 M. Bertini et al. / Computer Vision and Image Understanding 116 (2012) 320–329
only 3–6% of the total computation time while using the context it
increases to 11–12% of the total computation time. For the multi-
scale approach, the use of smaller patches (10 � 10) increases the
burden of context modeling. Even with multiple scales and contex-
tual neighborhood queries our system is able to process 8 frames
per second, with 50% patch overlap, and to obtain competitive re-
sults of detection and localization with respect to non-realtime
systems that require several seconds to process a single frame
[34]. We expect that code optimization exploiting modern multi-
core CPUs will greatly reduce the computational gap between mul-
ti-scale and single-scale methods. Cuboid size does not affect the
computation time since smaller cuboids imply an increased num-
ber of descriptors which are faster to compute while bigger cu-
boids generate fewer but slower to compute descriptors. The
main reason for the decrease of computational performance when
using the multi-scale approach is the increased number of model
queries made when using smaller cuboids.

Since in video surveillance the precision of the alarms is impor-
tant, because a human operator may be disturbed by a high num-
ber of false alarms, in Fig. 12 we report the precision-recall curve
for the UCSD dataset, created varying the pa parameter from 10�5
to 10�2, showing a good performance; considering low probabili-
ties pa for the anomalies the recall is reduced while raising the pre-
cision, and vice versa. In particular, the break-even point a 0.71 of
precision and recall is obtained for 10�4

6 pa 6 10�3 for Peds1
while for Peds2 the value of .87 is obtained for 10�5

6 pa 6 10�4.

5. Conclusions

In this paper we have presented a multi-scale non-parametric
anomaly detection approach that can be executed in real-time in
a completely unsupervised manner. The approach is capable of
localizing anomalies in space and time. We have also provided a
straightforward procedure to dynamically update the learned
model, to deal with scene changes that happen in real-world sur-
veillance scenarios. Dense and overlapping spatio-temporal fea-
tures, that model appearance and motion information, have been
used to capture the scene dynamics, allowing the detection of dif-
ferent types of anomalies. The proposed method is capable of han-
dling challenging crowded scenes that cannot be modeled using
trajectories or pure motion statistics (optical flow).

A comparison on a publicly available dataset shows that our
method achieves the best performance with respect to existing
state-of-the-art real-time solutions [19,21,22].
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