
ARTICLE IN PRESS 

JID: YCVIU [m5G; December 5, 2016;14:14 ] 

Computer Vision and Image Understanding 0 0 0 (2016) 1–15 

Contents lists available at ScienceDirect 

Computer Vision and Image Understanding 

journal homepage: www.elsevier.com/locate/cviu 

Understanding and localizing activities from correspondences of 

clustered trajectories 

� 

Francesco Turchini, Lorenzo Seidenari ∗, Alberto Del Bimbo 

Università degli Studi di Firenze, MICC, Florence, Italy 

a r t i c l e i n f o 

Article history: 

Received 21 March 2016 

Revised 15 November 2016 

Accepted 29 November 2016 

Available online xxx 

Keywords: 

Action recognition 

Action localization 

Sport analytics 

a b s t r a c t 

We present an approach for human activity recognition based on trajectory grouping. Our representation 

allows to perform partial matching between videos obtaining a robust similarity measure. This approach 

is extremely useful in sport videos where multiple entities are involved in the activities. Many existing 

works perform person detection, tracking and often require camera calibration in order to extract motion 

and imagery of every player and object in the scene. In this work we overcome this limitations and pro- 

pose an approach that exploits the spatio-temporal structure of a video, grouping local spatio-temporal 

features unsupervisedly. Our robust representation allows to measure video similarity making correspon- 

dences among arbitrary patterns. We show how our clusters can be used to generate frame-wise action 

proposals. We exploit proposals to improve our representation further for localization and recognition. 

We test our method on sport specific and generic activity dataset reporting results above the existing 

state-of-the-art. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Human activity recognition is a fundamental problem in com-

uter vision ( Karaman et al., 2014; Oneata et al., 2013; Wang

nd Schmid, 2013 ) with many applications such as video retrieval

 Revaud et al., 2013 ), automatic visual surveillance ( Kosmopoulos

t al., 2012; Roshtkhari and Levine, 2013; Ryoo, 2011 ) and human

omputer interaction ( Wang et al., 2012 ). Sports represent one of

he most viewed content on digital tv and on the web. Sports are

atched by millions of people and broadcasters are constantly im-

roving user experience by providing real-time statistics of games. 

Recently, many computer vision researchers directed their ef-

orts in the automatic analysis of sports videos. Sports video an-

lytics is often performed to collect statistics on player positions

uring games, extracting individual trajectories and team forma-

ion patterns ( Atmosukarto et al., 2013; Hsu et al., 2014; Liu et al.,

013 ). 

Some commercial systems are available and used to track

layers http://www.stats.com/sportvu/sportvu-basketball-media or 

he ball( http://www.hawkeyeinnovations.co.uk/sports/tennis ).

hese expensive systems are often targeted to a better

nforcement of rules, which may become challenging in
� An earlier version of this paper appeared in a conference proceeding ( Turchini 

t al., 2015 ). 
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ports with high speed moving objects such as Tennis

 http://www.hawkeyeinnovations.co.uk/sports/tennis, 2016 ). Player 

racking can generate statistics that can be fed into player public

atabases to increase web site visitors among casual fans and

port enthusiasts. 

There is little or no development of industrial grade algorithms

or single camera generic sport activity understanding. We believe

his to be an important direction to investigate since there are

any interesting and valuable tasks to be solved. 

Classifying player actions in sports is an extremely relevant task

hat can provide several commercial and professional applications.

peakers, analysts and directors may obtain in real-time similar

lays from the current or other games providing an improved ex-

erience for the audience. Head coaches may easily classify all the

lays of a certain player to track improvement or to analyse other

eams tactics; finally gameplay statistics can be automatically gath-

red such as the amount of shots on goal and corner kicks a soccer

eam had in a game or a season. 

Many action recognition datasets are comprised of just sport

ideos and there is interest in recognizing sports as concepts in

ideos ( Karpathy et al., 2014; Niebles et al., 2010; Soomro and Za-

ir, 2014 ). More effort has been poured in the analysis of team

actics and activity ( Bialkowski et al., 2013; Gade and Moeslund,

013 ). Team activities are best defined by player positions in the

eld, for this reason many works exploit this datum. Many meth-

ds are based on multi-camera systems deployed to get full cover-

ge of the court. 
g activities from correspondences of clustered trajectories, Com- 
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Fig. 1. Example of cluster matching between two videos from the same class of the volley dataset. The cluster with features generated by the ball in motion is correctly 

matched as well as the ones with players approaching the net. 
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There are few methods, apart from generic action recognition

systems, that attempt to classify player activities without localizing

and tracking individual players ( Ballan et al., 2010 ). Indeed several

techniques require a calibrated fixed view to fuse visual with ge-

ometrical features such as player trajectories or positions in the

field. 

In this paper we propose an activity recognition method that

targets complex activities with possibly multiple individuals in-

volved, which are typical of team sports. Differently from previ-

ously published work on sport activity recognition, our method

does not require calibrated views of the field, player track anno-

tations or player tracking, neither is based on player team recog-

nition. Our method automatically groups visual features forming

a robust representation of videos. The main idea behind our ap-

proach is shown in Fig. 1 . 

We base our approach on improved trajectories (IDT) ( Wang

et al., 2013 ) and we do not encode explicitly player positions or the

temporal sequence of a video. We automatically group trajectories

and define a match kernel able to make arbitrary correspondences

of spatio-temporal patterns. 

Our method is similar to Karaman et al. (2014) , Gaidon et al.

(2013) but differently from Gaidon et al. (2013) we do not re-

quire a hierarchical partitioning of the features. Nor we have the

requirement of using quantized local features that have worst

performance with respect to Fisher encoded descriptors. Com-

pared to Karaman et al. (2014) we do not use pooling importance

maps. Karaman et al.obtain a spatio-temporal scene decomposition

by processing Hierachical Space-Time Segments ( Ma et al., 2013 )

while we just rely on our feature grouping method. Therefore we

have a less strict requirement on feature pooling, and encoding

allowing for better local feature representation. Furthermore, we

have a more general approach to infer the spatio-temporal struc-

ture of the video with respect to Karaman et al. (2014) , not relying

on object tracking or segmentation. 

The flexibility and generality of the proposed approach requires

the encoding of multiple high dimensional feature vectors per

video. This has the drawback of increasing the spatial complexity

with respect to other single signature methods. Nevertheless we

show how to cope with this issue, compressing our vectors and

defining a quantized version of our algorithm that allows to deal

with larger datasets with little loss in classification accuracy. 

We also show how our clusters can be used as per-frame action

proposals with a two-fold benefit: we use the proposals to localize

actions in space and time and we derive an additional powerful

representation based on convolutional networks that is naturally

plugged into our framework. 

We test our method on two sport activity datasets, improving

accuracy with respect to previously published methods by a large

margin. We also show state-of-the-art results on UCF-Sports, Hol-

lywood2 and HighFive showing that our method is also a viable

generic action recognition system. 
Please cite this article as: F. Turchini et al., Understanding and localizin

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
.1. Related work 

We briefly review some recent contributions on automatic sport

ctivity recognition. Atmosukarto et al. (2013) developed a method

o recognize offensive team formation in American football. Their

ethod applies robust video stitching and exploits the localiza-

ion of the line of scrimmage to compute a feature based on gra-

ient intensity on the offensive side of the line. Bialkowski et al.

2013) avoid tracking players but apply player detection and team

ecognition. The method exploits multiple calibrated views of the

eld to locate players in the field. Team activity is recognized com-

uting team field occupancy maps. 

Ballan et al. (2010) match videos using a kernel for sequences

erived from the Needleman–Wunch distance (NWD). The tempo-

al structure of a video is a fundamental cue for recognizing com-

lex events such as sport activities. Their approach is based on

he fact that similar actions should share similar appearance in a

imilar sequence. The main limitation of their method is the use

f static features (SIFT) and the fact that NWD is not designed

o make arbitrary correspondences between sequences. Brun et al.

2016) propose a similar approach, computing a fast global align-

ent kernel, exploiting frame based depth features. 

Waltner et al. (2014) propose a method to recognize individual

layer activities in volleyball. Their method exploits player detec-

ion and camera calibration. Single player activities are recognized

sing a boosting based approach learning from static and motion

ocal features. They also compute a contextual feature based on

layer position for which they require player team recognition. 

Most of the information needed to train effective discriminative

lassifiers for actions resides in motion. Local motion features were

rst proposed by Laptev et al. (2008) and named spatio-temporal

nterest points (STIP). The STIP algorithm is an extension for videos

f local image feature detection and description. After identifying

ulti-scale regions, multiple local descriptors, based on histograms

f optical flow and gradient orientation are computed. Wang et al.

2009) evaluated several sampling strategies and local descriptors

howing that avoiding feature detection in favour of dense exhaus-

ive sampling improves the results. However, in a more recent line

f research, using local feature tracking as a mean of sampling and

o extract better descriptors prevailed ( Jain et al., 2013; Jiang et al.,

012; Raptis et al., 2012; Wang et al., 2015a ). The idea behind tra-

ectory based sampling is to compute the final local feature align-

ng the local frame, thus obtaining a stabilized version of the local

attern. To recover the motion information trajectory geometry can

e used as a feature itself ( Wang et al., 2013 ). 

A sensible feature tracking quality improvement is obtained

ith camera motion compensation ( Jain et al., 2013; Wang et al.,

015a ). Once dominant motion is extracted it is possible to

xtract only the relevant objects that are moving. Trajectories

an therefore effectively discard background features and static

bjects. 
g activities from correspondences of clustered trajectories, Com- 
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Trajectory estimation can be improved using a warped version

f the optical flow, aligning subsequent frames with a transforma-

ion ( Jain et al., 2013; Wang et al., 2015a ). Wang et al. propose to

ncrease the accuracy of the transformation estimate using a per-

on detector to remove trajectories that are less likely to be gen-

rated by the camera motion. This approach is suitable for edited

ideos such as movies where actors fill at least half of the frame

rea. 

Vrigkas et al. (2014) , model videos using a GMM over opti-

al flow features. Action recognition is then performed matching

MM fitted on a test video with GMMs learned for every action

lass at training time. A limitation of this approach is the require-

ent of bounding box annotation to learn GMMs on training data.

viatkovsky et al. (2014) propose a descriptor based on covariances

f optical flow and silhouettes, that is extremely fast and is suit-

ble for human computer interaction scenarios. 

Most of the generic action recognition methods represent the

ideo as a global entity, pooling a high cardinality feature set using

ither some classical coding algorithm like bag-of-words ( Chatfield

t al., 2011 ) or more modern ones like VLAD ( Jégou et al., 2010 ) or

isher Vectors ( Sánchez et al., 2013 ). Feature coding methods that

erform better on image classification and retrieval have proved

he most effective also on action recognition ( Oneata et al., 2013;

ang et al., 2015a ). 

Following the success in object classification, deep convolu-

ional neural networks (DCNN) have been applied to action recog-

ition ( Ravanbakhsh et al., 2015; Tran et al., 2015; Wang et al.,

015b ). Although the results from aforementioned approaches are

romising, it has been reported that they do not always outper-

orm handcrafted features, especially on harder datasets such as

ollywood2 ( Bruni et al., 2016 ). 

A different line of research attempted to exploit trajectories as

 mean of gaining insight on the spatio-temporal structure of the

ideo ( Gaidon et al., 2013; Karaman et al., 2014; Raptis et al., 2012 ).

aidon et al. (2013) show that hierarchically partitioning a video

sing a top-down procedure improves the representation with re-

pect to a global feature pooling. They represent the video impos-

ng a hierarchy and compare videos with a tree matching algorithm

sing hard quantized features. Raptis et al. (2012) group trajecto-

ies and use a MRF to formulate the subgraph matching used to

ompare videos. Finally Karaman et al. (2014) exploit clustered Hi-

rarchical Space Time Segments (HSTS)( Ma et al., 2013 ) to generate

eature pooling maps and compare videos with an efficient graph

atching algorithm ( Feragen et al., 2013 ). 

Action classification algorithms are not usually able to provide

he performer location in space-time. Action localization is the task

f predicting the spatio-temporal volume in which an action takes

lace. Localization can be addressed as a supervised ( Lan et al.,

011; Tian et al., 2013 ) or as unsupervised ( Ma et al., 2013; Yu

nd Yuan, 2015 ) task. Supervised methods train action detectors

iscriminatively, provided performers bounding boxes. Tian et al.

2013) extend the Deformable Parts Model (DPM) to locate spatio-

emporal objects, i.e. actions, formulating the Spatio-Temporal De-

ormable Part Models (DSDPM). Lan et al. (2011) provide a different

pproach, treating person location as a latent variable and inferring

t simultaneously with the action class. Jain et al. (2014) extend Se-

ective Search ( Uijlings et al., 2013 ) to the temporal domain finding

ierarchical segmentation of supervoxels. Wang et al. (2014) pro-

ose an approach which is similar, in principle, to Tian et al., but

ith a stronger supervision. They use a structural SVM formulation

o search for body parts. This approach requires body joint anno-

ations. 

Some methods, specifically devised for action localization, ex-

loit the temporal coherence of the video ( Gkioxari and Malik,

015; Weinzaepfel et al., 2015 ). Weinzaepfel et al. (2015) performs

n exhaustive search to refine EdgeBoxes proposal and combine an
Please cite this article as: F. Turchini et al., Understanding and localizin

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
nstance-level and a class-level classifier to track proposal over a

ideo. Gkioxari et al. have a very close approach to Weinzaepfel

t al. (2015) , learning CNN specific action classifiers to generate

patio-temporal volumes, named “tubes”. To refine the result they

mploy a global optimization on each video to link all “tubes”. 

Unsupervised methods are more related to segmentation and

ttempt to find relevant moving parts in a sequence ( Ma et al.,

013; Yu and Yuan, 2015 ). Ma et al.localize performers inferring

he bounding box location from the set of HSTS ( Ma et al., 2013 ).

u et al. formulate the action proposal localization as a maximum

et coverage problem. They use greedy search to select action pro-

osal maximizing an actionness score computed along a spatio-

emporal path ( Yu and Yuan, 2015 ). Since they are unsupervised

ethods, some classification algorithm has to be used in conjunc-

ion in order to localize actions of a given class otherwise such al-

orithms must be regarded as a mean of salient objects extraction.

The remainder of the paper is organized as follows: in

ection 2 we formally define action recognition as a video match-

ng problem introducing our framework; in Section 3 we present

ur video representation algorithm and in Section 4 we define our

luster set kernel; Section 5 extends our action recognition algo-

ithm enabling action localization; experimental results are pre-

ented in Section 6 and conclusions are drawn in Section 7 . 

. Problem formulation 

Automatic annotation of video content requires the definition

f a representation for videos and a similarity function to com-

are such representations. Classifiers, like kernelized SVMs, can be

earnt straightforward once these two components are defined. Re-

ent contributions in action recognition have shown that methods

ased on local trajectory aligned descriptors are the best perform-

ng ( Wang et al., 2013; 2015a ). These methods represent videos

ith a set of local descriptors. 

Our video matching problem can then be framed as a the com-

arison between two sets of possibly different cardinalities. Sum

atch Kernels (SMK) have been proposed in the past as a solution

o preserve local features quality and avoiding codebook quanti-

ation ( Wallraven et al., 2003 ). Global Pooling, aggregating all fea-

ures in a single signature, is often used instead because of its sim-

licity and computational advantage. Our method, as also shown in

ig. 3 , is a middle ground between these two approaches. 

Let f ( x, y ) be a kernel measuring the similarity of two local fea-

ures x and y belonging to sets X and Y respectively. A sum match

ernel is defined as 

( X , Y ) = 

∑ 

x ∈ X 

∑ 

y ∈ Y 
f (x, y ) (1)

n interesting property of SMKs is the fact that they allow to com-

ute correspondences between any visual structure captured by

he local features. However, they have a major drawback, since in

heir all-vs-all approach, if only a small set of features between

he two sets has a high similarity, this signal may be cancelled

y the many low-scoring feature correspondences. Sum-max ker-

el and power match kernel have been proposed to deal with this

ssue ( Seidenari et al., 2014; Wallraven et al., 2003 ). Moreover the

xhaustive matching procedure that they require has a very high

omputational cost, which is aggravated in our case by the large

mount of local features detected in videos. 

Pooling based approaches can be interpreted as efficient ap-

roximations of SMKs. First they code local features as high dimen-

ional embeddings and then these embeddings are pooled together

n a usually high dimensional signature. A kernel obtained by the

omparison of these signatures is then equivalent to the SMK com-

uted on the encodings. Defining an encoding function ψ( x ), that

mbeds a feature x in a higher dimensional space, if f ( ·, ·) is an
g activities from correspondences of clustered trajectories, Com- 
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Fig. 2. Automatically clustered trajectories on soccer dataset (10, 15 and 30 clusters). Several clusters gather features of a single player. Noisy clusters often capture textured 

regions of the background. 

Fig. 3. We show three possible set matching models. Blue lines indicate correspondence operations, blue points indicate local features and yellow bold points indicate 

pooled features. Match Kernels (a) perform an exhaustive comparison, while Global Pooling (c) performs a single comparison. Our Cluster Set Kernel, compares spatio- 

temporally consistent subsets of features reducing the amount of comparisons and increasing the discriminativity. Note that for video features, | X | � 10 5 while |P( X ) | � 10 . 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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additive kernel, it can be shown that 

K( X , Y ) = 

∑ 

x ∈ X 

∑ 

y ∈ Y 
f (ψ(x ) , ψ(y )) = f 

( ∑ 

x ∈ X 
ψ(x ) , 

∑ 

x ∈ X 
ψ(y ) 

) 

(2)

Defining

�( X ) = 

∑ 

x ∈ X 
ψ(x ) (3)

Eq. (2) can be simply rewritten as 

K( X , Y ) = f ( �( X ) , �( Y ) ) (4)

Global Pooling approaches are interesting since they formally

approximate match kernels and are extremely more efficient to

compute ( Bo and Sminchisescu, 2009; Sánchez and Perronnin,

2011 ). Although, they do not allow to compare subsets of fea-

tures. We believe that action recognition can be improved if spatio-

temporally consistent subsets of video features can be put in direct

correspondence without a global pooling. This idea represents a

trade-off between the exhaustive comparison of SMK and the sin-

gle signature approach of global pooling. 

We therefore propose to apply pooling to subsets of local fea-

tures, that should be grouped according to their spatio-temporal

properties. Each subset of features is represented through global

pooling. Finally, the similarity of two videos is obtained with an

exhaustive comparison between all pairs of signatures. This ap-

proach has two main motivations, first of all it creates a more dis-

criminative kernel function, second it avoids the cost of an exhaus-

tive comparison of all pairs of features. 

Our approach can be modelled as 

K( X , Y ) = 

∑ 

X i ∈P( X ) 

∑ 

Y i ∈P( Y ) 

f ( �( X i ) , �( Y i ) ) . (5)

where P( X ) is a partition of set X such that ⋃ 

X i = X and 

⋂ 

X i = ∅ . (6)
X i ∈P( X ) X i ∈P( X ) t

Please cite this article as: F. Turchini et al., Understanding and localizin

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
. Video representation 

Our video representation is designed to capture the spatio-

emporal structure of the video. In team sports, activities are of-

en defined just by a subset of the players. Ideally mapping visual

eatures to players or other relevant elements (e.g. the ball, the ref-

ree etc.), allows to obtain a detailed representation of the scene,

owever player tracking and detection is an extremely challenging

ask that is prone to failure. Failing to track or detect players or

ther relevant entities breaks the recognition pipeline leading to

nconsistent results. 

Our method is more robust and consists of two main steps: a

eature partitioning step and a matching step. First we group tra-

ectories in an unsupervised manner with an efficient method al-

owing to deal with the several thousands of features extracted per

rame, and then we use our cluster match kernel that allows to

ake correspondences among the grouped trajectories. We learn

ne-vs-rest classifiers using SVM and this kernel. Clusters can be

sed to generate action proposals that allow to learn per-frame ac-

ion localisers. A diagram showing the data flow of our method is

hown in Fig. 4 . 

.1. Trajectory clustering 

We want to identify discriminative spatio-temporal structures,

n order to better distinguish the actions performed in the videos.

o achieve this goal, we employ a spectral clustering technique

n the extracted trajectory features. Due to the large amount

f features extracted by the IDT algorithm, we choose an opti-

ised spectral clustering algorithm, namely Landmark Based Spec-

ral Clustering (LSC) ( Chen and Cai, 2011 ). In Fig. 2 the output of

he feature grouping algorithm shows that clusters roughly localize

layers. 

Spectral clustering is a relaxation of Normalised Cut algorithm

hat tries to exploit the connectivity of data. Spectral clustering ex-

loits the eigenvalues of the Laplacian to obtain a better represen-

ation that allows to easily separate clusters using K-Means. 
g activities from correspondences of clustered trajectories, Com- 
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IDT

Descriptors
Cluster 

Set Kernel

CNN

Fisher encoding
LSC Clustering

Clusters BB

Diving

Classifica�on

Localiza�on

Ac�on 
Localizers

Fig. 4. The workflow of our action recognition and localization framework. Trajectories are extracted from every clip using IDT. Each trajectory is associated with local 

feature descriptors (Descs). Trajectories are grouped using Landmark Based Spectral Clustering (LSC). Each cluster descriptor set is encoded as a Fisher Vector. Clusters are 

used to generate per-frame action proposals. Activations from a Convolutional Neural Network (CNN) are used on action proposals to train per-frame action localisers. We 

use max-pooled features of the second-last fully connected layer, from clusters together with Fisher Vectors in our Cluster Set Kernel. 
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The main problem with big input data is computing the graph

aplacian and its factorization. Indeed the computational complex-

ty for an eigenvalue problem is O ( n 3 ). To reduce this cost, the ap-

roach of LSC is to first project data in a smaller space and then

pply the eigenvalue decomposition on such reduced size problem.

Let L = [ l 1 , . . . , l n ] ∈ R 

m ×n be the data matrix. First we sample

he input data to obtain two matrices: U ∈ R 

m ×p , the landmarks

atrix, and Z ∈ R 

p×n , the data projected in a smaller space of size

 � n . By this way we can approximate L ≈ UZ , thus making

aplacian and eigenvectors computation more lightweight. Prese-

ection of landmarks is performed using K-Means, however random

oint selection is also feasible. These samples are the basis vectors

sed to represent the input data in a reduced space. 

Given the samples and matrix U , the elements of the sparse

epresentation matrix Z can be calculated efficiently as 

 ji = 

K h ( l i , u j ) ∑ 

j∈ U K h ( l i , u j ) 
(7) 

here K h ( · ) is a kernel function, in our case the Gaussian ker-

el K h ( l i , u j ) = exp (−| | l i −u j | | 2 
2 h 

) . We now can compute the eigen-

alues and eigenvectors of ZZ 

T , choosing the first k and applying

-Means to obtain the clusters. The clustering pseudocode is out-

ined in Algorithm 1 . 

Algorithm 1: LSCClustering . 

Data : n data points l 1 , l 2 , . . . , l n ∈ R 

m , Cluster number k 

Result : Indices of k Clusters 

1 Choose p landmarks using a K-Means pass with few 

iterations 

2 Compute matrix Z ∈ R 

p×n as shown in Equation (7) 

3 Compute the first k eigenvectors of ZZ 

T , 

V = [ v 1 , v 2 , . . . , v k ] ∈ R 

k ×p and eigenvalues (σ1 , . . . , σk ) 

4 Compute B 

T = �−1 V 

T Z , where � = diag(σ1 , . . . , σk ) 

5 Apply K-Means to B rows to obtain the indices vector I of the 

k clusters for the n input observations 

6 return ( I ) 

Considering step 3 of Algorithm 1 , being ZZ 

T ∈ R 

p×p , the eigen-

alue decomposition computational cost is then O ( p 3 ) while the

ost of step 4 is O ( p 2 n ), considering the fact that in our case n �
0 4 while p � 10 3 , there are at least three orders of magnitude of

ifference in practice. 

.2. Cluster representation 

We represent local features with HoG, HoF, MBH and trajec-

ory descriptors concatenating the normalised spatio-temporal co-
Please cite this article as: F. Turchini et al., Understanding and localizin

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
rdinates to the local descriptors. HoG, HoF and MBH are respec-

ively histograms of gradients, optical flow and motion boundaries,

.e. derivatives of optical flow, while trajectory descriptors are the

oncatenation of trajectory coordinates normalised by the length

f the trajectory ( Wang and Schmid, 2013 ). Each cluster is repre-

ented with a Fisher Vector encoding of the local descriptors that

ave been assigned to it. 

Our approach is agnostic regarding the local descriptors and

he feature aggregation method. We decided to build on IDT and

isher Vectors which are shown to perform consistently on several

atasets since our focus is on trajectory grouping and matching. 

We apply PCA retaining the first 80 components of all his-

ogram features and 20 of the trajectory descriptors; we concate-

ate the normalised spatio-temporal coordinate of each trajectory

entre to the PCA-compressed local feature in order to retain in-

ormation about the global location. We learn a codebook of 256

aussians using GMM. PCA and GMM codebook are learned on

 random sample of 200K training features. Fisher Vectors are

alculated using the Improved algorithm which applies both L 2 -

ormalization and power normalization ( Perronnin et al., 2010 ). 

Given a Gaussian Mixture Model with parameters μn , σn , ω n 

nd given soft-assignments γ (n ) 
m 

for each of the M augmented local

eature x m 

∈ X , the Fisher Vector is computed concatenating the

ikelihood gradients: 

( X ) = 

[
G μn ( X ) G σn ( X ) 

]
(8) 

here 

 

μ
n ( X ) = 

1 √ 

ω n 

M ∑ 

m =1 

γ (n ) 
m 

(
x m 

− μn 

σ2 
n 

)
, (9) 

 

σ
n ( X ) = 

1 √ 

2 ω n 

M ∑ 

m =1 

γ (n ) 
m 

(
( x m 

− μn ) 2 

σ2 
n 

− 1 

)
, (10) 

nd 

(n ) 
m 

= 

ω n p n ( x m 

) ∑ D 
j=1 ω j p j ( x m 

) 
, (11) 

. Video matching 

Clustering the set of augmented local features X extracted from

 video, according to Algorithm 1 , yields a partition P ( X ) . 

Based on the formulation introducted in Section 2 we define a

ernel inspired by Match Kernels ( Wallraven et al., 2003 ) that ex-

loits trajectory grouping to reduce the matching complexity and

o compute correspondences among coherent subset of video fea-

ures. 
g activities from correspondences of clustered trajectories, Com- 

/j.cviu.2016.11.007 

http://dx.doi.org/10.1016/j.cviu.2016.11.007


6 F. Turchini et al. / Computer Vision and Image Understanding 0 0 0 (2016) 1–15 

ARTICLE IN PRESS 

JID: YCVIU [m5G; December 5, 2016;14:14 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c

�  

w  

(

K

 

 

p  

t  

b

4

 

d  

fi  

T  

i  

i  

a  

q

 

t  

T  

l  

G  

t

 

c  

v  

v  

e  

O  

t  

h  

a  

t  

i

 

v  

p  

C  

b  

o  

p  

n  

s  

o

5

 

p  

T  

t  

h  

s  

t  
4.1. Cluster set kernel 

Given a pair of videos and their respective feature sets X and

Y , after the clustering step we compute our cluster set kernel as

follows 

K( X , Y ) = 

1 

|P( X ) | 
∑ 

X i ∈P( X ) 

max 
j 

�( X i ) 
T �( Y j ) 

+ 

1 

|P( Y ) | 
∑ 

Y j ∈P( Y ) 

max 
i 

�( X i ) 
T �( Y j ) (12)

where P( X ) is a partition of X defined as in Eq. (6) . 

In this way, we obtain a symmetric kernel matrix. Our kernel

takes into account the similarity scores both of Y respect to X and

of X respect to Y . If two videos are similar, we should obtain high

scores from both operations, and thus a high combined score. Even

though our kernel can not formally satisfy the Mercer property it

has been shown that this is not a strict requirement for an SVM

classifier to learn an accurate solution. In practice the kernel ma-

trices we have computed were always positive definite so far. 

Given different groupings P( X 

f 
n ) for each feature f and the re-

spective kernels K(P( X 

f 
n ) , P( Y f n )) our final kernel can be com-

puted as 

K( X , Y ) = 

∑ 

f 

∑ 

n 

K(P( Z 

f 
n ) , P( Y 

f 
n )) (13)

thus integrating different local representation and spatio-temporal

structures. The formulation in Eq. (13) allows to fuse multiple tra-

jectory partitionings, with different cluster cardinalities, and local

feature descriptors. 

We normalize the kernel obtained from Eq. (13) using the fol-

lowing 

ˆ K = DKD 

T (14)

where D is a diagonal matrix such that D ii = 1 / 
√ 

K ii . 

4.2. Quantized kernel 

Our approach requires the storage and processing of a large

amount of high dimensional feature vectors. This problem is also

worsened by the fact that we employ multiple features. 

Jegou et al. (2011) proposed to use Product Quantization (PQ) to

reduce the dimensionality of feature vectors. Perronin et al. applied

the same idea to Fisher Vectors ( Sánchez and Perronnin, 2011 ) and

the idea of reducing data storage and access cost with this tech-

nique is considered a good practice for large scale learning ( Akata

et al., 2014 ). Differently from Vector Quantization (VQ), which acts

mapping a whole high dimensional vector onto a single represen-

tative, PQ splits signatures in several blocks learning a quantizer

for each sub-vector. 

There are two sources of spatial complexity burden in our

framework: local features extracted by IDT, and high dimensional

signatures representing clusters. We only quantize the final signa-

ture of a cluster X, �( X ), while local features, once encoded as

described in Section 3 , can be discarded. Moreover, quantizing lo-

cal features leads to degraded performance, affecting the quality of

trajectory clustering and of the overall representation. 

We learn a product quantizer Q using K-Means which out-

puts a set of M codebooks. The quantizer Q is a set of quantiz-

ing functions q i ( x ) mapping a feature x onto a codeword c 1 
i 

. . . c b 
i 
. A

Fisher Vector �( X ) will be represented by an ordered set of indices

Q (�(X )) = { q i (�i (X )) . . . q M 

(�M 

(X )) } where q i ( · ) is a quantizer

function learned for the i -th vector block � i ( X ). Instead of recon-

structing the features as in Sánchez and Perronnin (2011) , Akata

et al. (2014) we directly precompute dot products among all code-

words of each quantizer thus defining P 

i = [ c 1 
i 

. . . c b 
i 
] T [ c 1 

i 
. . . c b 

i 
] . 
Please cite this article as: F. Turchini et al., Understanding and localizin
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The approximated dot product for two features �( X ), �( Y ) be-

omes: 

(X ) T �(Y ) � 

M ∑ 

m =1 

P 

m 

q m (�(X )) q m (�(Y )) (15)

here q m 

(�(X )) = q m 

(�m 

(X )) to ease the notation. Plugging Eq.

15) into Eq. 13 we obtain our quantized kernel: 

( X , Y ) = 

1 

|P( X ) | 
∑ 

X i ∈P( X ) 

max 
j 

M ∑ 

m =1 

P 

m 

q m (�(X i )) q m (�(Y j )) 

+ 

1 

|P( Y ) | 
∑ 

Y j ∈P( Y ) 

max 
i 

M ∑ 

m =1 

P 

m 

q m (�(X i )) q m (�(Y j )) 
(16)

Different compression rates can be obtained varying the two

arameters G and b , which are respectively block size of �( X ) used

o dived it in M blocks and the amount of codewords used for each

lock. 

.3. Complexity analysis 

Following the model presented in Section 2 , we conduct a more

etailed analysis of the computational cost of our method. Let us

rst consider a Global Pooling approach, such as Fisher Vectors.

o simplify the analysis we split the cost in encoding and match-

ng . Encoding refers to the phase in which local features are coded

nto a higher dimensional representation and then pooled to form

 single high dimensional signature. Matching refers to the step re-

uired to compute the similarity between two of such signatures. 

Encoding L local features with a dimensionality of D , for a dic-

ionary of K Gaussians requires O (2 KDL ), while matching is O (2 KD ).

he encoding step defined by Eqs. (9) and (10) requires the calcu-

ation of L differences, for D dimensional feature, for each of the K

aussian n . Matching is performed with a scalar product between

wo 2 KD -dimensional feature vectors. 

Let us now consider our Cluster Set Kernel approach. In our

ase the encoding step must be performed for each cluster of each

ideo, however each cluster contains just a subset of the whole

ideo feature set. Considering Eq. (6) , we can conclude that the

ncoding step has the same cost of a single Global Pooling, i.e.

 (2 KDL ), since the amount of local features to be encoded ( L ) is

he same in both approaches. Regarding the matching step, we

ave a higher cost, since in Eq. (12) we compute scalar product

mong all 2 KD -dimensional cluster encodings. Considering a parti-

ioning of features in N clusters, for both videos, the matching cost

s O (2 KDN 

2 ). 

In case the Match Kernel approach is used, assuming that

ideos have roughly the same amount of local features L , the com-

lexity is O ( DL 2 ). If we compare the cost of Global Pooling and our

luster Set Kernel, it is evident that both quantities are dominated

y the encoding time. For Global Pooling O ( L 2 KD ) > O (2 KD ) and for

ur approach a similar relation holds, O ( L 2 KD ) > O ( N 

2 2 KD ), since

ractically L 	 N 

2 . Finally if we consider the cost of a Match Ker-

el compared to our approach, the ratio of the two costs is L 
2 K , and

ince L � 10 5 and K � 10 2 , the Match Kernel has a cost of three

rders of magnitude higher with respect to our approach. 

. Action localization 

Our clusters are able to reveal the structure of a video decom-

osing the feature set into spatio-temporally consistent subsets.

he kernel defined in Eq. (13) allows a partial matching of the fea-

ure set to be performed, however it still treats the video globally,

ence not allowing a proper action localization. In this section we

how how our clusters can be exploited to generate a set of ac-

ion proposals in each frame and learn action localizers. Moreover,
g activities from correspondences of clustered trajectories, Com- 
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roposal regions can be used to sample new features computed on

ingle frames thus enriching the cluster representation beyond the

DT local descriptors. 

.1. Action proposals 

Given a frame from a sequence, classified as action y , we define

n action proposal as a sub-region of the frame likely to contain,

artially or completely, the person performing such action. Trajec-

ory clusters are spatio-temporal entities with an extent that may

r may not encompass the whole video. For each frame we are

ble to extract a set of bounding boxes from each live cluster. We

onsider a cluster X i alive at frame t if there exists at least one

rajectory, belonging to X i , in that frame. 

Consider a cluster X i and a frame at time t , we obtain an action

roposal, defined by a box B i ( t ) := [ x, y, h, w ] as in the following: 

 = min 

X i 
x tra j (t) , (17) 

 = min 

X i 
y tra j (t) , (18) 

 = max 
X i 

x tra j (t) − x, (19) 

 = max 
X i 

y tra j (t) − y, (20) 

here x traj ( t ), y traj ( t ) are the trajectory coordinates at frame t .

qs. (17) –(20) , formally define the extent of B i ( t ), which is simply

he rectangular region containing all trajectories from cluster X i at

rame t . 

We represent each rectangular region using the activation from

he second-last fully connected layer of a convolutional neural net-

ork ( Girshick et al., 2014 ). We use the features learned from the

re-trained VGG-16 network ( Chatfield et al., 2014 ) to represent

ach bounding box after warping it to a 224 × 224 square region.

ransfer learning is performed simply by training a linear classifier

ver the CNN codes computed from VGG-16, as detailed in the fol-

owing Section. This approach has been shown to be successful for

 variety of tasks including action recognition ( Ravanbakhsh et al.,

015; Sharif Razavian et al., 2014 ). 

In the following, we discuss how to incorporate the frame-wise

nowledge that we are able to extract through proposals. We ex-

loit action proposals in a twofold manner. First we use the frame-

ise local features to learn action localizers, then we devise a

ethod to represent clusters with these features and incorporate

he representation into Eq. (13) to improve classification. 

.2. Detection 

We now detail a strategy to form a training set for frame-wise

ction localizers, based on our action proposals. We consider a pro-

osal “positive” if it has an Intersection over Union (IoU) with the

round truth higher than 0.3. Object detections are usually con-

idered correct if IoU exceeds 0.5 ( Everingham et al., 2010 ), how-

ver we use this more permissive value in order to obtain a suf-

cient amount of positive samples. Given a category, we collect a

et of positive and negative box samples, from each training video.

or the positive set we avoid boxes from clusters which are com-

osed by more than the 80% of negative samples. We perform this

re-filtering to avoid spurious overlapping boxes from mostly neg-

tive clusters contaminating the positive training set. The full train-

ng set is then obtained by merging all samples from all training

ideos. 
Please cite this article as: F. Turchini et al., Understanding and localizin

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
We learn a binary linear SVM for every class, over positive

nd negative samples from all training videos, obtaining our ac-

ion detectors. At test time, for each frame, we retain only bound-

ng boxes with a positive score and to obtain a single bounding

ox we perform the following procedure. We build an energy map

ccumulating the scores of positive boxes with a procedure simi-

ar to Karaman et al. (2014) . Energy maps are min-max normalized

nd thresholded with a value of 0.5. The final box, predicting the

ction location, is the one enclosing the largest peak. 

This procedure is different from Non-Maximal Suppression

NMS) which is the algorithm of choice when performing detec-

ion and there is the need of simplifying a set of redundant boxes.

ndeed NMS can only be applied when samples are clustered with

 high overlap. Our proposals are generated directly from clusters

hich are learned unsupervisedly with the objective of partition-

ng video trajectories into separated and consistent sets. Our pro-

osals usually focus on the details of actions, like a moving arm or

he upper body bending. Therefore our procedure allows to com-

ute a higher quality bounding box for the action to be predicted

nd to reduce the influence of outliers. 

.3. Improving classification 

Our frame-wise proposals, computed using Eqs. (17) –(20) , allow

o associate to each cluster a set of CNN activations. We exploit

his powerful feature to improve classification. We obtain a single

eature vector for each cluster by max-pooling over all the acti-

ations. We can now compute the kernel defined in Eq. (12) and

ombine it with kernels computed from IDT features using Eq. (13) .

s for Fisher Vectors we use a dot product to compare max-pooled

ctivations. 

. Experiments 

To test our framework, we performed experiments on a generic

port dataset (UCF Sports), and two specific sport datasets, namely

ICC-SOCACT4 and Volleyball Activity Dataset 2014. We also tested

ur method on HighFive and Hollywood2 which are two popu-

ar and challenging datasets of generic actions to show that our

ethod is extremely general and is applicable not just to sport ac-

ivities but also to generic action recognition. We also evaluated

he trade-off between accuracy and compression rate obtained by

ur quantized kernel and the localization accuracy of our cluster

ased proposals. 

.1. Datasets 

CF Sports. UCF Sports is comprised of 10 actions selected from

arious sports and recorded from TV broadcast (Diving, Golf Swing,

icking, Lifting, Riding Horse, Running, Skateboarding, Swing-

ench, Swing-Side, Walking). There are 150 scenes at 720x480 res-

lution. For action recognition, we use the Leave-One-Out (LOO)

ross-validation scheme. For the localization task we use the same

etting of Lan et al. (2011) . 

ICC-SOCACT4. This dataset is composed by 100 MPEG-2 videos

t PAL resolution (720x576). These videos represent 4 soccer ac-

ions: “Goal Kick”, “Throw In”, “Placed Kick”, “Shot on Goal” and

ere recorded from 5 different matches of the Italian “Serie A”.

e picked a match as the test set and the other 4 as the training

et, performing a 5-fold cross-validation. 

olleyball Activity Dataset 2014. This dataset is composed by 6

ull volleyball matches of the Austrian Volley League originally

ecorded in full HD resolution. They were annotated with 7 classes,

 specific volley classes (“Serve”, “Reception”, “Setting”, “Attack”,
g activities from correspondences of clustered trajectories, Com- 
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Fig. 5. Accuracy values varying number of clusters for the MICC-SOCACT4 dataset. 
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“Block”), and 2 more general classes (“Stand”, “Defense/Move”). We

take in exam the tracklets, which represent the continuous player

activities lasting about 1–2 seconds. We cut the original videos ac-

cording to the tracklets, obtaining about 900 videos, that we used

as the actual classification dataset. The cut script provided by the

authors crops the area around annotated players, while we take

the entire frame in the same time window, reducing its resolution

to 640x360 and adding additional 15 frames at the beginning and

15 at the end of the tracklet. Data was partitioned in 50% for train-

ing and 50% for testing, according to Waltner et al. (2014) . Results

are reported for two experimental settings: recognition of all the

seven activities and recognition of only the five, volleyball specific,

activities. 

Hollywood 2. The Hollywood 2 dataset is composed of 1707 clips

split in training and test. We only use the “clean” annotated set.

The dataset has 12 classes of human actions and is composed of

roughly 20 hours of video in total. It is considered one of the

most comprehensive and challenging benchmark for human action

recognition in realistic settings. The dataset is composed of video

clips from 69 movies extracted from DVDs. To avoid any bias the

training clips are sampled from a different set of movies with re-

spect to the test clips. 

HighFive. The HighFive dataset is focused on the recognition of

human interactions. It is collected from TV series and contains 4

classes and a set of negative examples. The dataset is composed

by 300 videos and a training/testing split is proposed by Patron-

Perez et al. (2012) . Results are reported computing mean average

precision on all classes except the negative one. 

6.2. Action recognition 

We evaluate the accuracy in activity recognition of our pro-

posed method on several public datasets. We argue that our

method is not tailored to specific sports nor require adaptation to

cope with viewpoints that are characteristic of certain sport broad-

cast. For this reason we also test our method on generic action

recognition datasets, showing state of the art results. 

In all experiments we extracted improved dense trajectories de-

scriptors with the default parameters without using human detec-

tion to filter trajectories. On smaller datasets such as MICC-SOCACT

and UCF Sports, we also extracted descriptors on flipped versions

of videos. 
Please cite this article as: F. Turchini et al., Understanding and localizin
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Throughout Section 6 , we use three variations of our method.

e set as baseline a standard Fisher Vector pipeline with linear

VM classifiers. Considering Eq. (12) this baseline is equivalent to

pplying our framework with a single cluster per video sample

rouping all features. We refer to this variation as “Fisher Vector

aseline”. To evaluate our clustering based representation, we use

 simpler version of our method, based on Eq. (12) , using a single

luster cardinality, e.g., 10. We refer to this simplified version of

ur approach as “Our Clustering”. Finally, the complete approach

onsidering multiple cluster cardinalities, implemented in Eq. (13) ,

s referred as “Our Fusion”. 

We evaluate first how parameters of trajectory clustering affect

ecognition accuracy. In Figs. 5 and 6 we report how the classifi-

ation accuracy varies depending on the number of clusters used.

n this experiments we could note how the classification accu-

acy does not depend strongly on the amount of clusters used per

ideo, anyways the best performance on both dataset is obtained

sing 10 clusters. Kernels computed with different cluster cardinal-

ties lead to similar accuracy but likely capture different details of

he imagery. Indeed our fusion approach, as discussed in the fol-

owing sections, consistently leads to superior performance on all

atasets. 

We then evaluate how the accuracy of our method is affected

y the number of Gaussians employed in the dictionary construc-

ion. As shown in Table 1 , performance for codebooks larger than

4 Gaussians saturates. 

.2.1. Experiments on sports datasets 

We first show a comparison with the state-of-the-art on UCF

ports Actions, which highlights the good behaviour of our method

ith respect to other known approaches. We show competitive re-

ults, beated only by Ravanbakhsh et al. (2015) , using CNN features

rom image pretrained networks, over snippets of frames. 

We outperform ( Karaman et al., 2014 ), without making use of

ooling maps to weight high saliency areas of the scenes ( Karaman

t al., 2014 ). UCF Sports actions are performed by individual ath-

etes, so the clustering step is able to put in evidence the salient

ubset of trajectories without additional external information. Note

hat the method proposed by Vrigkas et al. (2014) , requires bound-

ng box for each action in each frame, while we do not. 

We report performance in the recognition of specific sport ac-

ivities in Soccer and Volleyball. First we report results of our

ethod on the smaller MICC-SOCACT4 dataset. Soccer actions are
g activities from correspondences of clustered trajectories, Com- 
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Fig. 6. Accuracy values varying number of clusters for the Volleyball Actions 2014 dataset. 

Table 1 

Mean Average Precision on HighFive dataset varying the size 

of Mixture of Gaussians codebook. Above 128 Gaussians it 

can be observed that mAP saturates. 

# GMM Fisher vector Our clustering Our fusion 

64 66 .4 75 .7 75 .8 

128 68 .3 77 .0 77 .3 

256 68 .5 77 .1 77 .6 

512 69 .4 77 .3 77 .6 

Table 2 

Comparison with the state of the art on the 

UCF Sports dataset. Results are reported as 

mean per-class accuracy over the 10 classes. 

Method Accuracy 

Our fusion 92 .9 

Our clustering 90 .5 

Fisher vector baseline 88 .6 

Ravanbakhsh et al. (2015) 97 .8 

Vrigkas et al. (2014) 95 .1 

Karaman et al. (2014) 90 .4 

Wang et al. (2013) 89 .1 

Lan et al. (2011) 83 .7 

Kovashka and Grauman (2010) 87 .3 

Kläser (2010) 86 .7 

Wang et al. (2009) 85 .6 

Yeffet and Wolf (2009) 79 .3 

Rodriguez et al. (2008) 69 .2 

Table 3 

Mean per class accuracy of our method compared with 

( Ballan et al., 2010 ) on the MICC-SOCACT4 dataset. 

Method Accuracy 

Our fusion 92 .5 

Our clustering 91 .5 

Fisher vector baseline 88 .8 

String Kernel+SVM ( Ballan et al., 2010 ) 73 .0 

NN+NWD ( Ballan et al., 2010 ) 54 .0 

o  

V  

l  

d  

c  

Table 4 

Mean per class accuracy results on the Volley- 

Ball Activity dataset compared with ( Waltner et al., 

2014 ). 

Method Acc. 7 Cl. Acc. 5 Cl. 

Our fusion 91 .2 94 .1 

Our clustering 68 .2 78 .5 

Fisher vector baseline 60 .3 53 .7 

Waltner et al. (2014) 77 .5 90 .2 
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ften defined by collective behaviours. On this dataset, our Fisher

ector baseline already improves over ( Ballan et al., 2010 ) by a

arge margin as is shown in Table 3 . Nevertheless our correspon-

ence kernel can boost the accuracy further obtaining 92.5%, espe-

ially raising the accuracy on “Goal Kick” and “Placed Kick” as can
Please cite this article as: F. Turchini et al., Understanding and localizin

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
e seen from the confusion matrices in Fig. 8 ; in both these actions

here is a single player performing a discriminative motion: kicking

he ball from a fixed position, while other players are less involved

n the action. For this reason our clustering can isolate these ac-

ions and better match the respective spatio-temporal structures. 

In Table 4 we report a comparison of our method with previ-

us work and our baselines on the Volleyball Activity Dataset. It

an be seen that our baseline with a single Fisher Vector per video

erforms worse than ( Waltner et al., 2014 ). Our clustering baseline

mproves over the FV baseline by 8% (and by 25% on 5 classes).

ome player activities are better recognized in isolation as can be

een in the confusion matrix while other are better recognized ex-

loiting context. From Fig. 7 it is clear that collective activities as

Block” and “Defence” are better captured by a global representa-

ion (FV), while individual actions like “Attack” and “Service” are

etter recognized by our correspondence kernel. 

The fusion approach implemented by Eq. (13) is able to obtain

ccurate results in both setups outperforming the state of the art

y more than 14% (and by 4% on 5 classes). 

The classification task noticeably benefits from the cluster-

ng step, especially on the volleyball dataset. However, it appears

learly, looking at the confusion matrices in Fig. 7 , that results

re complementary. “Stand”,“Block” and “Defence” need some ad- 

itional contextual information to be recognized, while clustering

ocuses on local information located in cluster areas, which is bet-

er for the other classes. Notice how the fusion allows to distin-

uish between Block and Attack actions, which are almost totally

onfused by the clustering method. 

On soccer videos classification accuracy took just a small ad-

antage from the fusion, compared to clustered Fisher encoding by

tself. We can hypothesize that soccer scenes do not benefit from

lobal contextual information because of their structure and dy-
g activities from correspondences of clustered trajectories, Com- 
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Fig. 7. Confusion matrices for volleyball. 

Fig. 8. Confusion matrices for soccer. Our method improves on “Goal Kick” and “Placed Kick” actions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Comparison with the state of the art on the Hol- 

lywood2 dataset. Results are reported as mean 

average precision. 

Method mean AP 

Our fusion 70 .7 

Our clustering 65 .4 

Fisher vector baseline 66 .7 

Wang et al. (2015a ) 66 .8 

Jain et al. (2013) 62 .5 

Zhu et al. (2013) 61 .4 

Mathe and Sminchisescu (2012) 61 .0 

Jiang et al. (2012) 59 .5 

Gaidon et al. (2013) 54 .0 
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namic characteristics, with very high camera motion that is not

fully compensated by improved trajectories features, while volley

sequences need to be analysed both globally and in specific areas

to locate the distinctive elements, such as the players arrangement.

6.2.2. Experiments on generic actions 

We show results on two popular and challenging generic ac-

tion recognition datasets: HighFive ( Patron-Perez et al., 2012 ) and

Hollywood2 ( Laptev et al., 2008 ). We report mean Average Preci-

sion (mAP) on the full test set, following the standard protocol for

Hollywood2. Considering the multi-label nature of Hollywood2, we

could not compute Confusion Matrices using the whole dataset. For

the sole estimation of confusion matrices, videos with more than

one action, ∼ 10% of the dataset, were removed. This operation is

necessary in order to correctly estimate the aforementioned matri-

ces. 

As shown in Table 5 , on the Hollywood2 dataset our baseline is

comparable to the result proposed by Wang et al. (2015a ) with a

0.1% difference. Clustering alone has a similar performance and the

fusion is above the state of the art obtaining 70.7% of mAP. On this

challenging dataset our clustering approach offers a high perform-

ing, complementary representation, to the global approach. Hol-

lywood2 contains challenging untrimmed sequences where multi-

ple actions can be performed at once (e.g. Hugging and Kissing).

We believe that matching local patterns improves the recognition

given the complex structure of video sequences in this dataset.

Confusion matrices on Hollywood2, reported in Fig. 10 , show that

our Fusion method reduce the misclassifications. 

Accuracy in a multi-label setting can be measured, as suggested

in Madjarov et al. (2012) , using per example accuracy. For an ex-
Please cite this article as: F. Turchini et al., Understanding and localizin

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
mple x from a test dataset D, we define L x as the set of ground

ruth labels. For a classifier h ( · ), h ( x ) is the set of predicted labels

or example x . The accuracy, averaged on all samples is 

ccuracy = 

1 

|D| 
∑ 

x ∈D 

| h (x ) ∩ L x | 
| h (x ) ∪ L x | (21)

We obtain h ( x ), after hard thresholding 1-vs-all classifier deci-

ions. We report 61.3% for fusion, 57.7% for clustering and 60.0%

or Fisher Vector baseline label-set accuracy. These results are con-

istent with mAP, which also takes into account multiple labels by

valuating ranking. 

In Table 6 we report a comparison on the HighFive dataset; we

eport 77.6% mAP using our method with fusion. On this dataset

he clustering approach performs already much better than our

aseline, as also shown in Fig. 9 . Fusion performs comparably to

lustering improving only by 0.5%. HighFive is focused on human
g activities from correspondences of clustered trajectories, Com- 
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Fig. 9. Confusion matrices for highfive. Fusion is able to improve recognition of “handShake” and “kiss”, which are often misclassified in our baseline and in clustering 

approach. However, recognition of “highFive” and “hug” is slightly lower than in the clustering configuration. Mean per-class accuracy is respectively: 70.2%, 77.0% and 78.8%. 

Fig. 10. Confusion matrices for Hollywood2, computed for single-label videos. Fusion improve most of the classes. Mean per-class accuracy is respectively: 61.6%, 61.2% and 

65.7%. 

Table 6 

Comparison with the state of the art on 

the HighFive dataset. Results are reported 

as mean average precision over the 4 

classes. 

Method mean AP 

Our fusion 77 .6 

Our clustering 77 .1 

Fisher vector baseline 68 .5 

Wang et al. (2015a ) 69 .4 

Karaman et al. (2014) 65 .4 

Ma et al. (2013) 53 .3 

Gaidon et al. (2013) 55 .6 

Laptev et al. (2008) 36 .9 

Patron-Perez et al. (2012) 42 .4 
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nteraction and, since it is collected from TV shows, clips usually

epict actors in the foreground. Our clustering approach is able to

atch important patterns like hands shaking or faces approach-

ng obtaining state-of-the art performance. Global representations

re probably less effective since global information is not a strong

ue for the actions. Moreover a global pooling approach is likely to

ather some noise from actors not involved in the interaction to be

ecognized. 

Note that the best performing, previously published method, on

oth datasets by Wang et al. (2015a ), is using a person detector to

mprove the optical flow based frame stabilization while, to keep

ur method more generic, we do not rely on such technique in the

xtraction of dense trajectories. Also note that on both Hollywood2

nd HighFive datasets our Fisher Vector implementation has a high

erformance. We believe that such figures are reached employing
Please cite this article as: F. Turchini et al., Understanding and localizin

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
ll of IDT based descriptors and adding the trajectory local coordi-

ates to the descriptors before encoding. 

.3. Cluster saliency 

To gain insight on the potential localization capability of our

pproach, we show a method for salient cluster mining. We would

ike to find which are the clusters that better help the classifier to

iscriminate actions. Given a video feature set Z , the learned kernel

VM classifier for an action (defined by Eq. (13) ), the weights αk 

nd training sample labels y k we greedily search for the cluster Z i 

hat, if removed, causes the higher classification score drop on a

orrectly classified action: 

 i = arg max 
i 

∑ 

k 

αk y k 
[
K 

X k 
(P( Z )) − K 

X k 
(P( Z ) \ Z i ) 

]
(22) 

here K X ( Z ) = K( X , Z ) . 

Salient clusters are selected iteratively, removing them from the

lip using Eq. (22) until the classification score does not decrease

nymore. 

We show some results for the Volleyball Activity dataset. We

se volleyball as a test since volleyball plays are very well struc-

ured with precise running path and positions for players. For the

ake of visualization, we represent each salient cluster as a bound-

ng box, defined as the one containing all cluster features. In Fig. 11

e plot the accumulation of salient clusters bounding boxes, gen-

rating a heat map, which highlights the most relevant areas in the

cene for the action. 

It can be seen that for the “Service” and “Attack” action the

erving and attacking players are respectively highlighted, while

n the examples of “Reception” and “Setting” multiple players
g activities from correspondences of clustered trajectories, Com- 
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Fig. 11. Heatmaps of the most relevant clusters for collective actions “Attack”, “Reception”, “Service” and “Setting”. Heatmaps highlight motion of players that our classifier 

find most discriminative. 
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are highlighted. In the “Setting” action, both spikers, the middle-

blocker and the opposite player run-up are localized. 

This behaviour can be expected, as some actions need contex-

tual information to be recognized. It may also happen that some

actions are correctly classified by our clustering approach, but ap-

plying Eq. (22) results in highlighting as meaningful some parts of

the scene which are not intuitively descriptive of the action. This

happens, for example, in the “Setting” class, where most salient ar-

eas correspond with the players which are preparing to attack, and

not with the player who is actually setting the ball. 

Although this experiment only provides some anecdotal evi-

dence it shows how the learned classifier interpret the spatio-

temporal structure of the video generated by the trajectory group-

ings. Unfortunately, as explained before, this form of saliency not

always accumulates on the exact region where the action is per-

formed. This is easily explained by the fact that for the “Setting”

action the contextual representation may be a stronger cue to rec-

ognize the activity. 

Therefore if a precise action localization is sought we argue that

a stronger supervisory signal must be provided. In the following

Section, we show how the method discussed in Section 5 , exploit-

ing CNN and bounding box annotations allows precise localization

of actions in space and time. 

6.4. Action localization 

In this section we evaluate the localization method presented

in Section 5 . We test our approach on UCF Sports which presents

many challenges in the localization task. The actions present in

UCF Sports clips have a high variation in body pose and motion,

spanning to very static actions such as “Golfing” to highly dy-

namic and acrobatic sequences such as “Swing-Bench” which are

extracted from pommel horse competitions. 
Please cite this article as: F. Turchini et al., Understanding and localizin

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
We adhere to the same protocol of Tian et al. (2013) , Lan et al.

2011) evaluating jointly classification and localization, using the

eceiver Operating Characteristic (ROC) curve. Each frame is anno-

ated with a single ground truth action bounding box. ROC curves

re computed by plotting True Positive Rate (TPR) against the False

ositive Rate (FPR), by varying some criterion. In our case we use

he classifier output as criterion, meaning that positive samples

hould have higher scores than negative ones. 

To compute the ROC curve we consider a video sample a True

ositive only if it is correctly classified and the Intersection over

nion of the predicted localizations with the ground truth, aver-

ged on the whole clip, is above a given threshold σ . 

As a synthetic measure of ROC evaluated systems, the Area Un-

er Curve (AUC) is often used. AUC can also be interpreted as the

robability of a random positive data sample to have a higher score

han a negative one, therefore higher AUC means a better perform-

ng system. 

We report AUC varying σ from 0.1 to 0.5 comparing the result

o Tian et al. (2013) , Lan et al. (2011) . Note that, following the

rotocol proposed by Lan et al., ROC curves are computed limiting

he False Positive Rate to 0.6, for this reason a perfect ROC will

eport an AUC of 0.6 instead of 1.0. 

Compared with fully-supervised, tracking based methods

 Gkioxari and Malik, 2015; Weinzaepfel et al., 2015 ) we perform

orse. These methods are specifically developed to address local-

zation and use tracking or a global tracklet optimization to obtain

he final action spatio-temporal position. 

Compared to other previously published results we obtain a

uch higher AUC for all thresholds except for 0.5. We have slightly

ower performance with respect to Dynamic Poselets from Wang

t al. (2014) for IoU = 0.5, and we perform closer but better than

ain et al. (2014) for all thresholds. 

In Fig. 12 we show some localizations obtained with our

ethod. Our approach is able to deal with challenging lighting
g activities from correspondences of clustered trajectories, Com- 
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Fig. 12. Localization output of our algorithm. The yellow boxes are obtained from clusters and the magenta box is the final prediction. The first two rows report correct action 

localization, while the third row reports failure cases. Errors happen when multiple subjects performs the same action or in frames with little motion. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Area under the ROC curve computed for different Intersection over Union 

(IoU) thresholds on UCF Sports dataset. 
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Fig. 14. Precision/Recall curve for action localization task on UCF sports, for differ- 

ent IoU thresholds. We report mean Aveage Precision for every IoU threshold in the 

legend. 
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onditions, high variation in scale and extreme human body poses.

he third rows shows some localization errors. When people per-

orm the same action our method may generate a single proposal

hen subjects are close, as in the first and second frame. In the

hird frame, a person sit handling a board is mistakenly predicted

nstead of the actual subject standing on the board in the back-

round. Finally, for frames with little motion, the reduced amount

f trajectories may not allow to generate correct action proposals,

s in the last two examples. 

The result reported in Fig. 13 agrees with the high performance

eported on classification accuracy in Table 2 . For lower, permis-

ive, σ values, the classification quality prevails over the localiza-

ion accuracy. Rising the IoU threshold allows to evaluate how pre-

ise a localization method is in predicting the location of the per-

on performing the activity. We note that our method performs

uch better than Dynamic Poselets for all thresholds except for

he stricter value of 0.5, for which we report a comparable, but

ower, result. Consider that having an average IoU of 0.5 is a very

trict setting, meaning that actions are correctly detected, accord-

ng to PASCAL VOC2007 evaluation procedure for object detection,

n every frame of the clip. 
Please cite this article as: F. Turchini et al., Understanding and localizin

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
Note that both SDPM and Dynamic Poselets are specifically

rained to perform action detection with a multi-part sliding win-

ow approach while our method is a simple byproduct of the

ideo representation described in Section 3 , scoring only a few

roposal per frame with a simple linear classifier. Moreover, Dy-

amic Poselets relies on time consuming body joint annotations

n every training frame while our method only requires persons

ounding boxes to perform localization. 

Finally it has to be noted that our classification accuracy is

uch better than the one reported in Tian et al. (2013) , Lan et al.

2011) , Jain et al. (2014) , Weinzaepfel et al. (2015) . We remark that

ur method addresses classification as the main task and localiza-

ion is obtained thanks to the locality property of the unsupervised

rajectory grouping. 

In Fig. 14 , we also report Precision/Recall curves for our ap-

roach for different IoU threshold values. As in the evaluation of

UC, we consider a video a True Positive, if correctly classified and

he average IoU is above a threshold. Note that perfect recall may

ot be reached, in case the generated action proposals do not have

 sufficient IoU with ground truth bounding boxes. 
g activities from correspondences of clustered trajectories, Com- 
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Fig. 15. Scatter plot of mAP and compression rate for several configurations on Hol- 

lywood2 and HighFive. In both datasets, mAP is inversely proportional to compres- 

sion rate. 

Table 7 

Comparison of mean Average Precision for quantized and un- 

quantized kernel on HighFive and Hollywood2 datasets using 

G = 32, b = 16. We report results for Our Clustering configuration 

and for Our Fusion. 

Method Dataset Unquantized Quantized 

Our fusion HighFive 76 .1 75 .9 

Our clustering HighFive 75 .9 71 .8 

Our fusion Hollywood2 66 .7 65 .1 

Our clustering Hollywood2 65 .4 60 .9 
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6.5. Quantized kernel evaluation 

We evaluate the compression efficiency of our quantized repre-

sentation by measuring the rate between the memory required to

store and process the quantized version of clusters feature vectors

and their unquantized counterpart. Product quantization is neces-

sary when dealing with datasets with a large set of features like

Hollywood2. 

We first run a set of experiments to show how PQ affects

performance in different settings on Hollywood2 and HighFive.

We evaluate the mAP of our method using 10 clusters per video

against the compression rate. It can be seen that mAP degrades for

PQ configurations that attain higher compression rates. To give a

better insight on the behaviour of quantized features, we report

a scatter plot of mAP and compression rate for both datasets in

Fig. 15 . On both datasets compression rate is inversely proportional

to mean Average Precision. 

Finally in Table 7 we show how product quantization affect the

mAP on HighFive and Hollywood2 datasets both for Clustering and

Fusion approaches. We selected the parameters G and b that have

a good trade-off between compression rate and mAP decrease. 

Clustering only version of our method suffers more from the

PQ process with respect to the Fisher Vector baseline. This can be

explained by the fact that compressing many feature vectors will

certainly accumulate more quantization errors. Using fusion we are

able to compensate errors, attaining a minimum loss in mAP on

both datasets. 

Quantization of local features extracted with IDT, is not benefi-

cial and leads to degraded performance. We ran an experiment to

validate this assumption on HighFive using 256 Gaussians and 10
Please cite this article as: F. Turchini et al., Understanding and localizin

puter Vision and Image Understanding (2016), http://dx.doi.org/10.1016
lusters. We applied PQ to local features and kept the final cluster

epresentations unquantized. 

The best result that we obtained quantizing all features, yields

6.3 mAP while if we avoid quantizing the trajectory descriptors,

e can obtain a 73.9 mAP. Compared to the completely unquan-

ized result reported in Table 7 , this is 2 mAP points below. 

. Conclusions 

We have proposed a novel method for activity recognition

ased on local trajectory grouping and matching. Our approach al-

ows to automatically understand what activities are performed in

 video. Thanks to our cluster set kernel we can compute partial

ideo correspondences effectively without exhaustively matching

ll local features. 

The proposed method is extremely general and not tailored

o specific sports or video shooting setting. Indeed our approach

roves effective in recognizing activities both from Volleybal and

occer broadcasts. Streams of these sports present very different

iewpoints, player scales and cardinalities. 

The good performance on this very diverse sports suggests that

he proposed system may perform accurately also on generic activ-

ties. Therefore we ran several experiments on challenging generic

ctions datasets providing experimental evidence of the generality

f the proposed approach, reporting state-of-the-art results. The

xperimental evaluation of our method showed that the perfor-

ance is stable for parameters like the amount of Gaussians or the

umber of clusters per video. 

The only drawback of our method is the need to compute, store

nd process multiple high-dimensional feature vectors per video.

e deal with this issue formulating a quantized version of our ker-

el implementing a strong feature compression with little loss in

ecognition performance. 

Finally given the local nature of our clusters we show how we

an exploit clusters as natural action proposals to jointly recognize

nd localize activities in space and time. Adding frame-wise fea-

ures improve the accuracy in classification and allows to train ac-

ion localizers. Differently from exhaustive search action detectors

e chain a localizer after the action recognition step. This allows

s to evaluate few proposals per frame and still obtain good local-

zation performance. 
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