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Abstract

For the 2013 THUMOS challenge we built a bag-of-
features pipeline based on a variety of features extracted
from both video and keyframe modalities. In addition to
the quantized, hard-assigned features provided by the orga-
nizers, we extracted local HOG and Motion Boundary His-
togram (MBH) descriptors aligned with dense trajectories
in video to capture motion. We encode them as Fisher vec-
tors. To represent action-specific scene context we compute
local SIFT pyramids on grayscale (P-SIFT) and opponent
color keyframes (P-OSIFT) extracted as the central frame of
each clip. From all these features we built a bag-of-features
pipeline using late classifier fusion to combine scores of in-
dividual classifier outputs. We further used two complemen-
tary techniques that improve on the basic baseline with late
fusion. First, we improve accuracy by using L1-regularized
logistic regression (L1LRS) for stacking classifier outputs.
Second, we show how with a Conditional Random Field
(CRF) we can perform transductive labeling of test samples
to further improve classification performance. Using our
features we improve on those provided by the contest orga-
nizers by 8%, and after incorporating L1LRS and the CRF
by more than 11%, reaching a final classification accuracy
of 85.7%.

1. Introduction
The THUMOS challenge [2] is part of the First Interna-

tional Workshop on Action Recognition with a Large Num-
ber of Classes. The objective is to address for the first time
the task of large scale action recognition with 101 actions
classes appearing in a total of 13,320 video clips extracted
from YouTube [6]. These videos are structured in groups
that correspond to a small set of videos where the same ac-
tion is performed in the same environment.

The THUMOS organizers provided a set of five fea-
tures: Motion Boundary Histograms (MBH), Histograms
of Oriented Gradients (HOG), Histograms of Optical Flow
(HOF), TR (Trajectories), and Space-Time Interest Points
(STIP). These features are encoded within a Bag-of-Word
pipeline according to a dictionary of 4000 words. The en-
tire dataset was split between train and test samples three
times, each split randomly selecting two-thirds of the data
for training and the remaining data for testing. Videos from
the same group never appear in both the training and test set.
Our submission to the THUMOS competition consisted of
four runs, which we briefly summarize here:

• Run-1: We used the features provided by the organiz-
ers and trained 1-vs-all SVMs with intersection ker-
nels. Classifiers are trained independently on the five
feature modalities and their outputs combined using
late fusion by summing the classifier score of each fea-
ture for each sample.

• Run-2: We added our own scene descriptors, based on
P-SIFT [5] and P-OSIFT (both local pyramidized ver-
sions of the SIFT and Opponent-SIFT descriptor), to-
gether with better quantized dense trajectory features:
MBH, MBHx, MBHy and HOG.

• Run-3: We use L1-regularized logistic regression
stacking (L1LRS) to better combine class/feature ex-
perts outputs from Run-2.

• Run-4: Finally we employ a Conditional Random
Field (CRF) to enforce a correct labelling of similar
clips using the outputs of the L1LRS combined out-
puts from Run-3.

The rest of the paper describes in more detail our experi-
mental setup and the techniques used to generate the results
from each of our submitted runs.
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Figure 1: Our system pipeline. We exploit features sampled from STIP and Dense Trajectories on entire clips and Dense
Patches on clip Keyframe. We employ HOG+HOF descriptors computed on STIP keypoints, and HOG, HOF, TR, MBH,
MBHx and MBHy descriptors computed on dense trajectories. On keyframes extracted from each clip we compute P-SIFT
and P-OSIFT on dense patches. Single feature, linear 1-vs-all classifiers are trained and the outputs are used as features for
our L1-regularized logistic regression stacker.

2. Experimental setup

In this section we describe the experimental setup for our
submission. We first give an overview of our pipeline in sec-
tion 2.1, then describe the features used in section 2.2, and
finally give details on the class experts and their parameters.

2.1. System Overview

Our approach focuses on late and “very late” fusion
schemes. In figure 1 we give an overview of our pipeline.
Each feature is coded, pooled and then used to learn a class
expert classifier that relies on that single feature. The out-
puts are combined using a variety of late fusion techniques
(described in detail in the description of each run below).

2.2. Features and feature encoding

In addition to the video features, we use P-SIFT and P-
OSIFT on keyframes. The pyramidal SIFT (P-SIFT) and
pyramidal Opponent-SIFT (P-OSIFT)1 descriptor is con-
structed by varying the pooling resolution that controls the
number and size of each subregion used to compute each
histogram. A pyramidized descriptor consists of multiple
SIFT descriptors that describe the patch at different levels
of detail. Derivative scale is set according to the patch scale
and number of pooling regions. We use three pooling levels
of P-SIFT respectively, corresponding to 2× 2, 4× 4, 6× 6
pooling regions.

P-SIFT and P-OSIFT descriptors are then coded using
Locality-constrained Linear Coding (LLC) [7]. Each pool-
ing configuration is coded with its own dictionary of sizes:

1Source at: http://www.micc.unifi.it/seidenari/
projects/p-sift/

1500, 2500 and 3000, respectively. The final keyframe de-
scriptor is obtained using a spatial pyramid with the follow-
ing configuration: 1x1, 2x2, 1x3. For MBH and HOG we
instead used the Fisher vector encoding [4] with 256 Gaus-
sians after reducing the dimensionality of each descriptor to
64 using PCA. To enrich the set of available features, for
the Motion Boundary Histogram features we include sepa-
rate x- and y-components (MBHx and MBHy) as well as the
standard concatenation of the two local descriptors (MBH).

2.3. Class/feature experts and parameter estimation

Our approach uses a set of experts, one for each fea-
ture/class pair. Assuming a set of M features F =
{f1, f2, . . . , fM}, and a classification problem over N
classes C = {c1, c2, . . . , cN}, we build a total of N ×M
experts. We denote by Eji the expert for class ci that uses
feature fj . Each expert is a 1-vs-all SVM using either lin-
ear or histogram intersection kernel that maps from a vector
x in the feature space of feature fj to a decision value for
membership of x in class ci.

As features we include the five pre-quantized Bag-of-
Words (BoW) histograms features provided the THUMOS
organizers, plus the six new features described above. This
gives us a total of 11 features, which along with the 101
classes in the challenge yields a total of 1,111 class/feature
experts. For the BoW histogram features provided by the
THUMOS organizers, we use histogram intersection ker-
nels for SVM experts. The C value for of the BoW experts
is obtained by cross validating for each given feature. For
the features we computed on videos and keyframes, we use
the Fisher vector encoding and linear SVMs with a C value
fixed to 10. At times it will be convenient to refer the two
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sets of features (the THUMOS features and ours) indepen-
dently, and we decompose F as:

F = Forg ∪ Fours , where (1)
Forg = {MBHBoW,HOGBoW,HOFBoW, TRBoW, STIPBoW}
Fours = {P-SIFT, P-OSIFT,MBH,MBHx,MBHy,HOG}

2.4. Summary of features and experts

For each feature (those provided by contest organizers,
and those we extracted), we summarize here the encoding
we use as well as the classifiers used as primitive single-
feature experts for each class are:

• MBHBoW: quantized MBH feature histograms of 4000
words provided by the organizers. Experts are 1-
versus-all histogram intersection SVM classifiers.

• HOGBoW: quantized HOG feature histograms of 4000
words provided by the organizers. Experts are 1-
versus-all histogram intersection SVM classifiers.

• HOFBoW: quantized HOF feature histograms of 4000
words provided by the organizers. Experts are 1-
versus-all histogram intersection SVM classifiers.

• TRBoW: quantized trajectory feature histograms of
4000 words provided by the organizers. Experts are
1-versus-all histogram intersection SVM classifiers.

• STIPBoW: quantized STIP feature histograms of 4000
words provided by the organizers. Experts are 1-
versus-all histogram intersection SVM classifiers.

• P-SIFT: computed on dense patches from keyframes,
encoded using LLC over a three-level pyramid. Ex-
perts are 1-versus-all linear SVM classifiers.

• P-OSIFT: computed on dense patches from
keyframes, encoded using LLC over a three-level
pyramid. Experts are 1-versus-all linear SVM
classifiers.

• MBH: concatenation of MBHx and MBHy computed
from dense trajectories from entire clips, encoded us-
ing Fisher vectors with 256 Gaussians. Experts are 1-
versus-all linear SVM classifiers.

• MBHx: the x-component of the Motion Boundary
Histogram computed on dense trajectories from entire
clips, encoded using Fisher vectors with 256 Gaus-
sians. Experts are 1-versus-all linear SVM classifiers.

• MBHy: the y-component of the Motion Boundary
Histogram computed on dense trajectories from entire
clips, encoded using Fisher vectors with 256 Gaus-
sians. Experts are 1-versus-all linear SVM classifiers.

• HOG: computed on dense trajectories from entire
clips, encoded using Fisher vectors with 256 Gaus-
sians. Experts are 1-versus-all linear SVM classifiers.

3. Experiments
Here we detail each of the four runs we submitted to the

THUMOS 2013 challenge.

3.1. Run-1: baseline performance

For our first run we used only the class/feature experts
derived from the features provided by the organizers (i.e.
STIP, MBH, TR, HOG, HOF). We trained single feature
classifiers in a 1-vs-all setting. Clip x is classified as be-
longing to class c using late fusion of all single-feature class
experts. All scores of single feature classifiers are summed
and the class is selected as following:

class(x) = argmax
c

∑
f∈Forg

Efc (x) (2)

This is our basic fusion rule, but note that the sum is limited
to features in Forg. With this setting, using only the quan-
tized feature histograms provided by the contest organizers,
we obtain 74.6% classification accuracy and 0.760 mAP.

3.2. Run-2: Improved motion features and contex-
tual information

To improve accuracy we added two sets of features ex-
tracted from video clips and keyframes. The idea behind
this is that the LLC-coding of our P-SIFT and P-OSIFT
features sampled densely on a single keyframe for each
clip should provide a sort of contextual information about
each action class. The addition of Fisher vector encodings
of MBHx, MBHy , MBH and HOG features should addi-
tionally allows us to capture richer representations than the
4000 codeword, pre-quantized features used in Run-1. The
experts for all of these new features are linear SVM classi-
fiers. Note that these features are used in addition to those
already used in Run-1. The late fusion of unweighted clas-
sifier scores is again performed as in equation (2), but in-
corporating all feature experts:

class(x) = argmax
c

∑
f∈F

Efc (x) (3)

Using all available features we achieve 82.4% accuracy
with Run-2, an improvement of 7.8% over the Run-1 base-
line, and 0.836 in mAP.

3.3. Run-3: stacking classifiers with L1LR

For our next run we implemented a more sophisticated
fusion technique based on stacking of classifier outputs. We
compute a new feature from the concatenation of all the sin-
gle feature classifier scores. We then train an L1-regularized
logistic regression on these features so that the regression
predicts the class and the enforced sparsity performs feature
selection.
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For a clip x, we define the stacked representation as the
concatenation of all class/feature experts evaluated on it:

S(x) = [E1
1(x), E

2
1(x), . . . , E

1
2(x), . . . , E

M
N (x)](4)

= [Eji ], for j ∈ {1, . . .M}, i ∈ {1, . . . N}(5)

Recall that each element of Eji (x) is an unweighted, SVM
output from a class/feature expert.

In order to robustly estimate a logistic regression model
that does not overfit the training set, expert scores of train-
ing samples must be computed on held out data. We thus
split the training set into five independent folds, all respect-
ing the groups provided in the THUMOS data (i.e. each
group appears exactly once in a held-out part). We compute
decision values for all 1-vs-rest SVM experts trained on
each feature and build a new feature representation of each
clip by concatenating the out-of-sample classifier scores
on the training set as described above. We then train L1-
regularized logistic regression models for stacking (L1LRS)
on this representation. The logistic regression model for
each class c ∈ C minimizes the loss:

(βc, bc) = argmin
β,b
||β||1 + C

n∑
i=1

ln(1 + e−yiβ
TS(xi)+b)

(6)
where xi is a feature space representation of clip i, and yi
is its corresponding class label. The new expert for class
c is the linear predictor defined by the projection βc of the
stacked original experts S(x), along with the bias term bc.

By sparsely combining the outputs of all experts, the
L1LRS method achieves 84.4% average accuracy, an im-
provement of 2% over Run-2, and 0.849 mAP. It is illumi-
nating to study in depth the usage of class/feature experts by
the logistic regression models broken down independently
by class and feature. To characterize the difficulty of a class
we consider the following retrieval problem over individual
class experts. Considering a clip x of class c, forM features
and N classes we have N ×M scores in the stacked repre-
sentation S(x) from the individual class/feature experts. A
clip x of class c is considered “easier” if all its class experts,
that is the experts for class c trained on theM features, have
a high score with respect to experts from other classes. Oth-
erwise, a clip is considered “harder” if the correct class ex-
perts are not adequate for discriminating it and non-class
experts are thus needed in the final regression model. To
quantify these concepts, we consider the problem of “re-
trieving” class experts using a clip as query. For a given clip
x, we rank all experts according to their score Eji (x). We
then consider experts corresponding to the correct class of
clip x as relevant, and all others not relevant. “Easier” clips
will have higher AP with respect to “harder” ones. The av-
erage precision of each clip then measures its “hardness”,
and the mAP is used to quantify the difficulty of each class
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Figure 2: Energy of the coefficients in the final model for
class experts and non class experts with respect to decreas-
ing expert mAP-ordered classes.

in terms of class experts. Therefore “harder” classes will
have a lower mAP. We refer to this as expert mAP.

In figure 2 we illustrate the coefficient energy ||βc||2 of
each L1LRS model ordered by decreasing expert mAP. In
the figure we plot the total energy, the expert energy (only
experts of the correct class), and non-expert energy. The
coefficient energy is a measure of the density of the learned
coefficients βc, and a sparse vector will have a lower energy
than a denser one. Observe the general trend of increas-
ing energy (thus decreasing sparseness) of all model coeffi-
cients, showing that for more difficult classes the L1LRS
tends to yield less sparse solutions than for easier ones.
This plot also shows that for the easier classes the L1LRS
gives more energy to the weights of class experts while the
hardest classes will have higher energy for non class-expert
weights. When class experts are not reliable enough, the
L1LRS relies on other class experts for negative support.

To better understand the usage of feature-specific class
experts by the L1LRS models, we break down the weights
of each feature for each class in figure 3. In this figure the
contribution of each feature is indicated as a percentage of
the total contribution of all features as measured by coeffi-
cient energy each βc. We can see that for most of the classes
(exactly 96 out of 101), our features are given a higher pro-
portion of the total coefficient energy in the stacked clas-
sifier. The dominance of reddish colors indicates the im-
portance of the MBH, MBHx and MBHy features. These
features are powerful for characterizing human actions as
they describe motion boundaries.

Some actions also benefit from the addition of the con-
textual scene descriptors P-SIFT and P-OSIFT. The four
classes using these descriptors the most are: ’BreastStroke’,
’FieldHockeyPenalty’, ’BaseballPitch’ and ’PlayingPiano’,
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Figure 3: Feature usage as coefficient energy proportion on classes ordered by decreasing usage of our additional features.

which are respectively at positions 1, 9, 29 and 51 in fig-
ure 3. In figure 4 we illustrate the mean keyframe from
these classes. These classes are all characterized by a spe-
cific and distinctive environment that appear as a clear and
constant background (swimming pool, playfield) or persis-
tently present object identifiable even in the mean keyframe
(a piano). On the contrary, classes that use the least the
contextual features are actions where the humans are fully
framed and with higher motion. Indeed, these classes tend
to rely heavily on motion features. For example, the L1LRS
model of class ’PommelHorse’ have 84.4% of its energy
dedicated to the 4 different types of MBH features.

3.4. Run-4: transductive labeling CRFs

For our final run we applied a CRF to perform transduc-
tive smoothing of assignments of class labels to test video
clips. The CRF uses the L1LRS output as unary poten-
tials, and distances between stacked expert outputs are used
to build a k-NN graph defining the CRF topology. The
smoothness potential uses the similarity between stacked
features to force similar samples to take the same label.
This idea of transductive labeling was recently applied to
re-identification in [3]. The CRF is defined as a graph
G = (V, E) where V is the set of nodes corresponding to
all samples (both training and test) and E is the set of edges
connecting each sample to its k nearest neighbors.

Formally, we aim at finding a labeling ĉ = [ci] associ-
ating labels to all clips (ci ∈ C is the label associated with

node vi ∈ V by ĉ) and that minimizes the energy:

W (ĉ) =
∑
i∈V

φi(ĉi) + λ
∑

(vi,vj)∈E

ψij(ĉi, ĉj), (7)

where λ is a tradeoff factor controlling the relative contri-
bution of unary and binary costs. The data cost of a test
sample xi labeled as ĉi is defined as:

φi(ĉi) = e−(β
T
ĉi
S(xi)+bĉi), (8)

where S(x) are the stacked expert outputs on clip x, and
(βĉi , bĉi) is the L1LRS model for class ĉi. The data cost
of training samples is manually set to 0 for the correct class
and 1 for all incorrect classes.

All training samples of the same class are connected in
the topology, and each test sample is connected to its k-
nearest neighbors from both training set and test sets (we
use k = 12). The smoothness potential is:

ψij(ĉi, ĉj) = ψijψ(ĉi, ĉj). (9)

The edge weight ψij encodes the similarity of xi and xj in
terms of expert agreement:

ψij = exp

(
−||S(xi)− S(xj)||2

σiσj

)
, (10)

where σi and σj are local scaling [8] factors estimated as the
distance between the sample xi and its 2k-nearest neigh-
bors. The factor ψij is maximized when all experts are in
agreement on the two samples.
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Figure 4: Mean of keyframes of the classes that use contextual features the most: BreastStroke, BaseballPitch, FieldHock-
eyPenalty, PlayingPiano; and the least: PommelHorse, CleanAndJerk, JumpRope, BodyWeightSquats.

The label consistencyψ(ĉi, ĉj) encodes the intrinsic sim-
ilarity between class ĉi and ĉj . It is estimated on the training
set as the sum of the outputs of all classifiers of ĉi on train-
ing samples of ĉj and of the output of all classifiers of ĉj
on training samples of ĉi. Using Ci and Cj to represent
training samples from class i and class j, respectively, the
smoothness cost is:

ψ(ĉi, ĉj) = exp

(
−D(ĉi, ĉj) +D(ĉj , ĉi)

2

)
, (11)

where D(ĉi, ĉj) is an average measure of class expert ĉj
acceptance of training samples from class ĉi:

D(ĉi, ĉj) =
1

|F||Ci|
∑
f∈F

∑
x∈Ci

Efj (x). (12)

After constructing the CRF with these unary and binary
cost functions, we then use graph-cuts [1] to find the opti-
mal labeling of vertices corresponding to test images. This
labeling procedure enforces local consistency of the labels.
For Run-4 we achieve an accuracy of 85.7% which is an
improvement of 1.3% in accuracy over Run-3 and of 11.1%
over the Run-1 baseline. Since we use graph cuts to solve
the labeling problem, we cannot compute mAP as we do not
have a ranking of labels at each vertex in the CRF.

4. Discussion

Table 1 summarizes the results for each of our four runs
on the THUMOS challenge. In addition to the features
provided by the THUMOS organizers, we added a repre-
sentation for the context of the action based local, pyra-
midal SIFT and Opponent SIFT descriptors computed on

Forg Fours L1LRS CRF Accuracy
Run-1 X 74.6%
Run-2 X X 82.4%
Run-3 X X X 84.4%
Run-4 X X X X 85.7%

Table 1: Summary of our four runs.

a keyframes of clips. In our submission we also investi-
gated the use of a more powerful encodings of local fea-
tures, for example Fisher vectors and LLC. Our runs com-
bine all available features from video and keyframes in a
late fusion framework. Our results demonstrate the com-
plementarity of these features.

We have also studied two “very late” fusion schemes. We
used stacking of class/feature experts with L1-regularized
logistic regression and showed of how it works to auto-
matically adjust the weights of different experts. Weights
learned by the L1-regularized classifier are strongly related
to the difficulty for the action to be recognized. Finally,
we used a CRF to perform transductive labeling relying on
both the smarter L1LRS classifier outputs but also on near-
est neighbors in the feature space of stacked experts, which
further improved classification performance.
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