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Abstract

In this paper we present an efficient and accurate method
to aggregate a set of Deep Convolutional Neural Network
(CNN) responses, extracted from a set of image windows.
CNN features are usually computed on the whole frame or
with a dense multi scale approach. There is evidence that
using multiple windows yields a better image representation
nonetheless it is still not clear how windows should be sam-
pled and how CNN responses should be aggregated. Instead
of sampling the image densely in scale and space we show
that selecting a few hundred windows is enough to obtain
an effective image signature. We show how to use Fisher
Vectors and PCA to obtain a short and highly descriptive
signature that can be used effectively for image retrieval.
We test our method on two relevant computer vision tasks:
image retrieval and image tagging. We report state-of-the
art results for both tasks on three standard datasets.

1. Introduction
In this paper we address the problem of efficient multi-

media retrieval and automatic image annotation in the con-
text of social media. In the first task we aim at obtaining a
very compact and discriminative signature, that allows the
creation of scalable image retrieval systems. The goal of the
second task is to predict, for a given image, a finite set of
tags from a given vocabulary, serving as a compact descrip-
tion of the image. A popular group of recent image annota-
tion methods apply tag propagation using diversely defined
image neighborhoods [4, 12, 19–21, 30]. These approaches
have been successfully applied to the context of social and
user generated media, that are typically annotated with tags
that are likely to correlate with image content. However,
this rich source of metadata is often hard to exploit both
for the noise in labels and for the difficulty to find seman-
tically meaningful visual features. Clearly a good image
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representation boosts the precision and recall of these tech-
niques by providing a visually consistent neighborhood. In
fact, many of these techniques apply a form of metric learn-
ing to make up for low quality image features. We point
out that an essential requirement of these techniques is the
ability to retrieve similar images to compose good image
neighborhoods. Hence, excelling in image retrieval is likely
to improve image tagging. A recent breakthrough in image
representation has been achieved using Convolutional Neu-
ral Networks (CNN) with deep architectures. It has been
shown that using a large corpus of images CNNs can learn
compact and powerful image features. CNNs are typically
applied to classification tasks and activations from the lat-
est layers are used as features. These have been used by
several approaches to extract generic features for image re-
trieval [11, 32]. While they show promising results, they
leave several questions unaddressed. First, CNNs features
are more semantically related to the global image and they
hardly preserve local characteristics of objects. Second, ex-
isting approaches address CNNs invariance issues with ex-
tracting patches densely at multiple scales usually leading
to a very onerous feature computation process.

Recently Wei et al. [31] have applied a multi-label vari-
ation of CNN extracting features from few hundred object
proposals. We agree with their intuition and we believe that
multiple image windows can be carefully selected in order
to obtain a more comprehensive representation of image
content. This is particularly relevant in the case of image
tagging where more than one tag is sought. User tags may
refer to the image as a whole but they are also likely to be
associated with specific scene elements. Specifically, tags
often refer to things (e.g. person, car, horse, etc.) and stuff
(e.g. sky, sand, cloud, water, etc.) present in a scene.

In this paper we show a technique, derived from Fisher
Vectors [26], to combine CNN features from multiple win-
dows into a more discriminative representation for image
retrieval and image tagging. Our representation improves
upon the single global representation approach, obtaining
state-of-the-art results with compact image signatures on
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Figure 1. Full pipeline of the proposed method. Each image window is represented by the FC7 CNN activations. The final signature is
obtained encoding activations (same color dots) with a Fisher Vector computed on a GMM dictionary (blue dots). PCA is further applied
to image signature.

three popular public datasets.

2. Previous work
So far, the best performance in image retrieval has been

obtained aggregating SIFT descriptors using Fisher Vectors
[17, 26], VLAD [1, 17], or variations of these approaches
e.g. pooling oriented local features [33]. A breakthrough
in performance for computer vision algorithms has recently
been obtained thanks to supervised image feature learning.
Krizhevsky et al. revived supervised deep learning for com-
puter vision proposing to solve large scale image classifica-
tion problem using a deep CNN [18]. Following that, sev-
eral architectures have been proposed in the last 3 years,
all sharing a common principle: networks are usually built
with a sequence of convolutional/max-pooling layers, fol-
lowed by low-resolution fully-connected (FC) layers whose
activations are fed to a soft-max classifier.

One interesting fact about CNNs is the ability to perform
transfer learning. Indeed a very powerful image represen-
tation can be obtained by removing the soft-max classifier
and keeping the activations of the last FC layer. This ap-
proach has been applied to many computer vision and mul-
timedia retrieval tasks, with dramatic improvements over
previously proposed techniques such as Fisher Vectors over
local SIFT descriptors. Razavian et al. [24] made a com-
prehensive contribution on this matter testing CNN features
for object and scene classification, attribute prediction and
image retrieval. However, their spatial search approach in
image retrieval has an unbearable computational cost: their
method requires the extraction of CNN features for a large
amount of image sub-windows and the computation of all
pairwise distances between them. The approach has scala-
bility issues, since it is quadratic in the number of windows.

Approaches close to ours have been proposed in [11,
22, 32]. Gong et al. [11], propose to aggregate CNN re-
sponses from multiple scales using VLAD, thus requiring a
dense computation of multi-scale CNN responses. In con-
trast, we show how we can rely on the computation of CNN
responses on a few hundreds of proposal windows. Ng et

al. [22] have speeded up the approach of [11] applying the
network only once to the input image and extracting fea-
tures at each location of the convolutional feature map of
each layer. Yoo et al. [32] propose to apply Fisher Vector
encoding to dense multi-scale CNN activations. Compared
to these methods our approach computes CNN activations
on large parts of the image, which are likely to contain ob-
jects, rather than considering CNN activations of dense and
small patches, that are more similar in spirit to SIFT de-
scriptors. Another difference is that we introduce a sim-
pler and effective multi-scale representation by concatenat-
ing the Fisher Vector with a global representation of image
content, and reducing the overall descriptor size with PCA.

The identification of relevant patches in an image has
been recently addressed in the object detection community,
with the introduction of window proposal methods [9, 28].
Object proposals are cheap to compute and cover more than
90% of objects with few thousands windows of different
scales and aspect ratios. This allows the application of ex-
pensive classifiers like [9] or kernelized bag-of-words clas-
sifiers [28] to perform object detection.

Regarding the task of social image tagging, our work
is related to instance based tag assignment methods [20].
Makadia et al. [21], in their seminal work, showed that
simple tag voting on nearest neighbor outperformed previ-
ous complex approaches. Li et al. [19] improved upon by
adding a penalty on frequent tag votes. As low-level fea-
tures are hardly semantically related, Guillaumin et al. [12]
and Verma et al. [30] proposed to learn a weighted metric
to improve on precision. Ballan et al. [4] proposed using
KCCA to learn mid-level features to be used with previous
nearest neighbors approaches.

3. Proposed method
Our idea is to represent an image as a bag of windows,

each one represented as CNN output activations. The fi-
nal image signature is obtained using Fisher Encoding and
reducing the final descriptor dimensionality using PCA, as
shown in Figure 1. This powerful novel image signature



is used to boost performance in image retrieval and social
image tagging.

3.1. Image representation

Patch Sampling We start by sampling a set of few hun-
dred windows from each image to construct a bag-of-
windows X as image representation. To perform the sam-
pling we propose a content-based strategy and a random
strategy.

Regarding the content-based strategy, we use the ob-
ject proposal approach, namely EdgeBoxes, from Zitnick
et al. [34] due to its computational efficiency and perfor-
mance in terms of detection, recall and repeatability [13].
This method provides a ranked list of windows that typi-
cally contain instances of objects, disregarding areas with
few edges. The second strategy is a simple random strategy
where window coordinates are generated randomly.

We also consider the combination of the two strategies.
This is motivated by the fact that some discriminative por-
tions of images, often useful for retrieval, are not part of
objects or things but rather are referred as stuff, i.e. part
of larger textured regions like trees or mountains. In fact,
we found in some experiments that employing a set of ran-
domly sampled windows in addition to the EdgeBoxes may
be beneficial.

CNN usually require, as it is in our case, a fixed size in-
put patch. To this end we resize each window to 224× 224
pixels disregarding the aspect ratio, as it is common practice
in object detection [9]. We use the pre-trained CNN-S-128
CNN architecture from [5] in order to have a low dimen-
sional representation (128D), comparable to that of SIFT.
For each window, we extract the activation from the first
fully connected layer (FC7).

Activation Aggregation To obtain a short signature for
each image we perform an aggregation step. Given a set of
patches x ∈ X , we encode it using Fisher Encoding.

We first learn a Mixture of Gaussians codebook with di-
agonal covariances on a subset of the windows extracted at
the previous step. Differently from [26] we do not apply
PCA on the local window features. This is not needed, and
actually slightly worsen the performance in our case, since
our window representation has highly decorrelated features.

In Fig. 2 we show a comparison of the absolute values of
correlation coefficients ρ among dimensions of CNN codes
and SIFT descriptors extracted from the INRIA Holidays
dataset. The ρ coefficients of the CNN codes are 1 only on
the diagonal, while as a counter-example on SIFT descrip-
tors extracted from the same dataset there are many direc-
tions with |ρ| > .8.

For each bag-of-windows we compute an Improved
Fisher Vector (IFV) applying L2 and Power Normalization
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Figure 2. Correlation coefficients computed on a set of SIFT de-
scriptors (left) and on a set of CNN features on image windows
(right).

as in [26]. Finally, to compress the representation, we re-
duce the dimensionality of the IFVs using PCA.

Global-Local signature The PCA-compressed IFV sig-
nature provides a compact representation of the local sam-
pled windows of an image. However, windows are ag-
gregated independently, without considering their relation
to the context. It can be further enhanced by integrat-
ing an explicit global scene representation. We propose
a Global-Local (GL) signature made by the concatenation
of the FC7 feature of the entire image with the generated
PCA-compressed IFV signature. The FC7 feature has been
proved to be very powerful [24] as we can also observe from
our baseline experiments in Tab. 1, 2 and 3.

3.2. Image retrieval

The first task we address with our novel image repre-
sentation is image retrieval. To retrieve images means that
given an image as query we want to rank a dataset of images
in order to assign high ranks to images with the same con-
tent of the query. We perform this task in a very straight-
forward manner. Given a query image I and a dataset of
images Yi, we consider their respective sets of image win-
dow features I and Yi and signatures φ(I) and φ(Yi). For
each query I we rank images by cosine distances:

d(I, Yi) = 1− φ(I)T · φ(Yi)
‖φ(I)‖‖φ(Yi)‖

3.3. Social image tagging

In this task we aim at annotating social images, using
other social images as training data. A collection of social
images, e.g. obtained from Flickr, can be modeled as a set
of tuples Ti = 〈Y,W〉 where Y is an image, W is a set of
tags provided by the users and the vocabulary V is the set
of all the tags of W . These tags are typically ambiguous,
imprecise, and tend to follow user preferences [27]. This
is a different setup from that of using images from datasets
annotated by experts.

When performing image annotation we would like to
predict tags for an untagged image I . This problem is usu-



ally solved with voting algorithms based on nearest neigh-
bor search [3, 12, 19], because of their scalability and rela-
tively good performance [20]. We use the ranking described
in Sect. 3.2 to obtain the first K neighbors, and use the fol-
lowing three different algorithms.

NN voting The simplest voting algorithm is nearest
neighbor tag voting, which is close to the method first pro-
posed by Makadia et al. [21]. We count the tag occurrences
of images in the neighborhood and rank tags per image us-
ing their frequencies.

Tag Relevance With NN voting we assume that the more
frequently the tag occurs in the neighbor set, the more rel-
evant it might be for the image. However tags occurring
frequently in the whole training set are not necessary rel-
evant for all the images. So to moderate this effect, Li et
al. [19] proposed a tag relevance measure that takes into ac-
count both the tags distributions of the neighbor set and of
the entire training set.

TagProp Guillaumin et al. [12] have proposed TagProp,
a method that learns a weighted nearest neighbor model.
Weights can be learned based on distance or rank. More-
over, to compensate for varying frequencies of tags, a tag-
specific sigmoid is used to boost the probability for rare tags
and decrease that of frequent ones. Sigmoids and metric pa-
rameters can be learned by maximizing the log-likelihood
of tag predictions.

4. Experiments
Datasets For the image retrieval task we use the popular
INRIA Holidays dataset [16]. The dataset is composed by
1,491 images in total. We measure average precision (AP)
for 500 queries and 991 corresponding relevant images.

We test image tagging on the MIRFLICKR-25K and
NUS-WIDE datasets. The MIRFLICKR-25K dataset [15]
is composed of 25,000 images from Flickr with 1,386 user
tags that occur in at least 20 images, and is split in 12,500
for training and 12,500 for testing, with exactly the same
partition as [4, 12]. In addition ground truth annotations for
18 tags are provided on the whole set. The NUS-WIDE
dataset [7] is composed of 269,648 images from Flickr with
355,913 user tags, and is split in training and testing sets of
161,789 and 107,859 images, respectively. Ground truth is
available for 81 tags. Since there is no common experimen-
tal setup for NUS-WIDE, we have adopted the same setup
of [10], i.e. following the train/test splits of the dataset, ig-
noring the small subset of images that are not annotated by
any tag and using only the ground-truth tags. The resul-
tant train and test sets have a respective total of 125,449
and 83,898 images. Since it is feasible to evaluate tagging

performance only on ground truth tags, the experiments are
performed with the user tags provided in the ground truth
annotations, as in [29].

Baselines The natural baseline for our method is the ex-
traction of a single CNN code per image. We refer to
this baseline as CNN-Image. We warp the whole image
to 224 × 224 and use the FC7 output as image signature.
We develop two other baselines to see if the use of an ag-
gregated signature is relevant to keep the expressiveness of
the many windows extracted or if sampling multiple CNN
responses is enough to boost retrieval and annotation per-
formance. The first one is obtained by averaging the output
of all the CNN features of the bag-of-windows, we refer to
it as AVG-Pooling. The latter is computed with a max pool-
ing operation over the CNN activations, which we denote as
MAX-Pooling.

Experimental results: retrieval We first evaluate the pa-
rameters affecting retrieval performance on INRIA Holi-
days, evaluated in terms of mean average precision (MAP).
In a set of preliminary experiments we found that the fi-
nal PCA step slightly improves results but not significantly.
This step is indeed mostly relevant to compress the image
signature. The size of the GMM codebook is instead ex-
tremely relevant for performance.

Increasing the number of Gaussians allows to model the
distribution of CNN activations more precisely, as it has
been observed also for SIFT features [26], where increas-
ing the number of Gaussians improves the performance. To
see how the codebook size affects retrieval performance we
fixed the final PCA dimension to 512 which we found im-
proving performance across codebook sizes.
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Figure 3. Mean average precision of our proposed approaches
varying the number of Gaussians on Holidays dataset.

We sample the top 400 ranked EdgeBoxes and 400 Ran-



dom windows for a total of 800 windows in each image.
Our method is efficient since it does not require to compute
window correspondences exhaustively. Finally, we repre-
sent images with a very short 512D signature that scales in
terms of space and time complexity.
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Figure 4. Mean average precision of our proposed approaches
varying the number of EdgeBoxes + Random windows.
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Figure 5. Mean average precision of our proposed approaches
varying the number of windows, using Fisher-PCA coding.

In Figure 3 we evaluate the performance of the proposed
approach with a varying number of Gaussians and with dif-
ferent window sampling strategy. We can see how using
EdgeBoxes alone for retrieval is not sufficient. Adding ran-
dom windows increases the performance also for a small
amount of Gaussians (32). In Figure 4 we report MAP
values obtained using different numbers of EdgeBoxes and
random windows, with different encodings. The combi-
nation with the global signature (FisherGL and FisherGL-
PCA) does not improve the MAP for large codebooks but

instead allows to get very high results even for small code-
books. Fisher Vectors always outperform max and aver-
age pooling. In Figure 5 we evaluate the performance of
Fisher Vector + PCA coding with varying number of win-
dows, either from EdgeBoxes, random, or EdgeBoxes +
random sampling. As for Fig.4 it can be observed that FV
+ PCA outperforms the use of single global CNN descrip-
tors, when using more than 100 windows. Considering the
random windows step we report the average of five runs.

Method Features Codebook Dim. MAP
Fisher-PCA FC7-CNN 128 512 85.8
Fisher-GL-PCA FC7-CNN 128 635 83.3
Fisher-GL FC7-CNN 128 32,889 81.2
Fisher FC7-CNN 128 32,768 80.3
AVG-Pooling FC7-CNN − 128 66.2
MAX-Pooling FC7-CNN − 128 60.1
CNN-Image 128D FC7-CNN − 128 60.0
CNN-Image 4096D FC7-CNN − 4,096 71.0
Spatial Pooling [25] CONV-CNN − 256 74.2
CNNaug-ss [24] FC7-CNN − 4,096 84.3
VLAD+PCA [22] CONV-CNN 100 128 83.6
Neural codes [2] FC7-CNN − 128 78.9
VLAD+PCA [11] FC7-CNN 100 2,048 80.2
VLAD+PCA [11] FC7-CNN 100 512 74.2
Perronin [23] FC7-SIFT+LCS 1,024 4,096 84.7
Fisher [26] SIFT 4,096 524,288 70.0
Zhao [33] SIFT 32 32,768 68.8
Delhumeau [8] SIFT 64 8,192 65.8
Arandjelovic [1] SIFT 256 32,536 65.3
Fisher [17] SIFT 256 16,384 62.5
Fisher [17] SIFT 64 4,096 59.5
VLAD [17] SIFT 256 16,384 58.7
VLAD [17] SIFT 64 4,096 55.6

Table 1. Image retrieval results on INRIA Holidays compared with
state-of-the-art approaches.

Finally, we compare our method with other global meth-
ods aggregating local features in Table 1 and some recent
methods that use either convolutional or fully connected
layers of CNNs [2, 11, 22, 24, 25]. We can clearly see that
although the 128D CNN is competitive with some smaller
size representations based on SIFT features [17] the 4096D
outperforms all the approaches based on engineered fea-
tures. Average pooling of 128D activations outperforms the
single image 128D representation indicating that more in-
formation is contained in multiple windows. Adoption of
Improved Fisher Vector coding improves over the majority
of the other methods based on CNN features except [22,24].
Finally we can see how applying the Fisher encoding and
PCA outperforms all other methods, including [22,24], with
a very small signature (512D).

Experimental results: tagging In this set of experiments
we show how our novel representation improves perfor-
mance on image tagging. We report results as Mean Av-
erage Precision (MAP) and Mean image Average Precision



(MiAP) in Tab. 2 and Tab. 3. MAP measures the quality
of image ranking and can be affected by the performance
on rare tags, while MiAP measures the quality of tag rank-
ing and is biased toward frequent tags [20]. In each ex-
periment we fix the number of nearest-neighbor K to 1,000
as suggested by the authors [19]. For TagProp we employ
the best combination reported (distance + sigmoids) [29].
To speedup computations on these larger datasets we have
used a GMM codebook of only 32 elements and halved the
number of windows (200 EdgeBoxes and 200 Random for
a total of 400) with respect to the experimental setup used
for retrieval. We reduce the dimension of the final IVF to
512 dimensions as in the previous case using PCA.

The use of the Global-Local (GL) component of the de-
scriptor, which accounts for scales variations providing an
holistic representation of the image content, improves the
results. This is reasonable because nearest neighbors ap-
proaches applied to social image datasets typically work
better with descriptors that deal with the gist of the im-
age (e.g. global descriptors or low-dimensionality BoF de-
scriptors, as those provided by the authors of NUS-WIDE
dataset [7]) rather than its details (e.g. performing spatial
verification of matching local features). In this case the
single image approach outperforms [29]. This means that
CNN features are indeed a strong representation for image
annotation. In this case average pooling is not improving
over the single image approach. Finally we can see how
adding the Global-Local part of the descriptor boosts MAP
and MiAP for all voting methods; compressing the descrip-
tor with PCA does not reduce the performance despite the
high reduction in dimensionality. It has to be noted that Tag-
Prop always outperforms the simpler NN Voting and TagRel
methods, exploiting better the improved visual neighbor-
hood obtained with the proposed method. This is visible
when comparing the performance obtained with the single
CNN-Image descriptor w.r.t. that of Fisher-GL-PCA.

Method NN Voting TagRel TagProp
MAP MiAP MAP MiAP MAP MiAP

Fisher-GL-PCA 51.4 48.6 47.6 51.4 58.0 54.8
Fisher-GL 50.9 48.0 48.4 51.5 57.9 54.9
Fisher-PCA 46.1 44.9 43.7 48.2 51.6 50.9
Fisher 46.2 45.2 44.0 48.2 51.6 50.8
MAX-Pooling 40.7 45.6 41.5 47.1 47.6 49.2
AVG-Pooling 40.2 45.0 40.5 46.6 45.9 48.6
CNN-Image 48.3 46.6 46.0 50.1 55.7 53.7

Table 2. Image annotation results on MIRFLICKR-25K compared
with the state-of-the-art (200 EdgeBoxes + 200 random win-
dows).

Tab. 4 compares the best performance of the pro-
posed method with the original TagProp method, on
MIRFLICKR-25K, showing in particular a good improve-
ment in terms of MiAP. Tab. 5 compares the best perfor-
mance of the proposed method on NUS-WIDE with two

Method NN Voting TagRel TagProp
MAP MiAP MAP MiAP MAP MiAP

Fisher-GL-PCA 26.7 43.4 27.7 40.1 39.7 50.9
Fisher-GL 26.8 43.4 27.6 40.1 39.7 50.8
Fisher-PCA 21.7 40.4 24.1 37.0 35.9 48.0
Fisher 21.3 40.3 23.6 36.6 35.5 47.4
MAX-Pooling 18.8 37.8 22.1 34.9 29.1 45.0
AVG-Pooling 19.9 40.2 22.4 37.1 29.8 45.9
CNN-Image 24.4 42.0 25.3 38.7 31.9 48.2

Table 3. Image annotation results on NUS-WIDE compared with
the state-of-the-art (200 EdgeBoxes + 200 random windows).

other approaches that have a similar experimental setup,
showing a very good performance.

Method Features MAP MiAP
Fisher-GL-PCA + TagProp FC7-CNN 58.0 54.8
Guillaumin [29] local+global features1 38.4 47.3

Table 4. Image annotation results on MIRFLICKR-25K: compari-
son of the proposed method with other approaches.

Method Features MAP
Fisher-GL-PCA + TagProp FC-7-CNN 39.7
Hash SISO [14] NUS-WIDE 2 25.5
LSMP [6] NUS-WIDE 18.5

Table 5. Image annotation results on NUS-WIDE: comparison of
the proposed method with other approaches.

5. Conclusion

In this paper we have shown the importance of extracting
CNN activations from multiple windows. We investigated
two different window sampling strategies and found out that
the best performance is obtained by their combination. This
confirm the intuition that image information is not fully cap-
tured by object proposals alone. In fact, adding randomly
sampled windows improves our image representation.

We have shown that Fisher Vectors can be effectively
used to aggregate low-dimensional CNN responses improv-
ing over more simplistic max and average pooling ap-
proaches. Finally applying PCA on the Fisher Vector rep-
resentation allows to reduce the computational footprint of
our method. Our method is computationally efficient since
it relies on few hundred windows and has a low memory
footprint representing each image with just 2.5Kb of data.

We tested our representation on two tasks, image re-
trieval and image tagging on three publicly available
datasets collected from social networks showing state-of-
the art results.

1GIST, colour histograms (RGB, LAB, HSV), SIFT + hue local de-
scriptors BoW

2225-D block- wise color moments, 128-D wavelet texture and 75-D
edge direction histogram
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