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Abstract. Modern automated visual surveillance scenarios demand to
process effectively a large set of visual stream with a limited amount of
human resources. Actionable information is required in real-time, there-
fore abnormal pattern detection shall be performed in order to select the
most useful streams for an operator to visually inspect. To tackle this
challenging task we propose a novel method based on convex polytope
ensembles to perform anomaly detection. Our method relies on local tra-
jectory based features. We report State-of-the-Art results on pixel-level
anomaly detection on the challenging publicly available UCSD Pedes-
trian dataset.
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1 Introduction and Related Work

Nowadays a huge effort is put in securing cities and public spaces. Apart from
human engagement in security policy with police forces and other security per-
sonnel, a lot of spending is dedicated to surveillance system deployment. Un-
fortunately while growing the amount of operators may enhance the security,
growing the amount of sensors alone is not obtaining much benefits. While cam-
eras are often installed as a deterrent for crimes, the usual approach is to use
footage as evidence in investigations. More actionable information could be gath-
ered if real-time video analysis provided to surveillance operators a subset of
frames to inspect. Dadashi et al. [1] conducted a study to understand the role
of automatic and semi-automatic video analysis in security context. They have
shown that when reliable automatically computed information is provided work-
load is greatly reduced. This kind of support to human operators is key since,
as reported in [2] the attention of operators, viewing multiple streams, greatly
degrades just after 20 minute.

A very desirable feature in automatic visual surveillance system, is the ability
to pick the right set of streams to watch. This can be casted as measuring the
deviation of the most recent frames, from some nominal distribution of the im-
agery for the very same stream. More specifically an algorithm, selecting streams,
should also provide localization of such anomalies. This is an important feature
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since it allows to use high resolution PTZ cameras able to directly frame, at a
higher quality, the abnormal pattern.

Modeling complex patterns requires to learn the distribution characterizing
a set of video sequences, taken from a certain view. It is usually assumed that
the camera is fixed, this allows to make models which are simpler and can learn
patterns which are scene specific. Anomaly detection is usually casted as a one-
class learning problem over features extracted from video sequences.

Most of the recent works are based on motion or spatio-temporal features.
The seminal work from Adam et al. [3], learned local optical flow statistics and
compared them to the one computed on forthcoming frames. Optical flow has
been used extensively as low-level feature on which contextual models are then
built [4], [5]. One of the main limitation of optical flow lies in the impossibil-
ity to model appearance abnormalities. Nonetheless, using just the appearance,
is only suitable for low-frame rate scenarios [6], therefore many work resort to
spatio-temporal representation, in order to jointly capture appearance and mo-
tion [7], [8], [9], [10], [11].

Several models have been applied to solve one-class learning. Non-parametric
approaches [9][6], model feature distribution implicitly, by looking at distance
between features. Parametric models, have the advantage of a lower memory
footprint, they typically fit a mixture of density functions on the extracted fea-
tures. Li et al. [10] learn a mixture of dynamic textures, computing likelihood
over unseen patterns to perform inference. Similarly, Kim et al. [4] learn a mix-
ture of Principal Components Analyzers, which jointly learns the distribution
and perform dimensionality reduction. Feature learning has been rarely used
except for Xu et al. [7], which use autoencoders to directly learn the repre-
sentation, obtaining high accuracy. In this work, we only consider methods not
using anomaly labels in learning, in such cases, the problem becomes a binary
classification task with much less challenge.

In the past, trajectories were the feature of choice to model patterns in visual
surveillance scenarios [12]. Trajectory based anomaly detection unfortunately
requires high quality object tracking and can not find appearance abnormal pat-
terns. In action recognition, the use of short local trajectories, namely dense
trajectories, to extract features has led to a sensible increase in performance
[13]. Several approaches build on this features, showing interesting further im-
provements and localization capabilities [14],[15]. Up to now we are not aware
of such features being employed in unsupervised or semi-supervised tasks like
anomaly detection.

Considering the relatively low computational requirement and high perfor-
mance, we build on dense trajectories, which are known to be very well suited
for a wide set of action recognition problems, since they are able to represent
motion and appearance jointly. We propose to estimate the distribution of trajec-
tory descriptors using convex polytopes [16]. Convex polytopes have been used
in the past but never for computer vision problems. Our approach is inspired
by [16], but is different since instead of modeling the distribution of data with
a single polytope which is approximated using random projections, we consider
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explicitly an ensemble of low-dimensional models. This approach is more suited
to model multi-modal distributions and it allows to merge multiple features in
a single decision.

We report state of the art results on the UCSD dataset both at pixel and
frame level anomaly detection. Interestingly we found that local trajectory shape
can get very good detection rates, potentially reducing the computational cost
for feature extraction.

2 Anomaly Detection with Convex Polytopes

We tackle anomaly detection and localization as a single-class classification prob-
lem in a fully unsupervised way. As we can only train our system on a single
class of input points (the non-abnormal class), we choose to employ the polytope
ensemble technique as modeling method. In particular, we make use of Polytope
Ensemble technique [16]. Polytope Ensemble considers a set of convex polytopes
representing an approximation of the space containing the input feature points.
We want a representation which is shaped according to the distribution of the
points we can observe; among the convex class of polytopes, the convex hull
has the geometric structure which is best tailored to model this kind of data
distribution.

2.1 Model building

Given an input set of points X = {x1, . . . , xm}, its convex hull is defined as

C(X) =


|X|∑
i=1

θixi|xi ∈X;
∑
i

θi = 1, θi ≥ 0∀i

 (1)

By exploiting the convex hull properties, we can then identify an abnormal
point simply checking whether it belongs to the convex hull or not.

Extended convex hull To ensure robustness of the model, we follow the pro-
cedure of [16] and modify the structure of the convex hull, performing a shift of
its vertices closer or farther from its centroid. This allows to avoid overfitting
and tune our system to cope with different practical conditions. Considering the
set of vertices V ⊂X and the centroid of the polytope ci, we can calculate the
expanded polytope setting an α parameter such that

Vα = {v + α
(v − ci)
||v − ci||

, v ∈ V } (2)

The new polytope defined by vertices in Vα is a shrunken/enlarged version
of the original convex hull. Negative values of α increase system sensivity, while
positive values reduce it.
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Ensemble building We rely on dense trajectory features [13]. We extract
both motion and appearance descriptors using Improved Dense Trajectories al-
gorithm. This allows us to jointly employ multiple features such as trajectory
coordinates, HoG, HoF and MBH to achieve robust anomaly detection and lo-
calization. We set the ensemble size to T convex hulls. Then, for each feature
and for each convex hull, we generate a random projection matrix P f

i with norm
1 and size d×Df , where d is the size of the destination subspace, and Df is the
size of the feature f . We then apply this projections to the original data:

XP f
i

= {P f
i x,∀x ∈X} (3)

The i-th convex hull is calculated on XP f
i

. Each convex hull will be character-

ized by a unique shape, as we generate a different random projection matrix at
every iteration of model learning. A set of different sensitivity ensembles can be
obtained by the aforementioned shrinking/expansion procedure, based on dif-
ferent values of the α parameter. It is not required to have an α set for each
polytope since, as can be seen in Eq.2, shrinking factors are computed by scaling
the distance of vertices from the centroid.

2.2 Anomaly Localization

At inference time, we test each extracted descriptor for inclusion in each con-
vex hull of the ensemble, for each feature. We consider a local trajectory, with
descriptors xf as anomalous if the following condition is true:

xf 6∈ Cf (XP f
i

) ∀f, i (4)

meaning that the descriptor is external to all the polytopes and that this
happens for all the considered features (Trajectories, HoG, HoF, MBH).

These assumptions are rather strong, but they ensure that we reduce anomaly
detection on unusual but yet ordinary patterns. When a descriptor is marked as
abnormal, this detection lasts for the entire extent of the trajectory descriptor
(15 frames by default). Detecting anomalies for individual trajectory descriptors
allows to generate anomaly proposals in various areas of video frames, exploiting
trajectory coordinates. We can then obtain an anomaly mask for each frame of
each video by filtering these proposals. In Fig. 1 we represent the three main
operations we perform to achieve anomaly detection and localization.

We take into consideration the set of trajectories Ta = {t1, t2, . . . , tN} which
have been marked as anomalous after testing their inclusion into the convex hulls
of the ensemble. Each trajectory ti is a sequence of M points, ti = {pi1, . . . , piM}
lasting M video frames. At frame f , we consider the points of the active anoma-
lous trajectories, that is to say the set of points

Pa = {pin ∈ ti|n = f, ti ∈ Ta} (5)

Points identified by active anomalous trajectories at frame f are clustered
with K-means algorithm to locate potentially abnormal areas of the frame. K-
Means yields a partition Sa of the anomalous points set Pa in K Voronoi cells:

Sa = {S1, . . . , SK |S1 ∪ · · · ∪ SK = Pa, Sk1
∩ Sk2

= ∅ ∀ k1, k2} (6)
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Fig. 1: Operating scheme of our anomaly detection and localization model

Each Sk represents an anomaly proposal for the considered frame. For each
Sk, we verify if its cardinality is smaller than a fixed threshold, that is to say, if
the anomaly proposal constitutes of a minimum number of points. We assume
that small clusters are likely originated by spurious false positive detections, so
we discard all the anomaly proposals Sk whose cardinality does not guarantee
that the detection is reliable. Then, for each remaining Sk, we calculate the
polygon described by its points. Each polygon represents an accepted anomaly
proposal which contributes to the final anomaly mask creation for the frame.

3 Experimental Results

We conduct our experiments on the UCSD Pedestrian dataset. This dataset has
been proposed by Mahadevan et al. [10], and it consist of two sets of videos,
named Ped1 and Ped2, of pedestrian traffic. The dataset is not staged and
features realistic scenarios. In the setting designed by the authors anomalous
patterns are all the non-pedestrian entities appearing in the scene. We perform
the evaluation on the Ped1 and Ped2 following the standard experimental pro-
tocol for this dataset which comprises two evaluation settings: frame-level and
pixel-level [10].

In the frame-level criterion, detections are evaluated frame-wise, meaning
that a frame is considered anomalous if at least an abnormal detection is pre-
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dicted for that frame disregarding its location. In this setting it is possible to
have “lucky guesses”, predicting a frame correctly thanks to a detection which is
spatially incorrect or with a too small overlap with the ground truth annotation.

Pixel-level evaluation is introduced to obtain a more detailed analysis of
algorithm behavior. In this setting anomaly detections are compared with ground
truth pixel masks. A frame is considered a true positive if there is at least 40%
of pixel overlap between the ground truth and the predicted mask. A frame
is considered a false positive in case anomalies are predicted in normal frames
or if the overlap with ground truth masks is lower than 40%. We report the
Receiver Operating Characteristic (ROC) curve of TPR and FPR varying system
sensitivity, and the Rate of Detection (RD) of our system. We modify system
sensitivity varying α in Eq.2.

First we perform an analysis of the contribution of different features. For
simplicity, we divide features in three groups: trajectories, motion and appear-
ance. We test each kind of feature alone and in combination with the others on
UCSDPed1. We report the results of feature evaluation in Tab. 1.

Trajectories
Motion

(HoF, MBH)
Appearance

(HoG)
RD

X - - 57.9

- X - 60.1

- - X 48.9

X X X 62.2

Table 1: Pixel Level Rate of Detection for different descriptors on UCSDPed1

Interestingly, local trajectories show very good performance. Anyhow, it ap-
pears clearly that motion descriptors give the main contribution to anomaly
localization; however, as expected, best results are obtained fusing the contribu-
tions of all descriptors. In the following, we will then perform other tests using
all the descriptors extracted from the dense trajectory pipeline.

Regarding our model, there are two parameters that can affect the perfor-
mance. In the following experiments we want to understand how projection size
and ensemble cardinality influence the correct detection of anomalies.

All projection size tests were obtained fixing ensemble size to 10 convex hulls,
while all ensemble size tests were obtained fixing projection size to 5. We report
detection rate variation charts in Fig. 2. As we expected, increasing projection
size leads to consistent gain in rate of detection results. On the contrary, bigger
ensembles do not always guarantee performance improvements. This outcome
may be caused by the unpredictable behavior of the random projections when
we raise the number of random generated projection matrices. The best trade-
off from a computational point of view is obtained keeping an ensemble of 10
convex hulls and a projection size of 5 dimensions. Increasing projection size
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(a): RD varying ensemble size (b): RD varying projection size

Fig. 2: Evaluation of ensemble size and projection size for our system on UCS-
DPed1.

over 7 causes convex hull generation and inclusion test to be nearly unfeasible
due to very long computation time without bringing noticeable benefits.

With these settings fixed, we compare our results with the existing State-of-
the-Art methods in fully unsupervised settings. First of all, it can be noted that
with our method trajectory descriptors alone obtain very high Rate of Detection
at the pixel level (57.9% as shown in Tab. 1), higher than most approaches on
Ped1, excluding [11], and the deep learning based method by [7].

As we can see in Fig. 3 and 4, our method succeeds in limiting false posi-
tive detections, especially at low sensitivity, at the frame level. We detect and
localize less than 20% of false positives facing more than 50% of true positives
at lower sensitivity values on Ped1 setting. Our system behaves even better on
Ped2 setting, where we correctly detect and localize more than 50% of true
positive anomalies with less than 5% of mistakes. As we expect, false positive
rate increases when our system becomes more sensitive to unseen patterns, how-
ever maintaining good robustness. Tab. 2 reports Rate of Detections for all
considered methods for both datasets and both criteria, when reported by au-
thors. Our method obtains a frame-level performance which is comparable to the
State-of-the-Art and beat all existing methods on the more challenging pixel-
level evaluation. Considering the evaluation protocol established in [10], frame
level accuracy may not reflect the actual behavior of a method, because of lucky
guesses, while the pixel-level criterion is stricter.

To show the high quality of our generated masks, we report a qualitative
comparison on two frames. Notably our masks frame very tightly abnormal pat-
terns, such as the bicycle rider and the truck in Fig. 5 and Fig. 6. With respect
to [10] our masks are tighter. Methods such as MPPCA, Force Flow and LMH,
are not able, especially in Ped2, to locate all anomalies. This is likely due to a
lower quality of features employed.
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Fig. 3: TPR-FPR curves comparing our approach with various well-known meth-
ods on Ped1 setting. Left figure shows the Frame level criterion, right figure shows
Pixel level criterion.
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Fig. 4: TPR-FPR curves comparing our approach with various well-known meth-
ods on Ped2 setting. Left figure shows the Frame level criterion, right figure shows
Pixel level criterion.
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Ped1 Ped2
Method Frame Pixel Frame Pixel

Ours 78.1 62.2 80.7 75.7

Xu et al. [7] 78.0 59.9 83.0 -

MDT Spatial [10] 56.2 54.2 71.3 63.4

MDT Temporal [10] 77.1 48.2 72.1 56.8

150 fps [11] 85.0 59.1 - -

Bertini et al. [9] 66.0 29.0 68.0 -

Mehran et al. [5] 63.5 40.9 65.0 27.6

Kim et al. [4] 64.4 23.2 64.2 22.4

Adam et al. [3] 61.1 32.6 54.2 22.4

Table 2: RD comparison of our method versus various well-known State-of-the-
Art techniques on Ped1 and Ped2 (where available) settings, frame-level and
pixel-level criteria.

Our Method Force Flow LMH

MDT Spatial MDT Temporal MPPCA

Fig. 5: Qualitative pixel level anomaly detection results on UCSD Ped1 compar-
ing our method to previous approaches.
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Our Method Force Flow LMH

MDT Spatial MDT Temporal MPPCA

Fig. 6: Qualitative pixel level anomaly detection results on UCSD Ped2 compar-
ing our method to previous approaches.

4 Conclusion

In this paper we show a novel, low memory footprint method to exploit dense
trajectory features in anomaly detection. Our method is able to model a complex
multimodal distribution yielded by spatio-temporal descriptors using a simple
convex polytope ensemble. Moreover, when multiple views of the same datum are
available our approach seamlessly performs feature fusion. Indeed, our method
is very flexible, as it allows to combine multiple features maintaining the same
operating mechanisms, and is tunable by a simple geometric transformation of
polytope hulls. Our system can thus be adapted to cope with various practical
conditions without losing its benefits both for anomaly detection and localiza-
tion tasks. We also propose a technique to obtain precise masks by clustering
abnormal trajectories; this mask generation technique allows us to achieve good
robustness against false positive detections and is shown to obtain State-of-the-
Art results in term of pixel-wise detection rate.
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