
Fisher vectors over random density forests for
object recognition

Claudio Baecchi, Francesco Turchini, Lorenzo Seidenari, Andrew D. Bagdanov, Alberto Del Bimbo
Media Integration and Communication Center

Università degli Studi di Firenze
Firenze, Italy

{claudio.baecchi,francesco.turchini}@unifi.it, bagdanov@dsi.unifi.it,
{lorenzo.seidenari, delbimbo}@unifi.it

Abstract—In this paper we describe a Fisher vector encoding
of images over Random Density Forests. Random Density Forests
(RDFs) are an unsupervised variation of Random Decision
Forests for density estimation. In this work we train RDFs
by splitting at each node in order to minimize the Gaussian
differential entropy of each split. We use this as generative
model of image patch features and derive the Fisher vector
representation using the RDF as the underlying model. Our
approach is computationally efficient, reducing the amount of
Gaussian derivatives to compute, and allows more flexibility in
the feature density modelling. We evaluate our approach on the
PASCAL VOC 2007 dataset showing that our approach, that
only uses linear classifiers, improves over bag of visual words
and is comparable to the traditional Fisher vector encoding over
Gaussian Mixture Models for density estimation.

I. INTRODUCTION

Image classification, that is predicting the category of ob-
jects present in an image, is a fundamental problem in com-
puter vision. Much progress has been made in recent years,
and most of the improvements in the state-of-the-art have
been obtained with the Bag-of-Words (BoW) approach [1]. A
BoW pipeline usually consists of the following steps: feature
sampling, dictionary learning, feature encoding and pooling
and classification. In a BoW pipeline the dictionary is usually
created with unsupervised learning techniques such as K-
means or Gaussian Mixture Models. The dictionary allows
mapping of local features from a set of any cardinality onto
a fixed number of words. With this encoding step the final
image signature has a fixed dimensionality and is easily used in
supervised classifiers like the Support Vector Machine (SVM).

Local image patches are represented with invariant descrip-
tors like SIFT [2]. Once descriptors are extracted, the final
image signature is computed by first encoding each descriptor
according to the learned dictionary and then by aggregating
high-dimensional descriptor codes into a global descriptor.
We refer to the first step as encoding and to the second
step as pooling. Various encoding techniques can be used;
among them, the most common are Histogram Encoding [1],
Kernel Encoding [3], Super Vector Encoding [4], Locality-
Constrained Linear Encoding [5] and Fisher Encoding [6].
The most common pooling operations are max-pooling and
average-pooling. Max pooling is normally used with sparse-
coding approaches [7]. Average pooling is used for Histogram

encoding and for soft-assignment methods like [3] and Fisher
coding [6]. The pooling operation allows encoding of spatial
information in the final representation by aggregating descrip-
tors depending on their locations. The first work to propose
this approach is [8].

Fisher Encoding is emerging as a very effective way to
encode visual descriptors. The main idea is to first use a
generative model of visual word formation. Then each patch
descriptor is encoded by taking into account the first and
second order statistics of the contribution of all the words in
the vocabulary when representing a point in the feature space,
resulting in a more powerful representation than histogram
encoding derived from K-means clustering. This approach
represents the current state-of-the-art in image classification,
but with the major drawback that the final image descriptor can
become enormous. This is a limitation in terms of memory and
computational efficiency. Therefore, in this paper we address
this issue by using compact and effective Fisher Encoding
representation that offers a tradeoff between dimensionality
and precision. Recently deep convolutional neural network [9]
shown state-of-the-art results with the only drawback of requir-
ing massive amounts of labeled data to pre-train. Our main
contribution is the use of Random Density Forests to build
the generative model for the codebook in place of the Gaus-
sian Mixture Model. Random Decision Forests have already
been used for clustering in a few image classification works,
like [10], but until now have not been used as generative
models in conjunction with Fisher Encoding. Random Density
Forests are a computationally efficient way to partition feature
space.

In the next section we briefly summarize existing works on
Random Decision Forests and Fisher vectors in the literature.
In section III we describe our framework for using RDFs
for Fisher Encoding. In section IV we analyze a series of
experiments we performed to evaluate the potential of our
approach, and we conclude in section V with a discussion
of our contribution.

II. RELATED WORK

In this section we review some recent results on Fisher
vector encoding for image recognition and Random Decision
Forests for classification and density estimation.

Fisher vectors for image recognition Assuming an image is
represented as a set of local patch descriptors, Fisher vectors
characterize the input features by taking the gradient of a
generative model. In other words, they describe image samples
by their deviation from an universal generative model. In most
cases the generative model is a Gaussian Mixture Model, but
other generative models have been considered in the same
framework [11].

The Fisher vector image encoding technique is mature and
has been used for large scale experiments of classification and
retrieval [6] obtaining higher accuracy with respect to Bag-of-
Words on most datasets. Moreover, classification using Fisher
vectors is efficient as simple linear classifiers are used.

The major drawback of Fisher vectors is their density
and size, resulting in a large memory footprint. Large scale
experiments, especially on retrieval problems, demand small
footprints and therefore some kind of compression techniques
must be used. Fisher vectors can be effectively compressed
without significantly affecting their performance [6]. A de-
tailed comparison of different encoding techniques highlights
that Fisher vectors achieve the best performances [12].
Random Decision Forests Random Decision Forests were
first proposed by Leo Breiman as a combination of inde-
pendent tree predictors, which have been shown to be very
robust compared to other prediction techniques [13]. Though
they are not widely used for image classification, RDFs have
proven to be very good for tracking and pose estimation [14].
More broadly, they are a very flexible model which can
be used for classification, regression, density estimation, as
well as manifold learning, semi-supervised learning and active
learning [15].

Random Decision Forests are a very flexible model which
can address various kinds of problems. They have been used
in a structured output learning in semantic segmentation and
obtain state-of-the-art results [16]. Recently they have also
been proposed for edge detection. In this case RDFs take
advantage of the structure present in local image patches
to learn both an accurate and computationally efficient edge
detector [17]. In action recognition RDFs can be adapted to
perform a generalized Hough transform in an efficient way.
Their flexibility permits extensions of the Hough transform
to new domains such as object tracking and action recogni-
tion [18].

A variant of Random Decision Forests, known as Random
Density Forests, can be used as a generative model and can be
considered as a generalization of GMM that create different
partitionings of the feature space. In a Density Forest every
point in the space can be characterized by multiple clusters, in
contrast to the linear Gaussian Mixture Model. Using Random
Decision Trees as clustering technique, it is also possible to
create discriminative visual vocabularies [19].

III. FISHER VECTORS OVER RANDOM DENSITY FORESTS

Our work is based on a combination of RDF as generative
model with Fisher vector encoding. We will also show that
we can use the structure of trees in the Random Density

Forest in order to reduce dimensionality of the final descriptor
while maintaining high mean average precision in the final
classifier. We begin by describing the standard Fisher vector
image encoding over Gaussian Mixture Models.

A. Fisher vector encoding for image recognition

Assume that we have learned a GMM representing the
distribution of descriptors in feature space for a set of image
patches sampled from a training set. The log-likelihood of a
single point x from this GMM is:

L(x) = log

K∑
i=1

ωiN (x;µi,Σi), (1)

where K is the number of Gaussian mixture components,
ωi is the weight of the i-th component, and µi and Σi
are the parameters of the i-th Gaussian component. It is
standard to assume diagonal covariance matrices, and thus the
number of partial derivatives in the gradient is 2KD, for x of
dimensionality D. Assuming that descriptors in an image are
independent, the log-likelihood of a set X of M descriptors
is then:

M∑
m=1

log

(
K∑
i=1

ωipi(xm)

)
(2)

The Fisher vector encoding works by calculating the gradi-
ent of this log-likelihood with respect to all model parameters.
That is, the gradient with respect to all component means
and covariances: We can differentiate the log-likelihood with
respect to means and variances of the Gaussian functions in
the mixture, for the entire set of input points X:

∇L(X) =

M∑
m=1

∇ log

(
K∑
i=1

ωiN (x;µi,Σi),

)
(3)

For the Gaussian model these gradients reduce to:

Gµn(X) =
1
√
ωn

M∑
m=1

γ(n)xm

(
xm − µn
σ2
n

)
(4)

Gσn(X) =
1√
2ωn

M∑
m=1

γ(n)xm

(
(xm − µn)2

σ2
n

− 1

)
, (5)

where γ
(n)
xm is the probability that the point xm has been

generated by the n-th Gaussian component.

γ(n)xm
=

ωnpn(xm)∑N
j=1 ωjpj(xm)

(6)

The final Fisher vector for the set of descriptors X is then
obtained as a concatenation of Gµn(X) and Gσn(X):

G(X) =
[
Gµ1 (X),Gσ1 (X), . . . GµK(X),GσK(X)

]
. (7)

The dimensionality problem If we apply Fisher vector
encoding to a Gaussian Mixture Model with K components
and features of dimensionality D, we obtain descriptors of
length 2×K×D (K×D for the partial derivatives with respect
to mean and K ×D for the partial derivatives with respect to

Figure 1: Visualization of a random density forest for a 2D toy space, with two trees of depth three. Descriptor path along
trees is highlighted in red. Each Gaussian is colored as the respective leaf in the tree.

variance parameters in the diagonal covariance matrices). For
a GMM with 128 components and features of 128 dimensions,
this yields descriptors of approximately 32,000 dimensions.

Principal Component Analysis (PCA) can be used to par-
tially address this problem by projecting the descriptors onto
a subspace of lower dimensionality. However, this strategy
is not completely effective since if a very small number
of dimensions are retained this can significantly reduce the
information carried by the features and their effectiveness for
classification.

B. Random density forests for density estimation

In this section we describe how Random Density Forests can
be used to learn a generative model of the distribution of patch
descriptors in feature space. As with GMMs, RDFs result in a
linear combination of Gaussian densities The main difference
is that to describe a point in the feature space, a GMM takes
in account all Gaussians of the mixture, while in an RDF we
consider only the Gaussians at the leaves to which a point is
assigned in each tree. An RDF is build by recursively splitting
a set of input feature descriptors in a way that maximizes the
information gain, or equivalently minimizing the differential
entropy of a Gaussian fit to the descriptors, in the resulting
split sets.

In Fig. 1 we show a visualization of how the likelihood
of a descriptor is be computed with from a trained random
density forest. In this toy example, the descriptor (red square)
is explained by the weighted likelihood of the two leaf

Gaussians (one for each tree). In this example the descriptor
is better explained by the leaf in Tree 2. The final likelihood
is computed as in Eq. (10) by averaging all the leaves at the
end of each path in each tree of the forest.
Splitting functions Given a set of input points S =
{s1, s2, · · · , sP } of dimensionality d (d = 128 for SIFT
descriptors, for example) we select the best split parameter θ∗j
for the j-th node by maximizing an information gain function
θ∗j = arg maxθj∈Tj

Ij , where Ij is the generic information
gain for splitting set Sj into two subsets SLj and SRj :

Ij = |H(Sj)| −
∑

i∈{L,R}

|Sij |
|Sj |

log|H(Sij)|, (8)

and H(S) is the Shannon entropy of set S. Since we work
with multivariate Gaussian densities, we use the differential
entropy of the d-dimensional Gaussian:

H(Sj) =
1

2
log
[
(2πe)d|Λ(Sj)|

]
, (9)

where Λ(Sj) is the d × d covariance matrix for the j-th
Gaussian, and |Λ(Sj)| is the determinant of Λ(Sj).

The split used at each node of each tree is determined by
a random sampling process. We randomly generate a fixed
number of candidate splits and choose the one that maximizes
Eq. 8. Splitting the set of descriptors using this rule guarantees
that with each progressive level of the tree we can better
explain the resulting splits with Gaussians. Note that this
split candidate generation process is extremely flexible. It

Algorithm 1: trainTree(S)

Data: Training set S = {x0, . . . xn},where xi ∈ Rd
Depth D of subtree being constructed

Result: The (sub)tree for the training point set S
foreach t ∈ {1, . . . ,maxTries} do1

d̂t ← {d|d ∼ U{1,...,d}}2

v̂t ← {v|v ∼ U[min(xd̂t),max(xd̂t)]}3

SLt ← {x ∈ S|xd ≤ v}4

SRt ← {x ∈ S|xd > v}5

It ← |H(S)| −
∑
i∈{L,R}

(
|Sit |/|S|

)
log |H(Sit)|6

Pt ← min(|SLt |, |SRt |)7

t∗ ← arg max It8

if D < Dmax ∧ Pt∗ > Pmax ∧ It∗ > Imin then9

TL ← trainTree(SLt∗)10

TR ← trainTree(SRt∗)11

else12

C ← E
[
(S − E[S]) (S − E[S])

T
]

13

V ← the first R principal Eigenvectors of C14

SV ← (S − E[S])
T
V15

µ` ← E[S`]16

TL ← ∅17

TR ← ∅18

Σ` ← E
[
(S` − E[S`]) (S` − E[S`])T

]
19

return (Vr, µ`,Σ`, TL, TR)20

can be used to split on multiple features, for example, or to
explicitly favor splits in particular dimensions. In combination
with the definition of information gain, it can also be used to
incorporate discriminative information into the feature space
partitioning model.

Stopping criterion To avoid obtaining very deep trees, which
could overfit the data, we define a criterion to stop the splitting
process. We use a combination of several criteria:
• Minimum Threshold on Gain value: if the information

gain in a node drops below a specified value Imin, we
do not perform node splitting as it would not improve
precision.

• Maximum Tree Depth: to avoid a high number of leaves
and subsequent overfitting, we halt splitting if the depth
exceeds a maximum depth Dmax.

• Minimum Split Cardinality at Leaves: in order to
balance the number of points assigned to each leaf we
also stop splitting if the minimum cardinality of child
split sets drops below a threshold Pmax. If a split is
unbalanced, it is possible that the feature space is already
well partitioned.

We combined the above stop criteria. These conditions must
be respected at the same time, so we prevent node splitting if
either information gain or number of points in a leaf are under
the threshold value or if tree depth grows over the maximum
value after the split evaluation.

The log-likelihood function for RDFs Given a point x and
a tree t, we denote the leaf that x reaches by passing it through
the sequence of splitting functions as `t(x). Consequently,
given a forest F of trees, the likelihood of a point x according
to the RDF generative model is:

L(x|F) = log
1

|F|
∑
t∈F

πt,`(x)N
(
x;µt,`(x),Σt,`(x)

)
(10)

Note the similarity between Eq. (10) and Eq. (1). The main
difference is that in an RDF, exactly one Gaussian contributes
to the final likelihood (the one fit to the training examples
landing in leaf `t(x)).

C. Fisher vectors encoding from an RDF

We now show how to compute the Fisher vector from
the log-likelihood derived from an RDF model of descriptor
distribution. As described in the previous section, a leaf of
a trained RDF will contain mean and diagonal covariance
of the training points which are assigned to it. Using the
information contained in the leaves, the Fisher vectors for a
single descriptor depends on the parameters of a single leaf
Gaussian from each tree.

Recall that `t(x) is the leaf where feature x arrives in tree t.
To calculate the Fisher vector of a set of descriptors we group
the descriptors into sets according to how they fall into the
leaves of each tree:

Xt
l = {x ∈ X|`t(x) = l}, (11)

so that Xt
l is the set of all descriptors from X that fall into

leaf l in tree t. For a given tree t, the Fisher vector components
for leaf l are:

Gµl (Xt
l) = ω

− 1
2

`t(x)

∑
x∈Xt

l

γ`t(x)xm

(
xm − µ`t(x)
σ2
`t(x)

)
(12)

Gσl (Xt
l) = (2ω`t(x))

− 1
2

∑
x∈Xt

l

γ`t(x)xm

(
(xm − µ`t(x))2

σ2
`t(x)

− 1

)
(13)

The partial Fisher vector corresponding to leaf l of tree t is
then:

G(Xt
l) =

[
Gµl (Xt

l),Gσl (Xt
l)
]

(14)

Iterating over all leaves and trees we concatenate each of these
partial Fisher vectors to obtain the Fisher vector of the whole
forest for a given image X:

G(X) =
[
G(X1

1), . . . ,G(Xt
l), . . . ,G(XT

L)
]

(15)

Making compact Fisher vectors over RDFs As with the
standard Fisher vector over GMMs, we can apply PCA to the
set training points to reduce the dimensionality of the final
descriptor (at the cost of descriptive power). However, RDFs
are based on a hard partitioning of training data into the leaves
of each tree, and since the splits at nodes are based on entropy
minimization, we can fit a smaller PCA model to each set of
leaf node descriptors instead of to the entire input set. At

Algorithm 2: computeFisherVector(F , I)
Data: Previously trained Random Decision Forest F ,

Test patches set I = {x1, · · · , xn}
Result: Fisher vector of I over F
foreach t in F do1

foreach ` in Lt do2

G(Xt
f)←

[
Gµl (Xt

l),Gσl (Xt
l)
]

(Eq. (14))3

G(I)←
[
G(X1

1), . . . ,G(Xt
l), . . . ,G(XT

L)
]

(Eq. (15))4

return G(I)5

each leaf node, before we fit the Gaussian density to the set
of points landing in it, we project all points onto the first R
principal Eigenvectors of their covariance matrix.

As with the standard Fisher vector encoding over GMMs,
the dimensionality of Fisher vectors over RDFs encoded using
Eq. (15) can be similarly excessive. The dimensionality is 2×
T×R×2d, where T is the number of trees, d is the depth each
tree, and R is the number of principal eigenvectors retained
at leaves (and thus the final dimensionality of descriptors to
which each Gaussian is fit).
Putting it all together In algorithm 1 we give an algorithm
for construction of trees in our Random Density Forests. The
algorithm takes as input a set of training points S, generates
random splits of S, and depending on whether or not the
stopping criteria are met it recursively subdivides S into
smaller subtrees or fits a PCA model with R components and
a Gaussian of R dimensions to the set S.

Algorithm 2, on the other hand, details the construction of a
Fisher vector over a trained RDF. As described in section III-C
we use the RDF to split the descriptors I from and image into
the leaves of all trees. The partial Fisher vectors are computed
at all leaves from each tree, and these are finally concatenated
into the Fisher vector representation for the image.

IV. EXPERIMENTAL RESULTS

We performed a series of image classification experiments
on the PASCAL VOC 2007 dataset to evaluate the potential
of RDFs as generative models for Fisher vector encoding.

A. Datasets and experimental protocol

In all experiments we extract patches densely with a stride
of 4 pixels at four scales: 16x16, 24x24, 32x32 and 40x40.
After calculating Fisher Vectors, we apply power normaliza-
tion with α parameter set to 0.5 and after we perform `2
normalization as suggested in [6].

We then build one-versus-all linear SVM classifiers for all
classes. The C parameter is selected by crossvalidation the
mAP on the validation set and the final result is reported as
the mAP on test images with training performed on the merged
training and validation sets. We do not use a spatial pyramid
for our final image representation.

To initially evaluate method during development, we re-
duced the original dataset to a subset of six classes (bottle,
bus, cat, motorbike, pottedplant, sheep).

Vocabulary Encoding mAP Trees Depth DIM
GMM Fisher vector 56.25 - - 16,384
RDF Fisher vector 54.12 4 5 16,384
K-means Hard BoW 47.63 - - 16,384
RDF Hard BoW 46.68 32 9 16,384
RDF Hard BoW 44.85 32 7 4,096

Table I: Mean average precision and final descriptor dimen-
sionality on entire PASCAL VOC 2007 for Fisher vectors
over RDF, Fisher vectors over GMM and BoW with hard
assignment. All experiments are without spatial pyramid.

B. Baseline evaluation

59.65%

60.73%

60.00%

59.28%

58.91%

63.72%

63.24%

63.88%

64.49%

64.36%

69.52%

69.19%

69.53%

70.47%

69.95%

75.72%

74.81%

74.79%

74.93%

74.74%

76.59%

77.90%

76.80%

76.38%

76.74%

59.65%

60.73%

60.00%

59.28%

58.91%

63.72%

63.24%

63.88%

64.49%

64.36%

69.52%

69.19%

69.53%

70.47%

69.95%

75.72%

74.81%

74.79%

74.93%

74.74%

76.59%

77.90%

76.80%

76.38%

76.74%

59.65%

60.73%

60.00%

59.28%

58.91%

63.72%

63.24%

63.88%

64.49%

64.36%

69.52%

69.19%

69.53%

70.47%

69.95%

75.72%

74.81%

74.79%

74.93%

74.74%

76.59%

77.90%

76.80%

76.38%

76.74%

59.65%

60.73%

60.00%

59.28%

58.91%

63.72%

63.24%

63.88%

64.49%

64.36%

69.52%

69.19%

69.53%

70.47%

69.95%

75.72%

74.81%

74.79%

74.93%

74.74%

76.59%

77.90%

76.80%

76.38%

76.74%

59.65%

60.73%

60.00%

59.28%

58.91%

63.72%

63.24%

63.88%

64.49%

64.36%

69.52%

69.19%

69.53%

70.47%

69.95%

75.72%

74.81%

74.79%

74.93%

74.74%

76.59%

77.90%

76.80%

76.38%

76.74%

Local PCA
G

lo
ba

l P
C

A

4 8 16 32 64

64

80

96

112

128

(a)

71.17%

72.14%

73.89%

74.09%

72.36%

74.41%

75.58%

75.57%

74.46%

75.50%

76.14%

76.42%

75.40%

75.71%

77.02%

76.86%

71.17%

72.14%

73.89%

74.09%

72.36%

74.41%

75.58%

75.57%

74.46%

75.50%

76.14%

76.42%

75.40%

75.71%

77.02%

76.86%

71.17%

72.14%

73.89%

74.09%

72.36%

74.41%

75.58%

75.57%

74.46%

75.50%

76.14%

76.42%

75.40%

75.71%

77.02%

76.86%

71.17%

72.14%

73.89%

74.09%

72.36%

74.41%

75.58%

75.57%

74.46%

75.50%

76.14%

76.42%

75.40%

75.71%

77.02%

76.86%

71.17%

72.14%

73.89%

74.09%

72.36%

74.41%

75.58%

75.57%

74.46%

75.50%

76.14%

76.42%

75.40%

75.71%

77.02%

76.86%

Depth

T
re

es

2 3 4 5

1

2

4

8

(b)

Figure 2: Mean average precision on our reduced development
set varying global/local PCA (a) and number of trees/depth (b).

We performed some preliminary tests to gain insight on
the behavior of our algorithm. To initially evaluate method
during development, we performed a first test on a reduced
set containing six the original twenty PASCAL VOC classes:
bottle, bus, cat, motorbike, pottedplant, sheep. This test is
performed with forest size set to 4 trees and Dmax set to 5
levels (25 leaves if the tree is perfectly balanced). We focused
on the effects of PCA, both globally applied on the whole
set of descriptors and locally applied on the leaves. We see
in Fig. 2a that global PCA (GPCA) reduction has little or
no effect on the quality of the learned dictionary while the
local PCA (LPCA) influences both the final descriptor size
and quality of the Gaussians estimated at each leaf.

In this second test we fixed the GPCA and LPCA to 128
and 64, respectively, to analyze the behavior of our algorithm
varying the number of trees and their depth. This and all
subsequent tests were performed on the entire set of twenty
PASCAL VOC classes. In Fig. 2b we observe that these two
parameters are quite complementary. Note that adding a tree to
the forest will double the final descriptor size, while adding a
level to each tree will increase by a factor of 2×T . Since trees
are trained in a randomized way, adding trees is like adding
novel views of the same data. On the other hand, increasing
depth makes a more detailed partitioning of the feature space.
Excessively increasing in both forest size and tree depth may
lead to overfitting. We can also hypothesize that a bigger
forest may need a smaller depth of its trees to be effective, as
having many different partitionings can compensate for their
coarseness.

We performed another set of experiments to evaluate our

Trees Depth GPC LPC DIM mAP
4 6 128 64 32,768 55.26
8 5 128 64 32,768 55.14
4 5 128 64 16,384 54.12
4 5 128 32 8,192 50.59

Table II: Mean average precision on entire PASCAL VOC
2007 for different configuration of our algorithm.

Method mAP kernel SPM DIM
Our approach 55.26 linear - 32k
Our approach 54.12 linear - 16k
IFV [20] 55.30 linear - 32k
LLC [12] 53.79 linear 3 32k
BOW [12] 53.47 χ2 3 32k
KCB [12] 54.60 χ2 3 32k

Table III: Comparison with the state-of-the art on the entire
PASCAL VOC 2007 dataset.

approach compared to standard Fisher vector encoding over
GMMs and BoW encoding with hard assignment. In order to
use RDFs for BoW encoding, we modified our framework to
build histograms of points hard assigned to tree leaves, using
them as histogram bins and not as containers of Gaussian
parameters. In Table I we report the mean average precision
of our approach in various configurations. Note how Fisher
vectors over RDFs are comparable to the standard Fisher vec-
tor encoding, with BoW encoding using K-means or RDFs for
vocabulary construction is significantly worse at comparable
dimensionality.

A final baseline comparison was performed to understand
the best configuration of RDF along with global and local PCA
using all the 20 classes of PASCAL VOC2007. In table II we
report results over varying parameter settings.

C. Comparison with the state-of-the-art

Finally we compared our approach to state-of-the-art BoW
techniques for image classification on PASCAL VOC2007. In
Table III we report a comparison between our approach and
techniques from the literature using only SIFT features and
no spatial pyramid. Our approach performs similarly to the
Improved Fisher Vector [20] at the same dimensionality, while
at half the dimensionality of the Improved Fisher Vector we
lose only about 1% in mean average precision.

V. DISCUSSION

In this paper we described an approach to Fisher vector
encoding using Random Density Forests as an underlying gen-
erative model of descriptor distribution in feature space. With
respect to the Gaussian Mixture Models used in the standard
Fisher vector encoding for image recognition, Random Density
Forests offer a number of advantages. The hard assignment of
training descriptors to leaves allows us to fit leaf-specific PCA
models to the descriptors in each leaf node. Since the random
trees are learned such that entropy in leaves is minimized, we
can use smaller leaf-local PCA subspaces than can be used
for global PCA as in the standard Fisher vector approach.

Experiments on the PASCAL VOC 2007 dataset demon-
strate the potential of our approach. Fisher vectors over RDFs
perform comparably to the standard and improved Fisher
vector encoding over GMMs. Furthermore, at half the di-
mensionality obtained through local PCA, our approach only
performs about 1% below the state-of-the-art. Our ongoing
work is focused on better understanding how to guarantee
diversity in trees in order to obtain richer information from
the final Fisher vector encoding.

REFERENCES

[1] J. Sivic and A. Zisserman, “Efficient visual search cast as text retrieval,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 4, pp. 591–606, 2009.

[2] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[3] J. C. van Gemert, C. J. Veenman, A. W. Smeulders, and J.-M. Geuse-
broek, “Visual word ambiguity,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 32, pp. 1271–1283, 2010.

[4] X. Zhou, K. Yu, T. Zhang, T. S. Huang, and T. S. Huang, “Image
classification using super-vector coding of local image descriptors.” in
ECCV, 2010, pp. 141–154.

[5] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-
constrained linear coding for image classification,” in Proc. of CVPR,
2010.

[6] F. Perronnin, J. Sanchez, T. Mensink, and J. Verbeek, “Image classication
with the fisher vector: Theory and practice,” in International Journal of
Computer Vision, 2012.

[7] Y.-L. Boureau, J. Ponce, and Y. Lecun, “A theoretical analysis of feature
pooling in visual recognition,” in Proc. of ICML, 2010.

[8] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in Proc. of
CVPR, 2006.

[9] I. L. J. S. Maxime Oquab1, Leon Bottou, “Learning and transferring
mid-level image representations using convolutional neural networks.”

[10] F. Moosmann, E. Nowak, and F. Jurie, “Randomized clustering forests
for image classification,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 30, no. 9, pp. 1632–1646, sept. 2008.

[11] R. G. Cinbis, J. Verbeek, and C. Schmid, “Image categorization using
fisher kernels of non-iid image models,” in Proc. of CVPR, 2012.

[12] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman, “The devil
is in the details: an evaluation of recent feature encoding methods,” in
Proc. of BMVC, 2011.

[13] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
Oct. 2001.

[14] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, “Real-time human pose recognition in parts
from a single depth image,” in Proceedings of CVPR, 2011.

[15] A. Criminisi, J. Shotton, and E. Konukoglu, Decision Forests for
Classification, Regression, Density Estimation,Manifold Learning and
Semi-Supervised Learning.

[16] P. Kontschieder, S. R. Bulò, H. Bischof, and M. Pelillo, “Structured
class-labels in random forests for semantic image labelling.” in ICCV,
D. N. Metaxas, L. Quan, A. Sanfeliu, and L. J. V. Gool, Eds. IEEE,
2011, pp. 2190–2197.

[17] P. Dollár and C. L. Zitnick, “Structured forests for fast edge detection,”
in ICCV, 2013.

[18] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky, “Hough
forests for object detection, tracking, and action recognition,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 33, no. 11, pp. 2188–2202, Nov.
2011.

[19] F. Moosmann, B. Triggs, and F. Jurie, “Fast discriminative visual
codebooks using randomized clustering forests,” in Advances in Neural
Information Processing Systems 19, B. Schölkopf, J. Platt, and T. Hoff-
man, Eds. Cambridge, MA: MIT Press, 2006, pp. 985–992.

[20] F. Perronnin, J. Sanchez, and T. Mensink, “Improving the fisher kernel
for large-scale image classification,” in Proc. of ECCV, 2010.

