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Abstract—Understanding where people attention focuses is a
challenging and extremely valuable task that can be solved using
computer vision technologies. In this paper we address this
problem on surveillance-like scenarios, where head and body
imagery are usually low resolution. We propose a method to
profile the attention of people moving in a known space. We
exploit coarse gaze estimation and a novel model based on optical
flow to improve attention prediction without the need of a tracker.
Removing the tracker dependency makes the method applicable
also on highly crowded scenarios. The proposed method is
able to obtain comparable performance with respect to state
of the art solutions in terms of Mean Average Angular Error
(MAAE) on the TownCentre dataset. We also test our approach
on the publicly available MuseumVisitors dataset showing an
improvement both in terms of MAAE and in terms of accuracy
in the estimation of visitors’ profile.

I. INTRODUCTION

Understanding the focus of attention is a challenging com-
puter vision task with many valuable and interesting appli-
cations. Attention may be directed towards other people or
objects in the scene and both these cases represent strong cues
in understanding people behavior. For the first case, usually
referred as social signals and/or group behavior analysis, a
reliable prediction on who is looking at whom is the main cue
to seek. Group behavior is often defined in terms of spatial
disposition and orientation of persons (people formations).
However, body orientation estimation without gaze informa-
tion may often lead to ambiguous predictions.

Understanding instead what objects are looked at and for
how long is also of great interest for retail companies that
may want to obtain a large dataset of customer behavior. This
is often solved by tracking all the persons in the scene and
consequently generating heat images, registered with the shop
maps, that indicate customer persistence. Although, even if
the scene strongly constrains people position, such as in a
supermarket aisles, there is a lot of ambiguity if we consider
just the position. If we are willing to detect which products
draw people attention in a shop, gaze estimation is the only
option.

A slightly different but complementary task is profiling the
interests of a single person in a given environment. In this
case, instead of accumulating a global statistic from all persons
behavior, a single profile is sought. In particular, given a set
of person detections, the goal is to build identities and the

corresponding interest profiles. Identity building is a problem
similar to clustering and is usually solved exploiting person
re-identification algorithms [1]. Once a certain amount of
detections of a single individual are connected an interest
profile can be built. In this situation a higher precision is
required since the amount of samples are scarcer.

Passive profiling finds several interesting applications in the
cultural heritage scenario [2]. For example, user profiling can
help solving many issues Museums struggle to cope with;
like personalizing content for visitors. Personalization should
both increase engagement and satisfaction creating a dedicated
view of museum collections and suggesting novel cultural
paths to explore. Moreover a recommender system may, also
building from previously watched people behaviors, help in
planning further tours towards different cultural venues, places
of interest or museums.

To this end both person gaze and position in the scene are
very relevant to understand the attention; how far an object is
from the person could not be a sufficient hint. We argue that
understanding which objects are in the person’s field of view
is crucial for a correct attention estimation.

We propose a method for coarse gaze estimation that can
be exploited for video surveillance, for the analysis of social
behavior interaction and for attention profiling. Our solution
exploits frame-to-frame motion information and therefore does
not need to track every person in the scene, as in [3], or per-
form complex and computationally onerous global optimiza-
tion requiring the knowledge of the entire person trajectory.

II. RELATED WORK

Gaze and attention analysis are central topics in computer
vision. In particular, gaze is usually inferred through head
pose estimation which is in turn estimated by exploiting fast
and accurate methods to detect stable face landmarks [4],
[5], [6]. An even preciser gaze estimate can be computed
by locating pupils inside eyeball regions [7]. However, all
these methods require a fairly good resolution to obtain a
reliable landmark estimation thus considering faces not smaller
than 200 pixels. In visual surveillance scenarios, even if high
resolution cameras are employed, it is often infeasible to
obtain such resolution for all the faces of interest. Moreover,
landmark and eye-detection based methods require frontal



or profile faces to work, while persons are evenly imaged
frontally or from their back.

For these reasons a different line of research tackled the
relaxed problem of coarse gaze estimation [8], [9]. Instead
of deriving a full 3D transformation for the head, coarse gaze
estimation sets the goal of predicting the 2D orientation of the
head with respect to the camera. For calibrated cameras such
gaze can also be projected onto the scene ground plane [10].

Gaze prediction can be improved considering cues other
than face imagery. Benfold et al. make the point that a gaze
model is also context dependent, and propose an unsupervised
model for learning scene-specific classifiers [3]. Another very
relevant cue is obtained from the body orientation. Indeed
the torso orientation poses a very strong constraint on the
possible gaze angles. Moreover, if a person is in motion, the
walking direction, which can be already used as weak predictor
is also extremely relevant. Chen et al. learn body-head and
velocity-head coupling factors [11]. Their approach is shown
to improve with respect to [3]. However, both these approaches
exploit a temporal model and therefore need a reliable tracker.
Multi-target tracking is a very challenging task that can also
be prone to failure in case of crowded environment. Moreover,
being tracking the first block of a processing chain, its failure
may lead to inconsistent results.

The Mnemosyne system [2] is the result of a three year
research project where computer vision technologies have been
deployed to perform passive user profiling. Profiles have then
been used to deliver personalized content through an interac-
tive tabletop interface or a mobile app. This system has three
main components: person detection, detections association and
profile building. The first step process each camera stream
to locate visitors and extract their descriptors. The second
step compare visitors visual descriptors to infer identities, i.e.
cluster detections that are likely to belong to the same person.
Profile building is performed combining a priori information
about areas of influence of each artwork with visitor locations
on the ground plane. Unfortunately, this approach discards
completely people orientation information. In many situation
a person may stand close to an artwork but look in an opposite
direction.

We propose to improve profiling with respect to [2] includ-
ing the estimated gaze in the profiling model. Our solution
is more robust than [9] and does not require a tracker to
obtain reliable gazes, but exploits optical flow as a cue
for incorporating motion information. Our final coarse gaze
integrates head, body and motion orientations. Dropping the
tracker requirement is mandatory since in our scenario reliable
multi-target tracking is both computationally expensive and
unreliable because of the many occlusions.

III. STATELESS COARSE GAZE ESTIMATION

In this section we first summarize how to learn a model
that is able to estimate at runtime coarse head and body poses.
Then we introduce a motion model to improve the coarse gaze
estimation for moving persons. To detect person in the scene

Fig. 1: Feature extracted from a sample head.

we use the detector from [12] that is able to segment both the
body and the head of the detected person.

A. Head and body pose estimation

We build upon the solution proposed in [8], [9] in order to
coarsely estimate the head and body orientations.

For the head visual representation, we resize each patch to a
standard resolution of 128x128 pixels from which we extract
the Histogram of Oriented Gradients (HOG). Then we resize
the same patch to a resolution of 16x16 pixels and extract
both the intensity of the gradients and the RGB colors. The
final head descriptor is obtained as early fusion of these three
distinct features and has a dimension of 1600 bins: 576 bins
for the HOG feature, 256 (16x16) bins for the intensity of the
gradient and 768 (16x16x3) bins for the RGB color channels.
A sample of the feature extraction process is reported in Fig. 1.

We use random ferns [13], as in [8], to train our model,
and we will refer to it as Head-ferns. The fern differ from
the standard decision trees since the same set of branch-test is
applied to each image regardless of the previous test results.
We quantize all the possible head orientations (from 0 to 360
degrees) in 16 classes.

Estimating the orientation of the head can be really difficult
due to the limited resolution at which a head is observed
in typical surveillance footage and also because of missing
information about the context in which the head is acquired.
Indeed, the class with the maximum score given by the Head-
ferns does not always represent the correct orientation. It could
happen that there are two or more modes and in this case
choosing the orientation class with the highest score can lead
to a wrong decision. For this reason, we would like to refine
the initial estimation given by our Head-ferns by exploiting
the whole body orientation, as also proposed in [11].

As for the head, we train random ferns using as input a set
of features extracted from the whole body image of a person.
In particular, we extract the same features of the head but we
resize the body patches to a standard resolution of 384x128
pixels for the HOG and 48x16 pixels for the intensity of the
gradients and the RGB colors (we keep an aspect ratio of 3:1).
For the random-ferns we quantize the possible orientation in
8 classes; we will refer to this model as Body-ferns from now
on.

We finally concatenate the output of both the Head- and
Body-ferns predictors to form a new set of features and train
a SVM classifier with a RBF kernel. We cross-validate the
regularization parameter C and estimate σ as the average
distance between training features.



Fig. 2: Motion feature extracted from a person detection.

B. Motion model

The use of the head and body orientations may not always
be sufficient to correctly discriminate the gaze of a person.
This is mainly motivated by two reasons: 1) low resolution
patches can be too ambiguous to be discriminated by the
classifier; 2) for body patches it is really difficult to discrim-
inate between a person seen frontal (0 degrees) or rear (180
degrees). For this reason some solutions have been proposed
in literature that exploit tracking information to constrain the
gaze of a person towards its direction. This information can be
particularly useful for moving people. However, tracking all
the persons in a scene is computationally onerous and prone
to failure due to drift issue.

For this reasons we introduce a motion feature in our gaze
representation. We believe that just the motion of a person can
instantly disambiguate such situations. We use the technique
from [14] to extract the optical flow from two consecutive
frames at time It−1 and It. We discard all those pixels with a
motion below a given threshold τ and then compute the optical
flow orientation for the remaining pixels. For each bounding
box detected in the image It we compute the histogram of
orientations weighted according to an Epanechnikov kernel.
We quantize the possible orientation in 8 classes. We will
refer to this feature as Histogram of Oriented Optical Flow
(HOOF). Fig. 2 shows the HOOF extraction process.

The use of this feature allows us to keep our solution state-
less while granting a lower computational cost with respect to
solutions based on tracking or global optimization.

The final model is learned using as features the concate-
nation of the predictions from the Head- and Body-ferns and
the HOOF motion feature. As in the case of the concatenation
of head and body orientation prediction we learn an SVM to
predict the final gaze.

IV. USER PROFILING

Our goal is to identify for each person the interest towards
the surrounding environment. For this purpose the estimation
of the gaze of a person can be used to determine an area of
the scene that represent, with high probability, the subject of
user’s attention. To this end the coarse gaze estimated as in
Sect. III can be exploited to profile user interests in a scene
and give him more details about its preferences.

In order to be able to understand where the person is looking
to or at what is looking at in the observed scene we need to:
1) map the position and gaze of a person on the ground plane;
2) compensate the projection of the gaze [15] with respect to
the real world reference system. To this end we first estimate

Fig. 3: Visual representation of how the compensation angle
θ is computed.

the camera matrix H using the intrinsic and extrinsic camera
parameters. Then it is possibile to estimate the compensation
needed for the gaze as:

θ = arccos

(
Hv −Hx

||Hv −Hx||
· i
)

(1)

where x is the position of the target in the image plane and
v is the vanishing point, see Fig. 3.

Once both position and the gaze are projected it is possible
to exploit these information to profile the interests towards
the environment for each person and, vice versa, understand
which objects (e.g. artworks in a museum) of the scene are
more attractive. For each object position Hxk and each person
position Hxi on the ground plane we define:

dik(α) = α
||pik||
M

+ (1− α) arccos
(
gi(θ) ·

pik

||pik||

)
π−1

(2)
where

pik = Hxk −Hxi (3)

being gi(θ) the person’s gaze projected on the ground plane
through H and corrected with the angle θ, M the maximum
distance an artwork can have from a visitor in the room and α
a factor that weighs the combination of the distance between
the person i and the object k with the person’s gaze.

The artwork k∗ to be assigned to the person’s profile is
selected using:

k∗ = argmin
k
dik(α). (4)

Note that if α = 1 we obtain the naif model associating
people to artworks based only on the position on the ground
plane.

V. EXPERIMENTS

In this section we report a set of experiments to assess
the performance of our solution for coarse gaze estimation
in comparison with state of the art methods. Then we show
how estimating the interest of a person through both position
and gaze improves with respect to using just the position of a
person in the scene.



A. Datasets and experimental details

Tests are conducted on two different datasets, TownCen-
tre [9] and MuseumVisitors [16]. The TownCentre dataset is a
outdoor surveillance video composed of 4500 frames with high
scale variations for each person, occlusions, and false positives
in the scene. We randomly split the set in 218 persons for the
training and 57 persons for the test.

MuseumVisitors is a challenging dataset recorded at Na-
tional Museum of Bargello in Florence, composed of three
sequences acquired with three IP cameras at a resolution of
1280 × 800 pixels. This dataset is specifically designed for
group detection, occlusion handling, tracking, re-identification
and behavior analysis. On MuseumVisitors we adopted the
leave-one-out strategy to evaluate our solution, so one person
detection is used as test while the other detections are used
for training. The final accuracy is obtained by averaging over
all the results.

The ferns for the head orientation have been trained using
the BMVC2009 dataset [8], that contains 1477 cropped head
taken from different viewpoints, with resolution from 10× 10
pixels to 128 × 128 pixels. While the ferns for the body
have been trained on the TUD dataset [11], considering 7657
body patches extracted from 4732 frames, with resolution from
79 × 26 pixels to 310 × 102 pixels. For both Head-ferns
and Body-ferns, the number and the size of each fern have
been chosen experimentally through a phase of preliminary
validation. In particular, we use 200 ferns each with a size of
10, respectively.

B. Gaze estimation evaluation

In this section we describe the improvements introduced
by using different features with the proposed strategy. In
particular, we analyse the performance between exploiting
Head (H) and Body (B) ferns predictors, and Histogram of
Oriented Optical Flow (O) alone and their combinations. The
results are reported in terms of Mean Absolute Angular Error
(MAAE) computed between the estimated gazes {gi} and the
ground truth {Gi} on the image plane:

MAAE =
1

N

N∑
i=1

min{|gi −Gi|, |gi −Gi ± 360◦|}.

Table I shows the performance of our strategy compared
with Benfold et al. [9] and Chen et al. [11] methods on the
TownCentre dataset. We specify the characteristics of each
strategy in terms of using Head or Body gaze estimation,
motion and tracking. We consider a method using motion if it
exploits as cue the information computed from two adjacent
frames such as the walking direction or the optical flow. We
consider a method using tracking if it uses the information
from multiple frames to estimate a single gaze. This can be
done in a causal and non-causal manner, in this latter case
performing a global optimization.

On TownCentre, our strategy with only the motion feature
obtains comparable result with respect to the other methods.
This is mainly due to the fact that in the TownCentre dataset

Strategy MAAE Head Gaze Body Gaze Motion Tracking
Benfold [9] 26◦ 3 7 7 3
Benfold [9] 26◦ 3 7 3 3
Chen [11] 45◦ 3 7 7 3
Chen [11] 28◦ 3 3 3 7
Chen [11] 18◦ 3 3 3 3
Our (O) 26◦ 7 7 3 7
Our (H) 42◦ 3 7 7 7
Our (B) 45◦ 7 3 7 7
Our (H+B) 42◦ 3 3 7 7
Our (H+B+O) 22◦ 3 3 3 7

TABLE I: Mean Absolute Angular Error of the proposed
strategy in comparison with state-of-the-art on the TownCentre
dataset.

Feat. Combination Camera 1 Camera 2 Camera 3
O 46◦ 47◦ 51◦

H 34◦ 35◦ 34◦

B 35◦ 30◦ 43◦

H+B 28◦ 26◦ 32◦

H+B+O 26◦ 22◦ 30◦

TABLE II: Mean Absolute Angular Error on the MuseumVis-
itors dataset with the proposed method (for different features
combination).

the person walks in the street with gaze mainly oriented
towards the motion direction. Our best with 22◦ of MAAE is
obtained with the full features combination. Although, Chen
et al. [11] reach the lowest MAAE, that is 18◦, the strong
limitation of this method is the use of tracking information to
extract the gaze, which reduces the applicability of the method
in real scenarios where occlusions and crowd are present.

In Table II we report the performance obtained on the
MuseumVisitors, considering only the persons with occlusion
area lower than 20%. In particular, we evaluate 1400 persons
in Camera 1, 166 persons in Camera 2 and 1192 persons in
Camera 3. The gap in performance varying the features is
notable. Using only Optical Flow produces the worst results
on all cameras, with gaze errors over 40◦. The Head feature
reduces the error in the cameras 1 and 3 with respect to Body
and Optical features. A larger improvement is achieved by
combining Head and Body, that drops the gaze error. Best
results are obtained exploiting the combination of all features
with an error lower than 30◦ on all cameras. This is mainly
due to the fact that the direction extracted from the motion of
each person limits the range of feasible gazes in our method,
improving the accuracy. In Fig. 4 we show the gaze extracted
with the proposed strategy in one frame of Camera 1 of the
MuseumVisitors dataset and on a frame from the TownCentre
dataset. MuseumVisitors is a more challenging dataset for gaze
estimation as it can be seen gaze can be hardly inferred by
people motion alone, while on TownCentre gaze is almost
parallel to the walking direction. Indeed, our method only
using optical flow (O), as is shown in Table II, is much worse
than in Table I.



(a) TownCentre (b) MuseumVisitors: Camera 1

Fig. 4: Example of persons’ gaze estimated with the proposed strategy in TownCentre (a) and MuseumVisitors (b).

Score function Camera 1 Camera 2 Camera 3
Geom. distance: dik(1) 88% 69% 84%
dik(0.75) + Feat. O 87% 60% 82%
dik(0.75) + Feat. H 91% 68% 86%
dik(0.75) + Feat. B 90% 69% 86%
dik(0.75) + Feat. H+B 91% 73% 86%
dik(0.75) + Feat. H+B+O 93% 75% 86%

TABLE III: Accuracy of the profiles of interest varying the
features combination of the proposed method.

C. Profiling evaluation

In this section we report the accuracy of user profiling
on MuseumVisitors. For the test we considered 10 artworks
inside the Donatello’s Hall, as shown in Fig 5. An interesting
annotation that is provided with this dataset is the association,
for each frame, of visitors to artworks. The ground truth also
specifies if no relevant object is observed by a person. We
measure the accuracy of correct visitor-artwork association. If
dik(α) > 0.2 we do not associate a visitor to any artwork.

In Table III we report the accuracy of the computed profiles,
considering the geometrical distance alone (α = 1) and the
combination of distance and gaze (α < 1). In the last case,
we report only the best results obtained with α = 0.75. In
general, the performance improves using the distance and gaze
together, reaching the highest accuracy with the combination
of all features. Some sample of correct and wrong association
for different setup of our method are shown in Fig 6.

Finally, in Fig 7 we show, for each camera and over all
the cameras, the heatmap obtained using the position of the
persons in the scene and the heatmap obtained using both the
position and the gaze. It can ne noted that the gaze heatmap
is more informative. Indeed if we compare the maps from
camera 3, the position heatmap (c) estimates a lot of energy
in the top left corner of the room, while for the gaze map (g)
the area is not receiving any interest. This is a more realistic
prediction since the corner does not contain relevant artworks
and the two artworks on the left side are minor works, with less
historical and artistic relevance with respect to the Donatello’s
sculptures on the other side of the room.

Fig. 5: Artworks location inside the Donatello’s Hall.

VI. CONCLUSION

In this paper we presented a solution for coarse gaze
estimation that can be exploited to understand where people
attention focuses. We proposed to fuse head and body ori-
entations with a novel model based on optical flow in order
to improve attention prediction without the need of a tracker.
The proposed method obtains comparable performance with
respect to state of the art solutions in terms of MAAE on the
TownCentre dataset. We also show that our approach improves
both MAAE and profiling accuracy on the more challenging
MuseumVisitors dataset, confirming that a good coarse gaze
estimate is a valuable cue for user interest profiling.
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