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Abstract—To understand human behavior we must not just
recognize individual actions but model possibly complex group
activity and interactions. Hierarchical models obtain the best
results in group activity recognition but require fine grained
individual action annotations at the actor level. In this paper
we show that using only skeletal data we can train a state-of-
the art end-to-end system using only group activity labels at
the sequence level. Our experiments show that models trained
without individual action supervision perform poorly. On the
other hand we show that pseudo-labels can be computed from any
pre-trained feature extractor with comparable final performance.
Finally our carefully designed lean pose only architecture shows
highly competitive results versus more complex multimodal
approaches even in the self-supervised variant.

I. INTRODUCTION

Human behavior understanding can hardly be imagined as

a task which requires to explain each individual actions in

isolation. Human behavior is for the most part induced by

social interactions. For a machine to understand the meaning

of multiple humans interacting with each other, so called social

behavior or group activity, multiple level of reasoning must

be enacted. A naive approach could feed the whole frame

to a deep convolutional neural network, but we know, that

especially when domain shift is present that a large amount

of data is required to learn a good hierarchy of features

automatically. Recently hierarchical approaches have emerged.

With such methodologies a model of the group behavior is

built in a bottom-up fashion starting from the detection and

tracking of all actors, following with the understanding of their

individual behavior and finally building collective models of

the whole action.

As we know a fully supervised system is usually the best bet

to obtain high accuracy. Unfortunately such systems must rely

on a lot of hand labelling: each person action must be anno-

tated at a not to low frequency, allowing a tracker to propagate

such label over time. Considering this issue only few fully

annotated datasets are available, limiting the development of

group understanding computer vision algorithms. To address

this issue in this work we propose a novel approach for group

activity recognition based on the concept of pseudo-labels.

Loosely inspired by the work of Caron et al. [1] we propose to

replace costly single action labels with pseudo labels obtained

via a simple clustering procedure which can be derived at

very little cost. Interestingly, we show that such process is

enough to provide such mid-level supervision thus enabling

group activity recognition. Ground truth labels can therefore

Fig. 1: We classify group activities using skeletons, motion of

single actors and their relative positions to a pivot actor.

limited to the whole activity sequence with order of magnitude

of time spared in the annotation phase.

Recently, the issue of privacy in A.I. appliance has been

raised especially in the EU, which enforces extremely strict

policies regarding acquisition and protection of user persona

information and data. Deploying cameras in public or private

places to monitor user behavior has the major drawback of

requiring the acquisition and possibly the storage and stream-

ing of people images. While reliance on cryptography may

offer a solution using highly anonymized human representation

such as the skeleton offers many benefits. Human poses

can be acquired in real-time with edge computing devices

exploiting cloud computing facilities for the more complex

task of action recognition. Moreover, dataset acquisition is

made easier, not requiring the abidance to privacy policies if

only the substantially anonymous, 3D skeletal data is stored.

In this work we propose to relevant contribution to the field

of activity recognition:

• We propose a novel semi-supervised approach allowing

to train group activity recognition methods without fine

grained ground truth annotation.

• We show how group activity can be efficiently performed

using only skeletal representations which have a lower

computational burden and have interesting privacy pre-

serving properties.

II. RELATED WORKS

The initial methods for group activity recognition used

handcrafted features which were extracted for each actor and
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Fig. 2: The proposed architecture employs three structurally identical branches with independent weights. We use openpose

estimated skeletons to create three different representations. A concatenation of actor features is fed to a rather shallow network

with two convolutional layers. Finally, single actor features are fed to the individual action classification head and single actor

features are pooled to compute a group representation which is fed to the group classification head.

combined using probabilistic graphical models [2], [3], [4],

[5], [6], [7], [8]. Then, after the emergence of deep learning

and the release of the Volleyball [9] dataset, there was a

renewed interest which remarkably increased performance.

Most approaches use RNN-type networks which were intro-

duced by Ibrahim et al. [9] for the task of group activity

recognition. They are trained to understand the action dy-

namics of individual actors and then predict group activity

by taking their aggregation. A combination of RNN with

graphical models were proposed in [10]. A two-level hierarchy

of LSTMs were used in [11] to simultaneously minimize the

loss of predictions and maximize the confidence. Bagautdinov

et al. [12] predicted every action of each actor and the group

activity with an RNN which is also used to maintain temporal

consistency of detected boxes. Intra-group, inter-group inter-

actions and single person dynamics were considered in [13]

and modeled with an LSTM. Each person is also modeled

in a relational framework in [14]. Other works considered

different approaches, Azar et al. [15] exploited activity maps

of a CNN and iteratively refined group activity predictions.

In [16], they capture the appearance and positions between

actors to build a graph of actor relationships from a CNN and

graph convolutional networks. Gavrilyuk et al. [17] explicitly

modeled spatial and temporal relationships of actors with

an actor-transformer model that learns and extract relevant

information for group activity recognition. Our approach use

CNN to perform classification. We share the use of skeletal

data with [17], however our approach do not use additional

2D and 3D information to preserve privacy. We also consider

the relative position of actors combined with motion and pose

to perform individual action classification and group activity

recognition.

The use of human poses for recognizing actions of an actor

is a popular approach in the literature. The early approaches

were using handcrafted pose features [18], [19], then skeletons

[20], [21] and attention based pose estimations [22], [23] were

all explored for the task of action recognition of single actors.

We exploit skeletons to model actions of single actors and

then combine them into an holistic representation of the entire

scene.

III. METHOD

In the following we show our approach for partially self-

supervised group activity recognition using skeletal data.

A. Input Skeleton Representation

A group activity model has to consider individual actors

representation its temporal evolution and contextual informa-

tion. Similarly to [9], the person bounding boxes are firstly

obtained through the object tracker in the Dlib library [24].

Then we feed each person track frames as input to openpose

[25], obtaining a group of skeleton sequences GS. GS can

be represented with a K×T ×N ×D tensor, where K is the

number of actors in the video clip, T is the number of frames

in the sequence, N is the number of joints in the skeleton and

D is the coordinate dimension. Given a group of skeletons at

time t, GS
t = {St

1,S
t
2, . . . ,S

t
K}, we represent the skeleton

of a person k at time t as

S
tk = [J tk

1 , J tk
2 , . . . , J tk

N ],

where J = [x, y, p] is a 2D joint coordinate + precision given

by the pose estimator.

Since skeleton coordinates depend on actor camera distance,

bounding box dimension and height we normalize each skele-

ton sequence by subtracting the mid-hip keypoint from each

skeleton joint in order to have this last joint as the center of

the coordinates system, then we divide each limb by the torso

length.
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Similarly to [26], we introduce a representation of skeleton

motion. The skeleton motion of a person k at time t is

defined as the temporal difference of each joint between two

consecutive frames:

M
tk = S

(t+1)k − S
tk =

[J
(t+1)k
1 − J tk

1 , J
(t+1)k
2 − J tk

2 , . . . , J
(t+1)k
N − J tk

N ]
(1)

To model the configuration of each actor k we compute a

person-to-person interaction D
tk (see Fig.3), defined as the

difference between each pair of joints of two persons at time

t. In order to obtain a group representation invariant to camera

motion and do not rely on global fram coordinates, we select

a pivot actor. We used the pivot as a reference to compute the

difference between joint pairs.

We then represent each skeleton sequence via pivot-actor

Joint differences, computed between an actor k and the actor

pivot p at time t is formulated as:

D
tk = S

tk−S
tp = [J tk

1 −J tp
1 , J tk

2 −J tp
2 , . . . , J tk

N −J tp
N ] (2)

Motion M
k and pivot-actor joint differences D

k from all

actors are stacked obtaining two tensor GM and GD having

the same shape of the group skeleton sequence GS.

Group sequence of skeletons, motion and pivot-actor joint

differences are fed into the network directly as three input

streams into three separate network branches sharing the same

architecture. However their parameters are not shared and

learned separately. Following [26] feature maps from inputs

are learned hierarchically with specific convolution layers,

then they are flattened and fused by concatenation obtaining

a F ×K matrix to represent feature vectors of actors. Feature

vectors are used both for action classifications and max-pooled

for group activity classification. The whole model can be

trained in an end-to-end manner with back-propagation and

the extremely small model size allows us to easily train

the network from scratch without the need of pretraining.

Combining the two standard cross-entropy losses, the final loss

function is formed as

Ltot = LG(y
G, ŷG) + λLI(y

I , ŷI) (3)

where LI and LG are the cross-entropy loss, yG and yI

denote the ground-truth labels of group activity and individual

action, ŷG and ŷI are the predictions to group activity and

individual action. The first term corresponds to group activity

classification loss, and the second is the loss of the individual

action classification. The weight λ is used to balance these

two tasks.

B. Self-Supervised Group Activity Recognition

We use P3D a pretrained 3D-CNN [27] initialized on

Kinetics sport dataset [28]. We use the last fully connected

layer output as features from video clips of each actor. We

cluster features from the training set using k-means and use

the cluster assignments as ”pseudo-labels” kI to compute

individual action loss term LI(k
I , ŷI). This allows to train our

model in a self-supervised way. Before the clustering, features

are PCA-reduced from 2048 to 256 dimensions, whitened and

l2-normalized.

IV. EXPERIMENTS

In this section, we evaluate the performance of the proposed

method in both supervised and self-supervised variants with

several baselines. We also compare our results with the state-

of-the-art.

A. Datasets

We evaluate our method on the Volleyball dataset[9], since

it is the only public available dataset for group activity

recognition that is relatively large-scale and contains labels

for people locations, as well as their collective and individual

actions. This dataset contains 4830 clips of 55 volleyball

games. Each clip central frame is annotated at each player level

with the bounding box and one of the 9 individual actions, and

the whole scene is labeled with one of the 8 collective activity.

Since other frames are not annotated, to get the bounding

boxes of people, we used DLIB tracker[24]. We do horizontal

flips as data augmentation.

B. Implementation Details

We adopt stochastic gradient descent with ADAM to learn

the network parameters with fixed hyper-parameters to β1 =
0.9, β2 = 0.999, ǫ = 10−8. We train the network for 100

epochs using a mini-batch size of 64 and a starting learning

rate of 0.001 decreasing it by a factor of 10 every 30 epochs.

Individual action loss weight λ = 0.7 is used. For training all

our models (that include the baseline models) we follow the

same training protocol using a Tesla K80 GPU and PyTorch

Framework.

C. Baseline and Variants for Ablation Studies

Here we evaluate our model by comparing obtained results

with several baselines. First, we describe the baseline model

then, results on the volleyball dataset are presented. Our model

is end-to-end trainable but could also be implemented in a 2-

stage style, splitting the model into an action model and a

group model. Training then would consists in learning actions

from each skeleton sequence and then use this model to extract

actor features, which are pooled over all people and fed to the

group model to recognize group activity. We test the following

approaches:

1 Two Stage Model without Pivot-Actor Joint Differ-

ences: This baseline is the two stage model with two

input streams: skeleton joints and motion.

2 Two Stage Model: This baseline is an extension of the

previous baseline. Here individual action model receive

as input a third stream: the pivot-actor joint differences.

3 End-to-end Model without Pivot-Actor Joint Differ-

ences: this baseline is the end-to-end version of first

baseline.

4 End-to-end Model: the end-to-end final version with its

three input stream.
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Fig. 3: Pivot selection among players. We pick the players closest to the average joint centroid of all players. Pivot is shown

in yellow.
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Fig. 4: Architecture of the CNN. Each green block corresponds

to a convolutional layer of size WxHxFilters. The layers with

/2 have a stride of 2. The entire figure corresponds to the

CNN blocks of Fig. 2

5 End-to-end Model with Data Augmentation: the end-

to-end final version with its three input stream and data

augmentation.

In Table I, the classification results of our method is

compared with baselines. As shows in the table, an increase

Method Accuracy

Two stage model w/o actor-pivot joint pair difference 78.1
Two stage model 80.9
End-to-end model w/o actor-pivot joint pair difference 85.0
End-to-end model 89.2
End-to-end model with data augmentation 91.0

TABLE I: Comparison of our method with baseline methods

on the volleyball dataset.

of performance is generated by Pivot-Actor Joint Differences

as it is including a person to person context information that

helps our model in both the training procedure. End-to-end

training helps significantly the model. Also data augmentation

is useful for training the model as it provide consistent data

for network’s learning. Therefore we choose to use both Pivot-

Actor Joint Differences and data augmentation with end-to-end

training as our final model.

D. Self-Supervised Ablation Studies

As we discussed in previous subsection, the use of Pivot-

Actor Joint Differences with end-to-end training is able to

achieve the highest performance and we choose this combina-

tion as our final model, considering the two variants with and

without data augmentation. In order to understand how much

performance is affected by the use of our pseudo-labels we

conduct the following ablation studies.

1 Group activity labels only: In this baseline the model

has been modified in order to work only with group

activity labels. The layers that receive actor feature repre-

sentation to classify the individual action are removed and

the individual loss factor λ is set to zero. This baseline is

designed to illustrate the importance of individual activity

labels in our model.

2 Pseudo action labels from 2D-CNN: In this baseline

we adopted pseudo-labels instead of ground truth action
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Fig. 5: Mean Classification Accuracy of group activity varying

the number of clusters for self-supervised learning.

labels. Visual features are extracted from the central

frame of each video clip using a pretrained VGG16 2D-

CNN. Number of used cluster k is set to 20. This baseline

aims to illustrate the importance of pseudo-action-labels.

3 Pseudo action labels from 3D-CNN: Final Self-

Supervised model, where we adopt pseudo-labels instead

of ground truth action labels. Visual features are extracted

from the whole fixed temporal window of each video clip

using a pretrained 3D-CNN. Number of used cluster k is

set to 20.

4 End-to-end fully supervised: this method is the end-

to-end final version, previously seen in Table I, trained

with the full ground truth.

The results of first and second baselines illustrate the

importance respectively of group activity labels and pseudo-

action-labels in our model. Comparing with second baseline,

our self-supervised method considering the time with a 3D-

CNN model obtains better performance. Moreover, our self-

supervised method results are very close to supervised variant,

especially in case of data augmentation.

Fig.5 shows group accuracy results obtained by varying the

number of clusters by a step of 10, note that best results are

obtained with k=20. Given that we train our model on the

volleyball dataset, one would expect k=9 (actual number of

action classes) to yield the best results, but apparently some

amount of over-segmentation is beneficial.

E. Comparison with state-of-the-art methods

There are only a few literature [29], [30] referring to use

of pose in volleyball dataset, thus we compare our method

that exploits only poses with other state of-the-art methods

that make use of different input feature like RGB and/or

optical flow. As shown in Table 4.5, our method is not so

far with the state-of-the-art methods and even outperforms

most of the methods that exploit RGB and optical flow input

Method No Data Aug. With Data Aug.

Group activity labels only 84.9 87.1
Pseudo action labels from 2D-Vgg16 87.2 89.3
Pseudo action labels from 3D-Resnet 87.5 89.5
Supervised 89.2 91.0

TABLE II: Comparison of our method with and without action

labels. SSAL stands for Self Supervised Action Learning

corresponding to centroid indexes assigned by clustering of

visual features.

Method Input Action Labels Accuracy

HDTM [9] RGB Yes 81.9
SSU [12] RGB Yes 89.9
PC-TDM [31] RGB+OF Yes 87.7
MS-CNN [29] RGB+POSE Yes 90.5
stagNet [35] RGB Yes 89.3
RCRG [14] RGB Yes 89.5
SPA+KD [32] RGB Yes 89.3
SPA+KD+OF [32] RGB+OF Yes 90.7
ARG [16] RGB Yes 92.6
CRM [33] RGB+OF Yes 93.0
PRL [34] RGB Yes 91.4
AT [30] POSE+OF Yes 94.4

Ours-SSAL POSE No 89.4
Ours POSE Yes 91.0

TABLE III: Comparison of recognition accuracy (%) on

Volleyball dataset. ”OF” denotes optical flow input, while

column ”Action Labels” says that a method use ground truth

annotations at individual actor level.

(including PC-TDM [31] and SPA+KD+OF [32]). Although

ARG [16], CRM [33], PRL [34] and AT [30] performs

somewhat better than our method , note that it is unfair to

compare with, because they use image, optical flow input

and also a much larger model than ours. In addition, even

our self-supervised action method outperformed various results

without using ground truth individual action labels, showing

that it is possible to obtain good results using action labels

generated with visual feature clustering. The confusion matrix

of the proposed supervised method is shown in Table 4.6.

As we can see, our method achieves promising recognition

accuracies (90%) on most of the activities. The main failure

cases are from “set” and ”spike” within the left and right

subgroups, which is probably due to the very fast actions of

the key participants that cause joint extraction very difficult.

For the same reason our best cases are in “winpoint” within

the left and right sub groups as lackness of rapid movements

guarantees a better joint extraction.

V. CONCLUSION

In this work we have shown a solution to train group activity

recognition systems end-to-end without the use of individual

action labels. Our method using only skeletal data is able

to reach state-of-the art performance without using RGB or

Optical flow and requiring only labels at the sequence level.

Compared to previous work, the proposed approach needs less

supervision to be trained and using only skeleton data, can also

be used in contexts where privacy require to avoid saving RGB

images.
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