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ABSTRACT
Evaluation of generative models, in the visual domain, is often per-
formed providing anecdotal results to the reader. In the case of im-
age enhancement, reference images are usually available. Nonethe-
less, using signal based metrics often leads to counterintuitive re-
sults: highly natural crisp images may obtain worse scores than
blurry ones. On the other hand, blind reference image assessment
may rank images reconstructed with GANs higher than the original
undistorted images. To avoid time consuming human based image
assessment, semantic computer vision tasks may be exploited in-
stead [9, 25, 33]. In this paper we advocate the use of language
generation tasks to evaluate the quality of restored images. We
show experimentally that image captioning, used as a downstream
task, may serve as a method to score image quality. Captioning
scores are better aligned with human rankings with respect to sig-
nal based metrics or no-reference image quality metrics. We show
insights on how the corruption, by artifacts, of local image structure
may steer image captions in the wrong direction.
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1 INTRODUCTION & PREVIOUS WORK
In the last years, models able to generate novel images by implicit
sampling from the data distribution have been proposed [11]. While
thesemodels are extremely appealing, generating for example photo
realistic faces [15] or landscapes [23], they are hard to evaluate.
Often anecdotal qualitative examples are presented to the reader
with little quantitative and objective evidence, and evaluation of
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A statue of a woman 

wearing a christmas tie

A brown and white dog 

wearing a tie

A brown and white dog

wearing a red tie

Figure 1: Caption generated on Compressed, Reconstructed
and Original image (left to right) using [2]. Sample ground
truth caption: “A brown and white dog wearing a neck tie”.
Best viewed in color on computer screen.

generative models is still undergoing a debate regarding how to
perform it. The idea of using a computer vision classifier to evaluate
the veracity of a generated images was first proposed in [26]. The
authors propose the Inception Score (IS), which is obtained applying
the Inceptionmodel [29] to every generated image in order to obtain
the conditional label distribution p(y |x). Realistic images should
contain one or few well defined objects therefore leading to a low
entropy in the conditional label distribution p(y |x). An improved
evaluation metric, named Frechét Inception Distance (FID) has been
proposed by [13]. The authors show that FID ismore consistent than
Inception Score with increasing disturbances and human judgment.
FID performs better as an evaluation metric since it also exploits
the statistics of the real images.

Recently [6, 16, 28] have specifically addressed methods to eval-
uate GANs. In [28] have been proposed two methods that evaluate
diversity and quality of generated images using classifiers trained
and tested on generated images. In [5] an IQA model is trained
with generated images. In [6] a discussion of 24 quantitative and 5
qualitative measures for evaluating generative models is provided,
including IS and FID, image retrieval and classification performance.
In [16] it is observed that many existing image quality algorithms
do not assess correctly GAN generated content, especially when
considering textured regions; this is due to the fact that although
GANs generate very realistic images that may look like the original
one, they match them poorly when considering pixel-based metrics.
The proposed metric, called SSQP (Structural and Statistical Quality
Predictor), is based on the “naturalness" of the image.

When dealing with image restoration tasks, a reference image is
often available to perform evaluation. Full-reference image qual-
ity assessment is an evaluation protocol which uses a reference
version of an image to compute a similarity. Popular metrics are
Peak Signal-to-Noise Ratio (PSNR) and Mean Squared Error (MSE).

https://doi.org/10.1145/3469877.3490605
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However, these metrics have been often criticized because they are
not consistent with human perceived quality of images [31]. SSIM,
a metric of structural similarity, has been proposed to overcome
this limitation. Unfortunately, as will be shown in the following,
even SSIM is too simplistic to capture human perceived quality
of images; moreover distortion metrics have been shown to be at
odds with high perceptual quality. Blau and Michaeli [4] propose
a generalization of rate-distortion theory which takes perceptual
quality into account, and study the three-way tradeoff between
rate, distortion, and perception. The authors show that aiming at
obtaining a high perceptual quality leads to an elevation of the
rate-distortion curve and thus requires to make a sacrifice in either
the distortion or the rate of the algorithm.

Alternatively, no-reference image assessment can be employed.
These techniques are devised in the realistic scenario in which
image quality must be estimated without accessing an original high
quality or uncompressed version of the image itself. Recent no-
reference image quality assessment methods are based on natural
scene statistics (NSS), computed in the spatial domain. Instead of
extracting distortion specific statistics such as the amount of blur or
ringing in an image they look at the statistics of locally normalized
luminance in order to estimate the loss in image naturalness. These
metrics are designed and optimized in order to be highly correlated
with human subjective metrics.

Subjective metrics, such as Mean Opinion Score are obtained
by presenting images to several human evaluators and asking for
a subjective score on the image quality. Such mean of measuring
image quality is possibly the best choice but has the the obvious
drawback of human annotators need and the related cost in terms
of time and money in order to rank a high volume of data.

Regarding image enhancement methods, only recently has been
proposed to use semantic computer vision tasks to assess image
quality. The reason is twofold. On the one hand, images are often
processed by algorithms and it is interesting per-se to evaluate the
performance of such algorithms on degraded and restored images;
to this regard it has to note the MPEG activity on Video Coding
for Machines (VCM), that aims to standardize video codecs in the
case where videos are consumed by algorithms. On the other hand,
we assume that semantic computer vision tasks lead to a more
robust evaluation protocol. In previous works object detection and
segmentation have been used to assess image enhancement [9, 10,
33].

The main contribution of our work are the following:

• We propose an image quality assessment method based on
language models. To the best of our knowledge, language
has never been used to evaluate the quality of images.

• Our evaluation protocol show consistency across different
captioning algorithms [2, 7] and language similarity metrics.
Interestingly, improving the language generation model also
improves the correlation between our score and MOS.

• Experiments shows that our approach does not suffer from
drawbacks of common full-reference and no-reference met-
rics when evaluating GAN enhanced images and keeps a
high accordance with human scores for compressed and for
images restored via deep learning.

JPEG20MSEOURGT GAN

Figure 2: Qualitative comparison of reconstructionmethods:
GAN produces images more pleasant for the human eye.
Best viewed in color on computer screen. GT: original im-
age; JPEG 20: JPEG compression with quality factor 20; MSE:
CNN-based restoration using MSE loss and direct training;
GAN: GAN-based restoration using perceptual loss.

2 IMAGE RESTORATION
Here we formalize the image restoration task. Given some image
processing algorithm D, such as JPEG image compression, a dis-
torted image is defined as ILQ = D(IHQ ), where IHQ is a high
quality image undergoing the distortion process, image enhance-
ment aims at finding a restored version of the image IR ≈ G(ILQ ).

In this work we pick a state-of-the art image enhancement
method aimed at compression artifact removal, originally presented
in [9]. In this work Galteri et al. try to learn a generative model G
which, conditioned on the input distorted images, is optimized to
invert the distortion process D so that G ≈ D−1. Their generator
architecture is loosely inspired by [12]. They employ LeakyReLU
activations and 15 residual layers in a fully convolutional network.
The final image is obtained by a nearest neighbor upsampling of a
convolutional feature map and a following stride-one convolutional
layer to avoid gridlike patterns possibly stemming from transposed
convolutions.

The set of weightsψ of the D network are learned by minimizing:

Ld = − log
(
Dψ

(
I |IC

))
− log

(
1 − Dψ

(
IR |IC

))
where I is the uncompressed or high-quality image, IR is the re-
stored image created by the generator and IC is a compressed
image.

The generator is trained combining a perceptual loss with the
adversarial loss:

LAR = LP + λLadv . (1)
where Ladv is the standard adversarial loss:

Ladv = − log
(
Dψ

(
IR |IC

))
(2)

that rewards solutions that are able to mislead the discriminator,
and Lp is a perceptual loss based on the distance between images
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computed projecting I and IR on a feature space by some differen-
tiable function ϕ and taking the Euclidean distance between the
two feature representations:

LP =
1

Wf Hf

Wf∑
x=1

Hf∑
y=1

(
ϕ (I )x,y − ϕ

(
IR

)
x,y

)2
(3)

In [9] it has been shown that using a GAN approach instead of
direct training of the network for image enhancement, results in
improved subjective perceptual similarity to original images and,
more importantly, in much improved object detection performance.
Qualitative examples of GAN and direct training method are shown
in Fig. 2.

3 EVALUATION PROTOCOL
Classic full-reference image quality evaluation methods rely on the
similarity between an image which has been processed by some
enhancement method and a reference undistorted image. GANs are
great at filling in high frequency realistic details in image enhance-
ment tasks. Unfortunately this often results in lower performance
in full-reference assessment as can be seen in Tab. 4, although the
restored images appear as “natural" and pleasant to human evalua-
tors. It is clear from such results that while measuring SSIM and
PSNR, optimizing MSE or SSIM losses without adversarial learning
is best. For this reason, in [9, 10] semantic tasks are used to evalu-
ate the quality of restored images. Measuring the performance of
a semantic task such as detection on restored images gives us an
understanding of the “correctness" of output images. Given some
semantic task (e.g. object detection), a corresponding evaluation
metric (e.g. mAP) and a dataset, the evaluation protocol consists in
measuring the variation of such metric on different versions of the
original image. Interestingly, this evaluation methodology gives
hints on what details are better recovered by GANs.

In certain cases, detection is a task describing scene semantics
in a very approximate fashion; usually detectors do not degrade for
object classes that are clearly identifiable by their shape since even
high distortions in the image are not able to hide such features. The
gain in image quality provided by GANs, according to object detec-
tion based evaluation, resides in producing high quality textures
for deformable objects (e.g. cats, dogs, etc).

In this paper we advocate the use of a language generation task
for evaluating image enhancement at a finer level. The idea is that
captioning maps the semantics of images into a much finer and rich
label space represented by short sentences. To be able to obtain a
correct caption from an image many details must be identifiable.

We devise the following evaluation protocol for image enhance-
ment. We pick an image captioning algorithmA. Image captioning
is the task of generating a sequence of words which is possibly
grammatically and semantically correct, describing the image in
detail. We look at performance of a captioning algorithm A on
different versions of a dataset (e.g. COCO): compressed, original
and restored. In particular we analyze results from two highly per-
forming captioning methods [2, 7] which combine a bottom-up
model of visual entities and their attributes in the scene with a
language decoding pipeline. Both methods are trained over several
steps incorporating semantic knowledge at different levels of gran-
ularity. In particular the bottom-up region generator is based on

Faster R-CNN [24] which is based on a feature extractor pre-trained
on ImageNet [8] and then fine-tuned to predict object entities and
their attributes using the Visual Genome dataset [17].In [2], further
knowledge is incorporated into the model by training the caption
generation model using a first LSTM as a top-down visual attention
model and a second level LSTM as a language model. Meshed mem-
ory transformers [7] share the exact same visual backbone as [2]
but exploit a stack of memory-augmented visual encoding layers
and a stack of decoding layers to generate caption tokens.

No matter how captioning models are optimized, our results
show that the behavior of the captioning model for image quality
assessment is consistent over several metrics as shown in Tab. 1.

Captioning is evaluated with several specialized metrics measur-
ing the word-by-word overlap between a generated sentence and
the ground truth [22], in certain cases including the ordering of
words [3], considering n-grams and not just words [18, 30] and the
semantic propositional content (SPICE [1]). These metrics evaluate
the similarity with respect to a set of reference captions (usually
this is five references).

3.1 Subjective evaluation
In this evaluation we assess how images obtained with the selected
GAN based restorationmethod [9] are perceived by a human viewer,
evaluating in particular the preservation of details and overall qual-
ity of an image.In total, 16 viewers have participated to the test, a
number that is considered enough for subjective image quality eval-
uation tests [32]; no viewer was familiar with image quality evalu-
ation or the approaches proposed in this work. A Single-Stimulus
Absolute Category Rating (ACR) experimental setup has been devel-
oped using avrateNG1, a tool designed to perform subjective image
and video quality evaluations. We asked participants to evaluate
images’ quality using the standard 5-values ACR scale (1=bad, up to
5=excellent). A set of 20 images is chosen from the COCO dataset,
selecting for each image three versions: the original image, a JPEG
compressed version with QF=10 (a high compression quality factor)
and the restored version of the JPEG compressed image with QF=10
compressed image; this results in a set of 60 images. Each image was
shown for 5 seconds, preceded and followed by a grey image, also
shown for 5 seconds. Considering our estimation of test completion
time we chose this amount of images to keep each session under
30 minutes as recommended by ITU-R BT.500-13 [14].

To select this small sample of 20 images to be as representative
as possible of the whole dataset for the captioning performance we
operate the following procedure. Let µ∗(v) and σ 2∗(v) be the mean
of a captioning metric score (in our case we used CIDEr) for a given
version of the image v . We iteratively extract 20 random image ids
out of the whole 5,000 testing set from the Karpathy split, without
repetition. We attempt to minimize

eµ =
∑
v ∈V

|µ∗(v) − µ(v)| (4)

and
eσ 2 =

∑
v ∈V

|σ 2∗(v) − σ 2(v)| (5)

1https://github.com/Telecommunication-Telemedia-Assessment/avrateNG

https://github.com/Telecommunication-Telemedia-Assessment/avrateNG
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by iterative resampling images until we find eµ and eσ 2 such that
eµ ≤ 10−3 and eσ 2 ≤ 10−4. Where V is the set of different version
of an image, namely: JPEG compressed at QF=10 (referred to as
JPEG 10 in the following), its GAN reconstruction and the original
uncompressed image. The selected images contain different sub-
jects, such as persons, animals, man-made objects, nature scenes,
etc. Both the order of presentation of the tests for each viewer, and
the order of appearance of the images were randomized.

Figure 3: Top) Subjective image quality evaluation of orig-
inal COCO images (orange), heavily compressed JPEG im-
ages (blue) and their restored version obtained with the
GAN-based approach (green). Restored images are perceived
as having a better quality than their compressed versions.
Bottom) Histograms of MOS scores of the three types of im-
ages.

4 RESULTS
In the following, we report results on two datasets: MS-COCO [19]
and LIVE [27]. We use COCO, in particular the Karpathy split, since
it is the reference benchmark for image captioning, accounting for
5000 images for training and validation each with 5 ground truth
sentences per image. LIVE is a widespread benchmark for image
quality assessment. LIVE consists of 29 high resolution images
compressed at different JPEG qualities for a total of 204 images.
For each LIVE image a set of user scores is provided indicating the
perceived quality of the image.

4.1 Language Based IQA
In Tab. 1 we report results using various captioning metrics. Inter-
estingly all metrics show that captions over reconstructed images
(REC rows) are better with respect to caption computed over com-
pressed images (JPEG rows). This shows that image details that
are compromised by the strong compression induce errors in the
captioning algorithm. On the other hand the GAN approach is able
to recover an image which is not only pleasant to the human eye
but recovers details which are also semantically relevant to an al-
gorithm. In Fig. 1 we show the difference of captions generated

by [2] over original, compressed and restored images. A human
may likely succeed in producing a almost correct caption for highly
compressed images, nonetheless state-of-the art algorithms are
likely to make extreme mistakes which are instead not present on
reconstructed images.

Table 1: Evaluation of image restoration over compression
artifacts using GAN and captioning as a semantic task (best
results highlighted in bold). Captions created from recon-
structed images obtain a better score for every metric.

QUALITY BLEU_1↑ METEOR↑ ROUGE↑ CIDEr↑ SPICE↑
JPEG 10 0.589 0.173 0.427 0.496 0.103
REC 10 0.730 0.253 0.527 1.032 0.189
JPEG 20 0.709 0.241 0.513 0.937 0.174
REC 20 0.751 0.266 0.543 1.105 0.201
JPEG 30 0.740 0.258 0.535 1.054 0.194
REC 30 0.757 0.269 0.549 1.133 0.205
JPEG 40 0.748 0.263 0.542 1.087 0.200
REC 40 0.758 0.270 0.549 1.132 0.206
JPEG 60 0.755 0.267 0.546 1.117 0.204
REC 60 0.760 0.270 0.550 1.137 0.207
ORIGINAL 0.766 0.274 0.556 1.166 0.211

In Fig. 5 we show the different performance of captioning al-
gorithms in terms of CIDEr measure on the same split of test of
compressed and restored images, considering different quality fac-
tors of JPEG. The captioner proposed in [7] outperforms [2] as
expected, but interestingly we may observe that the range of CIDEr
values of [7] is significantly higher than [2]. We argue that this
could be considered a strong feature of our evaluation approach,
as a wider range of value may imply that a good captioner is able
to predict the image quality in a finer manner than other weaker
captioning algorithms.

Fig. 6 shows the bottom-up captioning process performed on an
image used in the subjective evaluation. The left image shows the
JPEG 10 version, while the right one shows the GAN reconstruction.
The images show the bounding boxes of the detected elements. In
the first case the wrong detections of indoor elements like “floor”
and “wall” are likely reasons for the wrong caption, as opposed to
the correct recognition of a “white wave” and “blue water” in the
GAN-reconstructed image.

In order to understand better what metric could be used instead
of human evaluation we computed the correlation coefficient ρ
between BRISQUE [20], NIQE [21], CIDEr and MOS for all versions
of the images. As shown in Tab. 2, it turns out that using a fine-
grained semantic task as image captioning is the best proxy (highest
correlation) of real human judgment.

Fig. 4 show a captioning example from the COCO images used in
the subjective quality evaluation experiment. On the left we show a
sample compressed with JPEG with a QF=10, on the center we show
the image restored with [9] and on the right we show the original
one. It can be observed that the caption of the restored image is
capable of describing correctly the image content, on par with the
caption obtained on the original image. Instead, the caption of the
highly compressed JPEG image is completely unrelated to image
content, probably due to object detection errors.
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JPEG 10 GAN Original

A couple of people sitting next to a
christmas tree.

A man riding a wave on a surfboard in
the ocean.

A man riding a wave on a surfboard in
the ocean.

Figure 4: Examples of captions for COCO images used in the subjective quality evaluation. Left column) JPEG compressedwith
QF=10; Center column) GAN-based restoration from JPEG compressed images with QF=10; right column) original images.
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Figure 5: CIDEr scores using [2] and [7] on compressed and
restored images for different QFs from MS-COCO.
Table 2: Correlation coefficient between no-reference and
captioning based metrics and MOS on COCO.

Metric ρ

NIQE 0.84
BRISQUE 0.89
CIDEr 0.96

4.2 Comparison with MOS
In Fig. 3 top) are reported subjective evaluation results as MOS
(Mean Opinion Scores) as box plots, showing the quartiles of the
scores (box), while the whiskers show the rest of the distribution.
The plots are made for the original images, the images compressed
with JPEG using a QF=10, and the images restored with the GAN-
based approach [9] from the heavily compressed JPEG images. The
figure shows that the GAN-based network is able to produce images
that are perceptually of much higher quality than the images from
which they are originated; the average MOS score for JPEG images
is 1.15, for the GAN-based approach is 2.56 and for the original
images it is 3.59. The relatively low MOS scores obtained also by
the original images are related to the fact that COCO images have a
visual quality that is much lower than that of dataset designed for
image quality evaluation. To give better insight on the distribution
of MOS scores, Fig. 3 bottom) shows the histograms of the MOS
scores for the three types of images: orange histogram for the

Table 3: Pearson score, correlating scores with users’
MOS for different captioning metrics and image based full-
reference approaches on LIVE. CIDEr obtains a superior
score with respect to image based methods.

Metric Ours w/ [7] Ours w/ [2]
BLEU 1 0.873 0.838
METEOR 0.900 0.846
SPICE 0.895 0.844
ROUGE 0.861 0.832
CIDEr 0.901 0.854
PSNR 0.857
SSIM 0.893
LPIPS 0.859

original images, green for the JPEG compressed images and blue
for the restored images.

We further show that our language based approach correlates
with perceived quality using a IQA benchmark test on the LIVE
dataset, which contains the opinion scores for each image. However,
no caption is provided in this dataset. For this reason, we consider
the output sentences of captioning approaches over the undistorted
image as the ground truth in order to calculate the language simi-
larity measures. In Tab. 3 we show the Pearson correlation score of
different captioning metrics and other common full-reference qual-
ity assessment approaches. The experiment shows an interesting
behaviour of our approach in terms of correlation. In the first place,
we can observe that each captioning metric has a correlation index
that is higher or at least comparable with the other full-reference
metrics. In particular, METEOR and CIDEr perform better than the
other metrics independently of which captioning algorithm is used.
Moreover, we observe that the correlation metric significantly im-
proves if we employ a more performing captioner. In this particular
case, the visual features used by the two captioning techniques are
exactly the same, the main difference lies in the overall language
generation pipeline of the approaches. Hence, we argue that lan-
guage is effectively useful for quality assessment, and the more
a captioning algorithm is capable to provide detailed and mean-
ingful captions the better we could use the generated sentences to
formulate good predictions about the quality of images.
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A couple of people sitting next to a Christmas tree. A man riding a wave on a surfboard in the ocean.

Figure 6: Bottom-Up detection process of captioning on two images: left) JPEG compressed; right) GAN reconstruction. Note
that several mistaken detections on the left image are avoided in the right one. In particular on the left “surfboard” is missed
and “white floor” and “blue wall” are wrongly detected. This two indoor details are the one that likely mislead the captioning.

Table 4: Evaluation using no-reference and full-reference
metrics on MS-COCO. NIQE and BRISQUE rate better GAN
images than the ORIGINAL. SSIM always rate restored im-
ages worse than compressed. PSNR shows negligible im-
provement.
QUALITY NIQE↓ BRISQUE↓ Ours w/ [7] ↑ PSNR ↑ SSIM↑ LPIPS↓
JPEG 10 6.689 52.67 0.542 25.45 0.721 0.305
GAN 10 3.488 17.93 1.118 25.70 0.718 0.144
JPEG 20 5.183 43.99 0.956 27.46 0.796 0.187
GAN 20 3.884 17.85 1.289 27.60 0.784 0.085
JPEG 30 4.474 37.72 1.165 28.61 0.831 0.134
GAN 30 3.601 18.32 1.370 28.81 0.819 0.060
JPEG 40 4.011 33.61 1.260 29.41 0.852 0.105
GAN 40 3.680 18.68 1.424 29.44 0.836 0.048
JPEG 60 3.588 28.15 1.366 30.71 0.880 0.067
GAN 60 3.885 19.45 1.482 30.61 0.862 0.032
ORIGINAL 3.656 21.79 - - - -

4.3 Comparison with full-reference metrics
A common setting that is used to evaluate image enhancement
algorithms is full reference image quality assessment, where several
image similarity metrics are used to measure how much a restored
version differs with respect to the uncorrupted original image. This
kind of metrics, measuring pixel-wise value differences are likely to
favor MSE optimized networks which are usually prone to obtain
blurry and lowly detailed images. In Tab. 4 we report results on
COCO for full-reference indexes. In this setup, we compress the
original images at different quality factors and then we restore them
with a QF specific artifact removal GAN. We use the uncompressed
image generated caption as GT, as in Tab. 3. The results show that,
for restored images, PSNR accounts for a slight improvement while
SSIM indexes lower than the compressed counterparts. This is an
expected outcome, as in [9] it is shown that state of the art results
on PSNR can be obtained only when MSE is optimized and on
SSIM if the metric is optimized directly. Nonetheless, as can be seen
in Fig. 2, GAN enhanced images are more pleasant to the human
eye, therefore we should not rely just on PSNR and SSIM for GAN
restored images. Our approach, using [7], is in line with LPIPS [34].
Unfortunately, LPIPS, as shown in Tab. 3 has low correlation with
scores determined by human perceived quality.

4.4 Comparison with no-reference metrics
In certain cases it is not possible to use full reference metrics qual-
ity metrics, e.g. if there’s no available original image. These kind
of metrics typically evaluate the “naturalness" of the image be-
ing analyzed. In the same setup we used previously, we perform
experiments using NIQE and BRISQUE which are two popular no-
reference metrics for images. We report in Tab. 4 the results.

Interestingly, these metrics tend to favor GAN restored images
instead of the original uncompressed ones. Most surprisingly, NIQE
and BRISQUE obtain better results when we reconstruct the most
degraded version of images (QF 10-20), but these values increase
as we reconstruct less degraded images. We believe that BRISQUE
and NIQE favor crisper images with high frequency patterns which
are distinctive of GAN based image enhancement.

5 CONCLUSION
In this work we propose a new idea to evaluate image enhancement
methods. Existing metrics based on the comparison of the restored
image with an undistorted version may give counter-intuitive re-
sults. On the other hand the use of naturalness based scores may
in certain cases rank restored images higher than original ones.

We have shown that instead of using signal based metrics, se-
mantic computer vision tasks can be used to evaluate results of
image enhancement methods. Our claim is that a fine grained se-
mantic computer vision task can be a great proxy for human level
image judgement.

We show that employing algorithms mapping input images to a
finer output label space, such as captioning, leads to more discrimi-
native metrics. Future work will regard the evaluation of captions
provided by humans over compressed and restored images. More-
over, we will take into account the accuracy of captions as a further
metric to optimize.
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Figure 6: Bottom-Up detection process of captioning on two images: left) JPEG compressed; right) GAN reconstruction. Note
that several mistaken detections on the left image are avoided in the right one. In particular on the left “surfboard” is missed
and “white floor” and “blue wall” are wrongly detected. This two indoor details are the one that likely mislead the captioning.

4.3 Comparison with full-reference metrics
A common setting that is used to evaluate image enhancement
algorithms is full reference image quality assessment, where several
image similarity metrics are used to measure how much a restored
version differs with respect to the uncorrupted original image. This
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with a QF specific artifact removal GAN. We use the uncompressed
image generated caption as GT, as in Tab. 3. The results show that,
for restored images, PSNR accounts for a slight improvement while
SSIM indexes lower than the compressed counterparts. This is an
expected outcome, as in [9] it is shown that state of the art results
on PSNR can be obtained only when MSE is optimized and on
SSIM if the metric is optimized directly. Nonetheless, as can be seen
in Fig. 2, GAN enhanced images are more pleasant to the human
eye, therefore we should not rely just on PSNR and SSIM for GAN
restored images. Our approach, using [7], is in line with LPIPS [34].
Unfortunately, LPIPS, as shown in Tab. 3 has low correlation with
scores determined by human perceived quality.

4.4 Comparison with no-reference metrics
In certain cases it is not possible to use full reference metrics qual-
ity metrics, e.g. if there’s no available original image. These kind
of metrics typically evaluate the “naturalness" of the image be-
ing analyzed. In the same setup we used previously, we perform
experiments using NIQE and BRISQUE which are two popular no-
reference metrics for images. We report in Tab. 4 the results.

Interestingly, these metrics tend to favor GAN restored images
instead of the original uncompressed ones. Most surprisingly, NIQE
and BRISQUE obtain better results when we reconstruct the most
degraded version of images (QF 10-20), but these values increase
as we reconstruct less degraded images. We believe that BRISQUE

Table 4: Evaluation using no-reference and full-reference
metrics on MS-COCO. NIQE and BRISQUE rate better GAN
images than the ORIGINAL. SSIM always rate restored im-
ages worse than compressed. PSNR shows negligible im-
provement.
QUALITY NIQE↓ BRISQUE↓ Ours w/ [7] ↑ PSNR ↑ SSIM↑ LPIPS↓
JPEG 10 6.689 52.67 0.542 25.45 0.721 0.305
GAN 10 3.488 17.93 1.118 25.70 0.718 0.144
JPEG 20 5.183 43.99 0.956 27.46 0.796 0.187
GAN 20 3.884 17.85 1.289 27.60 0.784 0.085
JPEG 30 4.474 37.72 1.165 28.61 0.831 0.134
GAN 30 3.601 18.32 1.370 28.81 0.819 0.060
JPEG 40 4.011 33.61 1.260 29.41 0.852 0.105
GAN 40 3.680 18.68 1.424 29.44 0.836 0.048
JPEG 60 3.588 28.15 1.366 30.71 0.880 0.067
GAN 60 3.885 19.45 1.482 30.61 0.862 0.032
ORIGINAL 3.656 21.79 - - - -

and NIQE favor crisper images with high frequency patterns which
are distinctive of GAN based image enhancement.

5 CONCLUSION
In this work we propose a new idea to evaluate image enhancement
methods. Existing metrics based on the comparison of the restored
image with an undistorted version may give counter-intuitive re-
sults. On the other hand the use of naturalness based scores may
in certain cases rank restored images higher than original ones.

We have shown that instead of using signal based metrics, se-
mantic computer vision tasks can be used to evaluate results of
image enhancement methods. Our claim is that a fine grained se-
mantic computer vision task can be a great proxy for human level
image judgement.

We show that employing algorithms mapping input images to a
finer output label space, such as captioning, leads to more discrimi-
native metrics. Future work will regard the evaluation of captions
provided by humans over compressed and restored images. More-
over, we will take into account the accuracy of captions as a further
metric to optimize.
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