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ABSTRACT
Prediction of head movements in immersive media is key to design
efficient streaming systems able to focus the bandwidth budget on
visible areas of the content. Numerous proposals have therefore been
made in the recent years to predict 360° images and videos. However,
the performance of these models is limited by a main characteris-
tic of the head motion data: its intrinsic uncertainty. In this article,
we present an approach to generate multiple plausible futures of
head motion in 360° videos, given a common past trajectory. Our
method provides likelihood estimates of every predicted trajectory,
enabling direct integration in streaming optimization. To the best
of our knowledge, this is the first work that considers the problem
of multiple head motion prediction for 360° video streaming. We
first quantify this uncertainty from the data. We then introduce our
discrete variational multiple sequence (DVMS) learning framework,
which builds on deep latent variable models. We design a training
procedure to obtain a flexible and lightweight stochastic prediction
model compatible with sequence-to-sequence recurrent neural ar-
chitectures. Experimental results on 3 different datasets show that
our method DVMS outperforms competitors adapted from the self-
driving domain by up to 37% on prediction horizons up to 5 sec., at
lower computational and memory costs. Finally, we design a method
to estimate the respective likelihoods of the multiple predicted tra-
jectories, by exploiting the stationarity of the distribution of the
prediction error over the latent space. Experimental results on 3
datasets show the quality of these estimates, and how they depend
on the video category.

CCS CONCEPTS
• Human-centered computing → Virtual reality; • Information
systems → Multimedia streaming; • Computing methodologies
→ Neural networks.
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1 INTRODUCTION
Immersive media are getting more and more popular, particularly
with the announced advent of the so-called Metaverse1. The online
experience of such immersive media, such as virtual reality (VR),
is however hindered by their bandwidth and latency requirements.
For example, 360° videos, meant to be watched in a head-mounted
display (HMD), require data rates about two order of magnitude
that of regular videos to obtain the same quality perception [47].
To reduce the required data rates, a simple principle is to allocate
higher quality levels in the field of view (FoV) of the user. Doing so
when streaming requires to predict where the user is going to look
at in advance, which may be up to a few seconds ahead of time if
one wants to enable playback buffers to absorb network bandwidth
variations. The problem may get even more acute if we consider the
increase in HMD resolution, where proper prediction should enable
higher resolution in the restricted foveal area.

Numerous works have therefore looked into the problem of head
motion prediction in 360° images and videos in the last couple of
years [10, 11, 52, 73]. However, the performance of existing predic-
tion models is limited by a main characteristic of the head motion
data: its intrinsic uncertainty. Very few models have considered
this characteristic so far [17, 29, 70], but only heuristically for 360°
videos. We illustrate this uncertainty in Fig. 1-left, showing that close
past trajectories often lead to diverse/distant future trajectories. This
is exemplified for two different users in Fig. 9-left. This has long
been identified in other application domains such as autonomous
driving [7, 41] or human pose estimation [54]. Such an ambiguity
in the data (a same input may be mapped to several outputs) leads
to degraded performance and over-fitting. Considering uncertainty
in optimization of resource allocation is therefore key to improve
systems’ performance, as shown in robotic planning [26] and regular
video streaming considering bandwidth uncertainty [33, 69].

In this article, we present an approach to generate multiple plausi-
ble futures of head motion in 360° videos, given a common past tra-
jectory. Our method provides likelihood estimates of every predicted
trajectory, enabling direct integration in streaming optimization. To
the best of our knowledge, this is the first work that considers the
problem of multiple head motion prediction in 360° videos. Our
contributions are:

1https://www.cnbc.com/2021/12/27/metas-oculus-virtual-reality-headsets-were-a-
popular-holiday-gift.html

12

https://doi.org/10.1145/3524273.3528176
https://doi.org/10.1145/3524273.3528176
https://doi.org/10.1145/3524273.3528176
https://www.cnbc.com/2021/12/27/metas-oculus-virtual-reality-headsets-were-a-popular-holiday-gift.html
https://www.cnbc.com/2021/12/27/metas-oculus-virtual-reality-headsets-were-a-popular-holiday-gift.html
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current


MMSys ’22, June 14–17, 2022, Athlone, Ireland Q. Guimard, L. Sassatelli, F. Marchetti, F. Becattini, L. Seidenari, A. Del Bimbo

• We first analyze head motion data and show the substantial di-
versity of futures corresponding to close past trajectories, and the
shortcoming of a recent predictor in such cases.
• We introduce our discrete variational multiple sequence (DVMS)
learning framework, which builds on deep latent variable models.
The latent variable is designed to modulate the function connecting
the past to the future. Each sample of the latent variable leads to a
different plausible future. We design a training procedure to obtain a
flexible and lightweight stochastic prediction model compatible with
sequence-to-sequence recurrent neural architectures. Experimental
results on 3 different datasets show that our method DVMS outper-
forms competitors adapted from the self-driving domain by up to
37% on prediction horizons up to 5 sec., at lower computational and
memory costs.
• We design a method to estimate the respective likelihoods of the
multiple predicted trajectories, by showing that the distribution of
the prediction error over the latent space has some stationarity, which
we exploit. Experimental results on 3 datasets show the quality of
these estimates, and how they depend on the video category.

Sec. 2 presents recent work on point-wise and uncertainty-aware
prediction of head motion, as well as relevant work on trajectory pre-
diction from the domains of robotics and autonomous driving. Sec.
3 formulates the prediction problem we tackle, positions formally
the contribution in the framework of 360° streaming optimization,
and motivates the approach with analysis of head motion data. Sec.
4 (i) provides necessary background on deep generative models, (ii)
presents our DVMS stochastic prediction model, emphasizing its
generality and exemplifying it with a simple recurrent architecture,
and (iii) presents experimental results of DVMS on 3 datasets. Sec.
5 shows how to exploit the latent space to estimate trajectory likeli-
hoods, and provides experimental assessment. Sec. 6 discusses the
limitations of this work and the perspectives it opens for streaming
optimization, and Sec. 7 concludes the article.

The code associated with this article is publicly available at
https://gitlab.com/DVMS_/DVMS.

2 RELATED WORK
We first review head motion prediction in 360° videos, with methods
producing point-wise trajectory estimates, and methods considering
motion uncertainty. We then discuss recent relevant work on multiple
trajectory prediction in the domain of robotics with human pose
estimation and autonomous driving systems.

2.1 Head motion prediction in 360° videos
Point-wise prediction:

Several approaches have relied on simple regressors or hand-
crafted features to produce single trajectory prediction. For example,
Chen et al. [11] observed an equatorial posture attraction, and that
video genre affects user behavior similarity. They then proposed a
FoV prediction algorithm that explicitly balance between the current
user’s history and the history of other traces, for horizon of up to
4 seconds. Their method requires to have traces of previous users
available for every video. Mao et al. [40] presented a coding scheme
for interactive applications based on 360° video content, such as VR
gaming or conferencing. They also adopt a simple linear FoV pre-
diction method for horizons of 100ms. Recently, Chopra et al. [12]

extracted trajectories of moving objects in the video and combine
them with autoregressive-filtered past user trajectories to predict
future trajectories.

Regression with deep neural networks (DNNs) have also been
investigated in several works. Park et al. [48] designed a point-wise
prediction method fed with the video content and the past trajectory
of the current user. They then fed the predicted FoV coordinates to a
model-predictive control (MPC)-based streaming logic. Hou et al.
[28] also considered streaming optimization with FoV prediction
based on an LSTM architecture predicting the tiles in FoV over the
next 2 seconds. Both approaches are similar to a baseline considered
by Romero et al. [52]. They first re-examined existing deep-learning
approaches and showed that they achieve worse or similar perfor-
mance as simple baselines (predicting the future position equal to the
last past or predicting only from the past head coordinates and not
considering the video content). Then they proposed a new deep archi-
tecture establishing state-of-the-art performance for head prediction
on horizons of up to 5 seconds. Their method enables prediction for
new videos where no previous user trace is available. Feng et al. [18]
also considered FoV prediction for live content. They underlined
that the challenge is to find features of the video content and user
behavior that have high correlation with the user’s future FoV. They
designed a FoV prediction method by collecting the user’s real-time
trajectory and the semantic description of the attended video regions.
FoV is then predicted by finding the tiles with semantic description
similar enough with the user’s past trajectory encoded as a phrase.
Zhang et al. [73] designed a federated learning approach to predict
the viewing probability of every tile, considering the video catalog
known per user and focus on personalized model training from other
users traces. Yu et al. [71] proposed LSTM-based architectures with
attention to predict future FoV up to 3 sec. ahead, given past FoV
coordinates. Chao et al. [10] proposed a similar approach but with a
transformer-based architecture, and showed that it can outperform
previous approaches. Finally, several approaches are based on a deep
reinforcement learning (DRL) framework where FoV prediction,
bandwidth prediction and tile quality decisions are not achieved
separately but jointly. Wu et al. [65] proposed one of the most recent
such DRL-based approaches for end-to-end control of 360° video
streaming. The download horizon is up to 5 seconds.
Considering prediction uncertainty:

How users explore in VR and what commonalities do their view-
ing patterns exhibit have fostered a lot of interest in the last few years
[4, 14, 58]. Almquist et al. [4] showed that the viewing congruence
heavily depends on the type of scene, while other works [14, 58]
have shown that, upon entering a new scene, the user first goes
through an exploration phase where movements are not strongly
correlated with the visual content.

To study and cope with user movement uncertainty, several ap-
proaches have relied on hand-crafted adaptations. Fan et al. [17]
studied spurious head movements that are not related to the scene
content. They ran user experiments and attempted to automatically
classify such movements. Hu et al. [29] dealt with the uncertainty of
FoV prediction by designing a FoV prediction method with a proba-
bilistic model to prefetch video segments into the playback buffer,
and enabled chunk replacements to maximize quality in the FoV.
Prediction is achieved with a linear regressor trained on data from
which are also extracted the parameters of the Gaussian distribution
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of prediction errors. Feng et al. [19] developed a FoV prediction
scheme for live 360° videos that consider various levels of synchro-
nization of the user with the moving objects in the scene. From
object detection and optical flow calculation, they linearly predicted
future FoV, and dynamically adapted the size of the predicted region
to cope with arbitrary moves. Zhang et al. [74] considered FoV pre-
diction over 50-300ms. They proposed a Markov model that learns
stationary and transition distributions between discrete angle posi-
tions from past users’ traces on this video, from the saliency map,
and considering human head physical constraints. In contrast to these
works relying on single trajectory prediction trying to consider the
error distribution around a single mode, our method provides diverse
trajectories by design, additionally to their estimated likelihood.

Recent works have presented deep learning approaches to con-
sider prediction uncertainty [33, 69]. In contrast with the vast major-
ity of approaches considering point-wise estimates of future band-
width for adaptive streaming, both consider the uncertainty of band-
width prediction in the decision problem of what encoding rate to
choose for the next video chunks to send. Both derive probability
distribution of the future throughputs, that they feed into an MPC
algorithm. Yan et al. [69] designed a neural network to output a dis-
cretized probability distribution of predicted transmission times. Kan
et al. [33] considered Bayesian neural networks (BNN) to output the
probability distribution of future throughput, given the network’s his-
torical throughput. In a very recent work, Yang et al. [70] considered
predicting multiple head trajectories but only for 360° images, not
videos as we do. They consider head trajectory as a succession of fix-
ations and saccades, and intend to learn to capture the uncertainty of
head trajectories across different subjects. They resort to a Bayesian
neural networks (BNN) approach, to predict, given an input 360° im-
age, multiple head trajectories by sampling the weights of the neural
network predictor, the inter-subject variance being modeled with a
latent variable conditioning the weight distribution. This approach is
the closest to our work, but it differs from ours in several aspects. It
considers 360° images, not videos as we do. It generates trajectories
for the entire viewing duration, and is meant to model the intrinsic
variability between the users, generating the trajectory uncertainty.
In our work, we generate future trajectories online over a prediction
horizon of 5 seconds and considering past motion of the current
user only. We therefore cope not only with inter-user variability, but
also with intrinsic uncertainty of the data in how past is correlated
with future motion, data uncertainty often referred to as aleatoric
uncertainty. Also, BNN are computationally-heavy (the approach
from Yang et al. [70] is not real-time) and fit accurately but to just
one mode in the data [20]. In this article, we consider a lightweight
approach to multiple trajectory prediction, able to predict multiple
modes for the future trajectory.

2.2 Multiple trajectory prediction in robotics
Prediction of 360° head motion is closely related to human pose
prediction, and more generally to human motion prediction. In the
field of robotics, a major challenge is the study of human pose mo-
tion, with the aim of generating the future movement of a collection
of joints that represent human body. Fragkiadaki et al. [21] devel-
oped an encoder-decoder model based on a recurrent neural network
(RNN) to process the temporal dynamics of human pose. Afterwards,

Jain et al. [32] combined the ability of temporal modeling of RNNs
with a spatio-temporal graph to model the interactions between hu-
mans and the environment. Many of the state-of-the-art models are
based on graph neural networks (GNN) and its evolutions such as the
graph convolutional network (GCN) and graph attentional network
(GAT) [1, 37, 59]. In these models, each joint is represented as a
node and each relation between joints as an edge. In the literature,
this problem is still handled in single-modal setting, despite a recent
attempt to better consider randomness [49].

The problem of predicting a set of multiple and diverse trajecto-
ries has been extensively studied in the field of autonomous driving.
There the task is to forecast future positions of moving agents such
as cars and pedestrians. Compared to head motion prediction, where
predictions are guided by content and user attitude, trajectory fore-
casting is a more constrained task due to social behavioral rules
[3, 25, 31, 36, 55, 72], inertia of moving agents and environmental
constraints [7, 9, 36, 42, 61]. Nonetheless, the ability to forecast a
multimodal prediction is of fundamental importance for planning
secure trajectories for autonomous vehicles.

The first method to generate multiple predictions has been Social-
GAN [25], which uses a generative adversarial model to sample
multiple outcomes by injecting random noise in an encoder-decoder
architecture. Diversity is enforced with the introduction of a variety
loss, which optimizes only the best prediction thus leaving the model
free to explore the output space with multiple outcomes. The usage of
a variety loss is now a common approach for generating multimodal
predictions, not only for trajectory forecasting [5, 15, 24, 30, 35,
42, 64]. In the present article, we leverage this domain knowledge
by considering the variety loss to enable the training of our DVMS
model aiming to produce diverse plausible trajectories.

An extension of such loss, the multimodality Loss, has been intro-
duced by Berlincioni et al. [7], where the authors rely on synthetic
data to generate multiple ground truth futures and directly optimize
the model to output multiple adequate predictions. This approach
requires the ability to generate synthetic samples but replaces the
exploration step with an explicit supervision signal. A recent trend
in multimodal trajectory forecasting for autonomous driving is to
divide the problem into two steps: first, possible goals or endpoints
are estimated and then actual trajectories are regressed to reach such
intents [16, 38, 75]. Similarly, other approaches use a set of anchors
to guide motion prediction following some previously observed
samples [27, 42]. We believe that such approaches are less suited
for 360° head motion prediction, since motion is mostly guided by
content and user attitude rather than constrained maneuvers.

3 MOTIVATION BEHIND MULTIPLE
PREDICTION OF HEAD TRAJECTORIES

We first define the prediction problem in Sec. 3.1, then position
formally the quantities we aim to approximate in the formulation
of 360° streaming optimization in Sec. 3.2. In Sec. 3.3, we analyze
head motion data to quantify the diversity of futures corresponding
to similar past trajectories, and show the need for multiple future
predictions.

14



MMSys ’22, June 14–17, 2022, Athlone, Ireland Q. Guimard, L. Sassatelli, F. Marchetti, F. Becattini, L. Seidenari, A. Del Bimbo

3.1 Problem definition
The problem we consider is formally described as follows. We con-
sider that a given 360° video v of duration T seconds is being
watched by a user u. The head trajectory of the user is denoted
xu ,v0:T , with x storing the head coordinates on the unit sphere (as, e.g.,
Euler angles, Euclidean coordinates or quaternions).
Online single prediction problem: At any time t in [0,T ], predict
xu ,vt :t+H with an estimate yu ,vt :t+H , that is predict the future trajectory
over a prediction horizon H , assuming only xu ,v0:t is known. That is,
we do not assume any knowledge of traces other than u on this video
v. Hence, for lighter notations, we drop indices u and v from xu ,v0:t
and only write x0:t and y0:t .
Online multiple future prediction problem: At any time t in [0,T ],
predict K possible future trajectories ykt :t+H , for k = 1, . . . ,K , to
estimate xt :t+H . This is the general problem definition considered
in related work [6, 8]. However, for optimization of heterogeneous
quality decisions in a video streaming system, it is also important
to estimate the likelihood of every such possible future trajectory.
We therefore augment the multiple future prediction problem with
estimation of likelihood Pr [ykt :t+H |x0:t ]. This is addressed in Sec. 5
thanks to our variational model proposed in Sec. 4.2.

3.2 Positioning in 360° streaming optimization
The core motivation for our contribution is to provide a stochastic
tool, the DVMS learning framework presented in Sec. 4.2, to take
into account randomness of the environment in the optimization
of resource allocation. Specifically, considering the optimization
of spatial heterogeneous quality in streaming 360° videos, one has
to consider the variations of network bandwidth and human head
position, which both cannot be predicted perfectly. Such stochastic
optimization can generally be approached in two ways. First, RL-
based approaches [39, 65] do not split the problem into environment
prediction and resource allocation, but rather tackle it end-to-end.
Other recent works show the benefit, for regular video streaming
[33, 69], of splitting the problem and designing a DNN to produce
stochastic predictions of bandwidth, which are then considered as
parameters in model predictive control (MPC). For example, Yan
et al. [69] used dynamic programming to maximize the expected
cumulative quality of experience (QoE) as shown in Eq. 1, where H
is the look-ahead horizon for download, Bj is the playback buffer’s
level at chunk j, QoE(·) is the QoE function, Ks

i is chunk i in quality
s, and T (Ks

j ) is the stochastic download time of this chunk.

max
K s
i , ...,K

s
i+H−1

i+H−1∑
j=i

∑
tj

Pr [T (Ks
j ) = tj ]QoE

(
Ks
j ,K

s
j−1,Bj , tj

)
(1)

max
{K s

i ,l }l , ..., {K
s
i+H−1,l }l

i+H−1∑
j=i

L∑
l=1

∑
tj

Pr [l ∈ FoV (j)]

Pr [T (Ks
j ) = tj ]QoE

(
{Ks

j ,l }l , {K
s
j−1,l }l ,Bj , tj

)
(2)

Such formulation enables buffering ofH chunks to absorb bandwidth
variations. Kan et al. [33] formulated this optimization by projecting
the estimated bandwidth distribution onto a confidence interval. In
the case of 360° streaming, the equivalent problem can be formulated,
incorporating the distribution of the FoV position over the look-head

horizon [56] as shown in Eq. 2, with l ∈ {1, L} denoting the tile
index, if we consider a tile-based formulation.

In this article, we provide a way to estimate the distribution
Pr [l ∈ FoV (j)]. To do so, we make a proposal to predict several
K trajectories (series of centers of FoV) ykt :t+H , for k ∈ {1,K},
with their estimated likelihood Pr [ykt :t+H |x0:t ]. If the problem is
tile-based as above, then we can obtain Pr [l ∈ FoV (j)] in Eq. 3.

Pr [l ∈ FoV (j)] =
K∑
k=1

Pr [l ∈ FoV (j)|yki :i+H−1]Pr [y
k
i :i+H−1 |x0:i ]

=
∑

k :l ∈ FoV of center ykj

Pr [yki :i+H−1 |x0:i ] (3)

Once we have at our disposal multiple trajectory estimates and their
respective likelihoods, we can express the distribution of the FoV
position as a function of these estimates as seen in Eq. 3. This
distribution can in turn be used in conjunction with the appropriate
QoE function to solve the optimization problem as formulated in
Eq. 2. In this article, we focus on the design and evaluation of the
prediction methods. System gains will be evaluated in future works.

3.3 Analysis of the need for multiple prediction in
head motion data

We now analyze the need for multiple prediction from two per-
spectives: from the data only, and from the performance of a given
predictor on this data. We consider the test data of the MMSys18
dataset, described in Sec. 4.4. In what follows, past (resp. future)
trajectories are considered over a horizon of 1 sec. (resp. 5 sec.) as
done in recent work [10, 52]. We consider the orthodromic distance
defined in Sec. 4.4 between pairs of trajectories. The distance is nor-
malized with the mean length of both trajectories. Every normalized
orthodromic distance is augmented with the cosine distance between
the last past segments of the pair, to consider orientations of the tra-
jectories as well. We first investigate how the distance between past
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Figure 1: Distances between close past trajectories and their
corresponding futures on the test videos of the MMSys18
dataset.

trajectories relates to the distance between their corresponding true
futures. To do so, for each timestamp of each video in the dataset,
we consider all pairs of users, and select 100 pairs per video with
the closest past trajectories. Every pair of users yields the distance
between both past trajectories, and the distance between both respec-
tive true future trajectories. Fig. 1-left represents the scatter plot of
both distances for every pair. We observe that for 100 pairs of closest
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past trajectories, there is a non-negligible number of pairs whose dis-
tance between future elements is at least twice the distance between
their past elements. Also, we observe that for close past elements,
more distant futures are produced, on this dataset, for exploration-
type videos PortoRiverside and PlanEnergyBioLab. Specifically, for
PortoRiverside, 71% of points are above the y = x line and 23% of
points are above y = 2x . For PlanEnergyBioLab, 83% of points are
above y = x and 42% of points above y = 2x . Fig. 1-right represents
the distance between past elements and the distance between future
elements, for every N -th closest pair, with N ≤ 100 (distances are
smoothed with moving average). It confirms that the average future
distance is generally higher that the past distance, with a greater
difference obtained for exploration videos.
Finding: This is an indication that relatively close past trajectories
may lead to distinct/farther apart future trajectories, which may
create difficulties when attempting to train a prediction model on
such data. Indeed, a (neural) regressor trained with the regular mean
square error (MSE) cannot map similar inputs to different outputs.
Second, we investigate predictions made by a recent deep predic-
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Figure 2: Distances between predicted trajectories with closest
past and their corresponding futures, on the test videos of the
MMSys18 dataset.

tor on this data. Thanks to the reproducible framework provided
by Romero et al. [52], we consider their prediction model named
TRACK. Fig. 2 represent how the distance between predicted future
trajectories match the distance between their corresponding true
futures, with the same form as Fig. 1, with the pairs still formed by
closest past trajectories. Fig. 2-left shows that, given close past tra-
jectories, the predicted trajectories are much closer together than the
true future trajectories. Specifically, for all of the videos except War-
ship, the proportion of points above y=x ranges from 89% (PlanEn-
ergyBioLab) to 100% (PortoRiverside), and the proportion of points
above y=2x ranges from 67% (Waterpark) to 80% (PortoRiverside).
This is confirmed in Fig. 2-right showing the difference between the
average in-between true futures distances and in-between predicted
futures distances.
Finding: This is an indication that predicted trajectories have less
diversity than true trajectories.

Finally, we investigate the connection between diversity (distance)
of the true futures, and the prediction error. Fig. 3 shows the evolution
of the maximum prediction error for each pair of the same 100 closest
past trajectories per video against the distance between the respective
future trajectories. Given close past trajectories, the prediction error
tends to increase when the distance between the true futures is higher.
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Figure 3: Prediction error of TRACK [52] against distance be-
tween pairs of true futures. The colors are associated with the
video ids and are the same as in Fig. 2.

Finding: This is an indication that the predictor is less accurate when
there is diversity in the true futures.

While this finding might have been expected, we considered im-
portant to experimentally verify that (i) there is diversity in head
motion traces as seen in Fig 1, (ii) the diversity of ground truth data
is not properly reproduced by a refined recent predictor considering
both past motion and visual content as shown in Fig. 2, and (iii) this
diversity of futures indeed contributes to the error of single trajec-
tory predictor as illustrated in Fig. 3. Requirements for streaming
optimization, the significant diversity of future trajectories relatively
to their close respective past trajectories, and the increased error rate
of existing predictors in such cases, are therefore solid rationale for
designing multiple trajectory prediction methods.

4 DEEP STOCHASTIC PREDICTION OF
MULTIPLE HEAD TRAJECTORIES

We first provide necessary background on deep generative models
in Sec. 4.1. We present our proposal for a multiple prediction frame-
work in Sec. 4.2, exemplified with an architecture in Sec. 4.3. Sec.
4.4 presents performance results.

4.1 Background on deep generative models for
sequences

Trajectory prediction can be cast into conditional sequence genera-
tion, for which we provide some background next. Deep generative
approaches are meant to generate data, modelling either explicitly
or implicitly training data distribution. Variational auto-encoders
(VAE) [34, 50] and generative adversarial networks (GAN) [23] are
two prominent such families of approaches.

In this article, we focus on the VAE family owing to their capa-
bility not to narrowly focus on a few modes of the data distribution,
hence being a better fit to the characteristics of head motion data
as described in Sec. 3.3. VAE frameworks aim to enable the gen-
eration of high-dimensional data samples by sampling a normally
distributed low dimensional latent variable z ∼ N(0, I). A sample x
is then generated by passing z through a high-capacity model, partic-
ularly a deep neural network. The latent variable is meant to capture
the minimum number of independent random dimensions from the
data, while the decoding by a neural network of z into x is meant
to capture the complex dependencies in a sample [34]. The typical
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representation of a VAE is illustrated in Fig. 4. Denoting the de-
coder’s parameters with θ , the generative model is typically defined
with p(z) and pθ (x |z). For the decoder network to be trained, the
posterior distribution p(z |x) is required, but can only be approxi-
mated with the output distribution, named the approximate posterior
qϕ (z |x), of another neural network of parameters ϕ and usually re-
ferred to as the encoder or inference network. VAE can also be
declined into conditional VAE (CVAE) when the goal is to generate
output variables y from input variables x , drawing z from a prior
distribution pθ (z |x) to generate y from the decoder with pθ (y |x, z)
[60].

Encoder

DecoderTraining stage
of VAE

Testing
stage of

VAE

Figure 4: Schematic representation of a VAE.

When considering sequence prediction formalized in Sec. 3.1,
prediction of a time series over a certain horizon is often made
conditionally to the past of the time series. This is often translated
into sequence-to-sequence architectures, where a so-called encoder
processes the past (even at test time, different to VAE), produces
an intermediate embedding, which is then decoded into a future
trajectory (see Fig. 5). The architecture of the encoder and decoder
networks are often based on recurrent neural networks (RNNs), such
as LSTM or GRU [52, 62]. Note that the concept of encoder of
past trajectory in a sequence-to-sequence architecture is different
from the term encoder used in a variational context (aka inference
network, as mentioned above).

Past
Embedding

Past Encoder Future Decoder

Figure 5: A sequence-to-sequence architecture.

Deep variational learning has initially been designed for image
data. More recently, variational approaches have been proposed for
sequence data and so-called structured output prediction. These ap-
proaches are diverse depending on where the random latent variables
are considered in the recurrent architectures [6, 13, 49]. For exam-
ple, Babaeizadeh et al. [6] performed conditional video prediction to
predict future frames until final video timeT , conditioned on c initial
frames, by sampling from p(xc :T |x0:c−1). A random latent vector z
is picked at random from the prior distribution p(z) ∼ N(0, I) at test
time (while the training is made as usual with z sampled from the
approximate posterior qϕ (z |x0:T )). They show the performance in
multiple future frame sequence prediction, specifically in PSNR and
SSIM of the 10% best sequences obtained from 100 samples of z.

Alahi et al. [49] considered the randomness in human pose fore-
casting, which they decompose into trajectory forecasting and local

pose forecasting. They advocate that the latter has higher random-
ness, which they tackle by considering an LSTM-based sequence-to-
sequence architecture as done by Martinez et al. [43], but they set
the initial hidden state of the decoder to a latent vector z drawn from
N(µ(ht ),σ (ht )) where ht is the latest hidden state of the encoder of
the past coordinates, and µ(·) and σ (·) are functions implemented
with fully connected layers. The training of such RNN-based VAEs
can be difficult to converge and unstable [6, 8]. This is particu-
larly due to the fact that during training, z is sampled from the
approximate posterior qϕ (z |x0:T ) while it can only be sampled from
pθ (z |x0:c−1) in test, and despite a KL divergence component in the
training loss meant to nudge qϕ (z |x0:T ) towards pθ (z |x0:c−1).

With this background on variational approaches for sequence
generation, we now present our learning framework for multiple
prediction of head trajectories.

4.2 Discrete Variational Multiple Sequence
(DVMS) prediction

ℎ𝑡−1 ℎ𝑡 𝑔𝑡+1 𝑔𝑡+2

𝑧

Figure 6: Probabilistic graphical model of the proposed stochas-
tic discrete variational multiple sequence (DVMS) prediction
framework. A random variable is represented with a circle, a
deterministic state with a diamond.

We now present a new learning framework for multiple head
motion trajectory prediction, named discrete variational multiple
sequence (DVMS). It builds on deep latent variable models like
VAEs. DVMS is designed to be compatible with any sequence-to-
sequence architecture. The rationale for such design is as follows.
Our goal is to design a framework for multiple prediction of head
motion for deep architectures, which provides key properties:

P1 sufficiently diverse predictions ykt :t+H , for k = 1, . . . ,K ,
P2 state-of-the-art performance when K = 1,
P3 estimates of likelihoods of the predicted trajectories,
P4 flexibility and low computational cost.

Generative model: The probabilistic graphical model of DVMS is
depicted in Fig. 6. For any encoder fed with past sequence x0:t , an
embedding ht is produced. This embedding is then concatenated
with a unique latent variable z. The latent variable is key in our
DVMS proposal. This latent variable is meant to capture the varia-
tions in the function relating the future sequence to the past sequence,
hence acting as a parameter in the past-to-future mapping. The result-
ing concatenation produces the first hidden state дt of the decoder.
Considering that the encoder is made of recurrent connections with
hidden state ht , the generative model writes as Eq. 4, where UZK
denotes the uniform distribution over discrete set ZK , and MLP
stands for multi-layer perceptron to denote one or several fully con-
nected (FC) layers. To generate multiple prediction, every zk ∈ ZK
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generates a future trajectory ykt :t+H . To enable diverse predictions
(P1), we do not constrain the distribution p(z) we sample from to be
conditioned on x0:t in test, in contrast to what was done by Alahi
et al. [49], but instead draw z uniformly in Z ∈ [−1, 1]d (where
d is the dimension of vector z). To meet (P3), z is drawn from a
discrete set Z with K elements. Indeed, z codes for latent features
parameterizing the expression of the future trajectory from the past
trajectory. In other words, different values of z allow for the repre-
sentation of different modes of future trajectories, given the same
past. If there is some stationarity in how likely is every trajectory
produced from every zk , then we can exploit this stationarity for
likelihood estimation (P3). We therefore consider a discrete fixed set
of possible z values to ease this exploitation, which we describe in
Sec. 5.

ht = RNNenc (ht−1, xt−1) , h0 = 0
z ∼ UZK

дt+1 = MLP(ht , z) (4)

yt = xt
yt+s = FC(дt+s ) + yt+s−1 , for s ≥ 1
дt+s = RNNdec (дt+s−1, yt+s−1) , for s ≥ 2

Training procedure: To ensure (P2), we enforce the prior distribu-
tion p(z) z is sampled from at training time to be the same as in
test (contrary to work from Babaeizadeh et al. [6]), i.e., we do not
consider an inference network. This allows to avoid the mismatch
between p(z) and q(z |x0:T ), which impedes the training convergence,
as described in Sec. 4.1. However, doing so also adds noise to the
sequence decoder which, if trained with gradient descent performed
over every sampled trajectory obtained from zk , for all k ∈ {1,K},
learns to discard the z input and only produces a single trajectory
corresponding to the baseline, as described by Babaeizadeh et al. [6].
To avoid this phenomenon, we instead train our architecture with the
best of many samples (BMS) loss [8], also named the variety loss
[25, 63], defined in Eq. 5.

L(x0:t , θ ) = min
k ∈{1,K }

D
(
ykt :t+H , xt :t+H

)
(5)

where D (·) can be any distance between two trajectories on the
sphere. This loss thus consists, for every past trajectory sample, in
selecting sample zk∗ generating the best match to the single ground
truth future. The gradient descent is hence performed only on a
single k∗ sample out of the trajectories generated by the model.
This prevents the architecture from learning to discard z as being an
uninformative input for prediction.

DVMS is flexible (P4) because it can be used with any sequence-
to-sequence architecture, being it an architecture processing video
content [52] in case of streaming of stored content, or an architec-
ture processing only the past user’s trajectory [10] in case of live
streaming. Indeed, Bayesian methods like BNN [45] and Monte-
Carlo dropout [22] require to change how every network weight is
considered in train (generating multiple weight samples). In con-
trast, DVMS only consists in adding a latent variable to modulate
the initial state of the sequence-to-sequence decoder with a random
component, independently of the actual structure of the sequence-to-
sequence encoder and decoder.

DVMS is also lightweight (P4) because the additional train-
ing cost, w.r.t. the original sequence-to-sequence architecture, only
comes from the latent variable z to be concatenated with the en-
coder’s last hidden state (MLP to learn in Eq. 4). This additional
cost is also limited because we do not learn an approximate poste-
rior q(z |x0:t ), that is an additional neural network (named inference
network in Fig. 4 and used only in train), but rather directly sample
z from UZK both in test and train.

All 4 properties (P1)-(P4) are experimentally evaluated in Sec.
4.4 and 5.3.

4.3 Proposal of a DVMS-based architecture

GRU64 GRU64 GRU64 GRU64

GRU64 GRU64 GRU64 GRU64

FC128 FC128

Figure 7: Proposed example of a DVMS-based architecture.

To demonstrate the interest of the proposed DVMS learning frame-
work of multiple head trajectory prediction, in this section we pro-
pose a simple architecture akin to those presented in [49, Fig. 2] or
[52, Fig. 4]. This architecture is of type sequence-to-sequence and
is represented in Fig. 7. It is however simplified compared to the
previous literature, as we consider double-stacked gated recurrent
units (GRU) instead of single or double-stacked LSTM. Here we
purposefully do not consider the visual content in order to simplify
the presentation and analysis of our contribution which is on the
variational framework DVMS for multiple future prediction, and not
on a specific neural architecture. So other architectures can be incor-
porated in our framework, such as based on more advanced recurrent
techniques like transformers [10] or fusion of multimodal input con-
sidering the visual content [52]. We discuss more this compatibility
in Sec. 6.
Architecture: We set d = 1 as the dimension of z. The encoder
is made of a doubly-stacked GRU with 64 neurons (and default
GRU activations). The final GRU’s hidden state is then fed to a 128-
neuron fully connected layer. The output of this layer is concatenated
with z and fed to another 128-neuron fully connected layer. The
decoder is also a doubly-stacked GRU with same hyper-parameters
as the encoder. The past sequence is restricted to xt−m:t with m =
1sec., matching recent work [10, 52], and we set H = 5sec. as the
prediction horizon. The sampling rate of the scanpaths is 5Hz, thus
the past sequences are 5 sample-long, and the future sequences are
25 sample-long.
Training procedure: The model is trained using the loss described
in Eq. 5. Distance D(·) is taken as the cumulated Euclidean distance,

that is D
(
ykt :t+H , xt :t+H

)
=
∑H
s=0.2

ykt+s − xkt+s
2. The optimizer

is Adam with weight decay (AdamW), with a learning rate of 5×10−4
and a batch size of 64.
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4.4 Results on multiple trajectory prediction
In this section we assess (P1) the diversity of predictions, (P2) the
performance for K = 1, and (P4) the computational cost. Likelihood
estimation (P3) is addressed in Sec. 5.
4.4.1 Experimental settings.
Datasets: We consider 3 datasets of 360° videos with head motion
traces:

• MMSys18 [14]: This dataset consists of the head positions of 57
subjects watching 19 360° videos lasting 20 seconds.

• PAMI18 [66]: It is made of both the eyes and head positions of
58 participants watching 76 360° videos, lasting 10 to 80 seconds
(25 seconds on average).

• CVPR18 [67]: This dataset contains the gaze positions of 45 users
over 208 360° videos, lasting 15 to more than 80 seconds (36
seconds on average).

For all of these datasets, we use the same split as described in the
supplemental material from by Romero et al. [52], such that there is
no overlap between the videos in the train and test sets for PAMI18
and CVPR18 as well as no overlap between the users for MMSys18.
Additionally, we do not make predictions for the first 6 seconds of
the video with any of the considered competitors, as done by Romero
et al. [52] to skip the user’s initial exploration phase.
Metrics: When it comes to evaluating the quality of the multiple
predictions, the major challenge is that several plausible futures may
correspond to a single input, but the datasets provide only a single
ground-truth future. The best way to assess (P1) is therefore to check
if the known ground truth is covered by one of the few predictions,
while the others can efficiently explore the search space to cover the
futures of close inputs. This can be done by using the winner-take-all
or best of many samples (BMS) metric [8]. Therefore, as is usually
done as standard practice in multiple sequence prediction [6, 41, 61],
we report the BMS metric. Specifically, BMS at prediction step s is
defined in Eq. 6, where the orthodromic distance between points P1
and P2 on the unit sphere is orthdist(P1, P2) = arccos(sinϕ1 sinϕ2+
cosϕ1 cosϕ2 cos λ with ϕ the latitude and λ the absolute difference
in longitude, and k∗ is defined in Eq. 7.

1
U

1
V

1
T

∑
u

∑
v

∑
t

orthdist(yk
∗

u ,v ,t+s , xu ,v ,t+s ) (6)

k∗(u,v, t) = argmin
k

H∑
s=0.2

orthdist(yku ,v ,t+s , xu ,v ,t+s ) (7)

We report the BMS metric in figures, and we report in a more
compact form in tables the average prediction error, which is the
average over s ≤ H of the BMS metric, similarly to what Marchetti
et al. reported [41]. For K = 1, the BMS metric amounts to the
orthodromic distance, hence enabling the assessment of (P2) with
the same metric as used for single sequence prediction [10, 52].
Competitors: We compare our models with 3 competitors. As no
competitor exists so far for multiple prediction of head motion, we
adapt a recent method from the autonomous driving domain.
• Deep-position-only: Deep-position-only is a baseline introduced
by Romero et al. [52]. It is a simple sequence-to-sequence LSTM
taking past head positions as input. Additional details can be found
in section 3.2 of [52]. Thanks to the reproducible framework they

published [51], we were able to re-implement Deep-position-only
using PyTorch and achieve the same performance as reported.
• MANTRA-adapted: MANTRA is an approach described by
Marchetti et al. [41] to predict the trajectory of other vehicles. It
uses an autoencoder in conjunction with a memory network. The au-
toencoder is first trained to reconstruct future trajectories from past
and future trajectories. A memory-writing controller is then trained
to fill the memory with embeddings from the encoder. The memory
takes the form of a (key, value) dictionary, where the embeddings
of past trajectories are the keys that are used to retrieve the values,
embeddings of future trajectories. At prediction time, embeddings
of yet unseen past trajectories are computed and matched with keys
from the memory. The K most similar keys are used to retrieve the
K corresponding values, which are then fused with the embedding
of the actual past and decoded into K predicted future trajectories.
Memory is built at training time with the following procedure. Dur-
ing training, if none of the predicted trajectories is close enough
(defined by a manual threshold) to the ground truth future trajectory,
the embeddings (past and future) of this trajectory are added as new
key and value to the memory. The loss for the writing controller is
designed so that it only writes relevant trajectories into the memory.
Embeddings that are too similar and do not help to decrease the pre-
diction error are not added to the memory. At test time, the memory
is read-only and filled with embeddings from the training set. For
this model to work properly, the trajectories have to be normalized
so that they are translation and rotation-invariant.

Building from this approach, we build a MANTRA-adapted
model as a multiple trajectory prediction baseline to be compared
to our proposed model. The changes from the original MANTRA
model are described as follows. The trajectories are 3-dimensional
instead of 2-dimensional. We adapt the manual distance thresholds
used for the writing controller with values that fit our data and give
an acceptable memory size. We do not normalize the trajectories
in the same way. As there is no rotation invariance in head motion,
we carried out several tests with translation invariance (separating
yaw and pitch). The results were best when only re-centering on
yaw (longitude). The results were worse with re-centering both axes,
only pitch or with no re-centering. Since video cue is not consid-
ered in DVMS, thus not providing any contextual information or
map, MANTRA-adapted does not employ any contextual cue either,
such as the "Iterative Refinement Module" [41], which integrates
information from the map.
• VPT360: VPT360 is the recurrent transformer-based viewport
prediction architecture presented by Chao et al. [10]. We do not
reproduce their results because the code is not available at the time
of writing, but we report the values presented in their work [10] and
compare DVMS with VPT360 on the exact same settings.
4.4.2 Experimental results.
Prediction error: Fig. 8-left represents, for the MMSys18 dataset,
the orthodromic distance and the BMS metric of DVMS for K ∈

{1, 5}. The shaded area represents the 95% confidence interval. We
observe that DVMS achieves performance similar for K = 1 as Deep-
position-only, which is the state of the art it builds on, and close to
VPT360, hence meeting (P2). For (P1), we observe for K = 2 a 28%
reduction in prediction error at prediction step s = 3sec. with DVMS,
compared to the single prediction competitors Deep-position-only
and VPT360. For higher K , the error reduction increases, and tends
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to saturate for K = 4 then K = 5. DVMS hence meets both (P1)
and (P2) on this dataset. Still for the MMSys18 dataset, Fig. 8-right,
compares the performance of DVMS with the MANTRA-adapted
competitor. We first notice that for every K = 1, . . . , 5, DVMS
yields a lower prediction error than MANTRA-adapted. Also, we
observe that MANTRA-adapted does not match the state of the art
performance of Deep-position-only for K = 1. For every value of
K , DVMS yields lower prediction errors than MANTRA-adapted.
At s = 3sec., for K = 1, . . . , 5, DVMS achieves a prediction er-
ror lower than MANTRA-adapted by 26.82%, 26.77%, 32.01%,
34.05% and 36.20%, respectively. The results on the CVPR18 and
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Figure 8: Prediction error (in orthodromic distance or BMS
metric for K > 1) of predictors on the MMSys18 dataset. Left:
DVMS (ours, same colors as right figure) vs Deep-position-only
and VPT360. Right: DVMS (ours, solid lines) vs MANTRA-
adapted (dashed lines).

PAMI18 datasets are presented in Tables 1 and 2. VPT360 does not
appear because its performance is not available for these datasets
over H = 5sec.. Tables 1 and 2 show that DVMS achieves simi-
lar performance as Deep-position-only for K = 1, and outperforms
MANTRA-adapted for every value ofK , on both datasets. Construct-
ing futures by combining past with future pieces from the training set
does not seem sufficient for MANTRA-adapted to produce diverse
enough futures, compared with DVMS which instead modulates the
initial state of the sequence decoder with a random component.

Method Average prediction error
s ≤ 1s s ≤ 2s s ≤ 3s s ≤ 4s s ≤ 5s

Deep-position-only 0.204 0.357 0.471 0.555 0.618

MANTRA-adapted

K=1 0.351 0.594 0.767 0.887 0.981
K=2 0.323 0.503 0.608 0.678 0.755
K=3 0.298 0.456 0.544 0.598 0.656
K=4 0.292 0.433 0.500 0.544 0.596
K=5 0.303 0.426 0.487 0.533 0.581

DVMS (ours)

K=1 0.200 0.355 0.470 0.555 0.618
K=2 0.200 0.326 0.394 0.435 0.477
K=3 0.190 0.305 0.357 0.384 0.419
K=4 0.187 0.295 0.337 0.355 0.387
K=5 0.186 0.287 0.321 0.335 0.366

Table 1: Prediction error over all s ≤ H on the CVPR18 dataset.

The results on all 3 datasets therefore show that DVMS is able
to produce diverse predictions (P1), outperforming the multiple
prediction competitor MANTRA-adapted, while providing similar
performance to single prediction when K = 1 (P2).

Fig. 9 shows qualitative examples of multiple trajectory prediction.
It shows similar past trajectories of two different users, yielding

Method Average prediction error
s ≤ 1s s ≤ 2s s ≤ 3s s ≤ 4s s ≤ 5s

Deep-position-only 0.134 0.231 0.303 0.352 0.386

MANTRA-adapted

K=1 0.236 0.429 0.571 0.666 0.736
K=2 0.211 0.343 0.426 0.479 0.530
K=3 0.202 0.313 0.375 0.417 0.457
K=4 0.186 0.291 0.351 0.389 0.428
K=5 0.194 0.290 0.342 0.378 0.413

DVMS (ours)

K=1 0.135 0.233 0.304 0.353 0.387
K=2 0.127 0.207 0.253 0.284 0.313
K=3 0.128 0.202 0.239 0.262 0.289
K=4 0.124 0.192 0.224 0.244 0.271
K=5 0.125 0.189 0.218 0.235 0.259

Table 2: Prediction error over all s ≤ H on the PAMI18 dataset.

distant future trajectories. When K = 2, we observe that DVMS
produces different plausible trajectories, where one matches best
the first user and the other the second user. Computational cost:
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Past
True future
Predicted with z1

K = 2
Past
True future
Predicted with z1
Predicted with z2
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40
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True future
Predicted with z1
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Predicted with z1
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Figure 9: Examples of generated trajectories. Two different
users (rows) have close past trajectories for the same timestamp
t = 8sec. of the same video DroneFlight (MMSys18 dataset), but
their future trajectories are significantly different. Predicting
only one future (left column) does not enable good prediction of
both futures, while predicting multiple (right column) does.

Hardware used to train and test the methods is a Nvidia RTX 3080
with 10GB of video RAM on a station with 128GB of RAM. Table
3 shows that DVMS and MANTRA-adapted have significantly less
weights than both single prediction methods Deep-position-only and
VPT360. While DVMS has more neural network parameters than
MANTRA-adapted, the execution time to generate a trajectory at test
time is 14% less than MANTRA-adapted. This is due to MANTRA-
adapted having to do memory lookup. Indeed MANTRA-adapted
has an extra memory, which DVMS does not, and the size of this
memory, shown in Table 4 in percentage of the training set size,
varies with the target accuracy and the dataset (and hence cannot be
generalized to other datasets before actual training). Also, training
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MANTRA-adapted requires two phases, the first to train the auto-
encoder, the second for the memory writing controller.

Method # parameters Prediction time (ms)

Deep-position-only 4.21M 15.71
VPT360 6.3M N/A
MANTRA-adapted 76k 6.81
DVMS (ours) 110k 5.87

Table 3: Computational cost of the different models.

Dataset MMSys18 CVPR18 PAMI18
Training set size 12600 560342 271440

K=1
6413

(50.90%)
258758

(46.18%)
79503

(29.29%)

K=2
3601

(28.58%)
142113

(25.36%)
34564

(12.73%)

K=3
2041

(16.20%)
83702

(14.94%)
20059

(7.39%)

K=4
1227

(9.74%)
50265

(8.97%)
10470

(3.86%)

K=5
811

(6.44%)
36325

(6.48%)
7632

(2.81%)

Table 4: Memory size (in number and percentage of training
samples) of the MANTRA-adapted method for different num-
ber of predicted trajectories K across all the datasets.

Hence, on 3 datasets of head motion data, DVMS achieves bet-
ter prediction performance for lower computational resources than
single prediction methods VPT360 and Deep-position-only, and for
lower or equivalent resources than MANTRA-adapted.

5 EXPLOITING DVMS LATENT SPACE TO
ESTIMATE TRAJECTORY LIKELIHOOD

In this section, we present how we leverage our variational predictor
DVMS to estimate the likelihood of the multiple predicted trajecto-
ries. First, we present the general approach to likelihood estimation
in Sec. 5.1. Second, we study in Sec 5.2 a stationarity hypothesis we
make to produce our estimator. Third, we demonstrate in Sec. 5.3
the performance of our likelihood estimator, including disaggregated
results and analysis over video categories.

5.1 Definition of the likelihood estimator
For a regression problem, the likelihood Pr [ykt :t+H |x0:t ] of a future
trajectory can be expressed with exp−D(yt :t+H ,xt :t+H ), hence esti-
mating the likelihood is equivalent to estimating the distance of a
trajectory to the ground truth, that is the negative log-likelihood. We
denote by errku ,v ,t the error of the k-th generated trajectory ykt :t+H ,
the motion of user u on video v at timestamp t , defined in Eq. 8.

errku ,v ,t = D
(
ykt :t+H , xt :t+H

)
(8)

With a variational framework, a standard approach to estimate
the likelihood would be to rely on the model (whose parameters
are set from the training data) and on the known past x0:t . In this
work, we argue that this is not sufficient, and that other available
information must be considered, namely the past generated trajec-
tories yks :min(s+H ,t ), for all k ∈ {1,K} and s ∈ [0, t], and the errors
obtained by every such trajectory when compared to the available
ground truth at t xs :min(s+H ,t ). Indeed, these errors are informative

of which zk , for k ∈ {1,K}, have best coded the latent features
connecting the future trajectory with the past trajectory. If the errors
over the various zk , for k ∈ {1,K}, have sufficient stationarity in
time, then we can exploit such stationarity to estimate the likelihood
of the predicted trajectories. We therefore define an estimate the
estimate êrrku ,v ,t (r ) of errku ,v ,t in Eq. 9.

êrrku ,v ,t (r ) = D
(
ykt−r :min(t−r+H ,t ), xt−r :min(t−r+H ,t )

)
(9)

where r is a past window of size controlling the age of the trajectory
ground truth to produce the error estimate. Let us recall that the
z-space is discrete, with ZK = {zk }

K
k=1. This means that errku ,v ,t

is predicted by the error produced by the trajectory ykt−r :t−r+H
generated with the same zk and predicted at time t −r over a horizon
H , but with the error only counted on the timestamps for which the
ground truth xu ,v is available, i.e., on [t − r ,min(t − r + H , t)].

The accuracy of this estimator therefore depends on the stationar-
ity in time of the distribution of the error over the latent values zk ,
for k ∈ {1,K}. We study this stationarity next.

5.2 Study of the stationarity of error distribution
in the latent space of DVMS

We first analyze how errku ,v ,t evolves over t = tstar t : T , for given
test videos v and users u from the MMSys18 dataset. The MMSys18
test set is made of 5 videos of 4 categories [4, 52]: exploration
(PortoRiverside and PlanEnergyBioLab), moving focus (Turtle),
static focus with camera motion (WaterPark), static focus without
camera motion (Warship). Fig. 10-left shows an example for video
PortoRiverside and user u = 56. We observe that, for every t ∈

{tstar t : T }, the future trajectory y3t :t+H produced by latent value z3
consistently yields the lowest prediction error. Fig. 10-right shows
that, for video Turtle and user u = 28, the lowest error is consistently
produced by latent value z2.
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Figure 10: Prediction error for different latent values over time,
test set of the MMSys18 dataset. Left: video PortoRiverside, user
56. Right: video Turtle, user 28.

Avi j =
1

UK

U∑
u=1

K∑
k=0

(
errku ,v ,i − errku ,v , j

)2
, (i, j) ∈ {tstar t , . . . ,T }

2

(10)
Second, as Fig. 10 only shows examples obtained for specific choices
of (v,u), we investigate how representative these cases are. To do
so, we define a latent stationarity matrix (LSM) per video v defined
in Eq. 10, where U is the total number of user traces per video. For
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Figure 11: Latent Stationarity Matrix (LSM). The color scale codes for the error difference Avi j . Axes are in seconds (t = 6 sec. to
t = 15 sec. so t + H ≤ T = 20 sec.). Test videos of the MMSys18 dataset.

every user u, the main term in the summation represents the differ-
ence, between timestamps i and j, in how the error is distributed in
the discrete latent space ZK . Fig. 11 depicts such error differences
as heatmaps for all the five videos of the test set of the MMSys18
dataset. First, we observe that, when the timestamps i and j are equal,
error difference is null, which is expected. Also, it is interesting to
observe that the closer i and j, the lower the error distance. This
shows that the results illustrated above for specific (u,v) pairs are
general: the prediction error yielded by zk varies more or less slowly
over time (depending on the videos). Such stationarity may hence be
exploited to produce error (i.e., likelihood) estimates. Similar quali-
tative results hold on the other datasets, but we do not show these
maps owing to space limitation. However, estimation results on all 3
datasets are shown in Sec. 5.3. Second, it is interesting to observe
that the level of stationarity/speed of variation of the error produced
by every zk , for k ∈ {1,K}, depends on the video category. For
both exploration-type videos PortoRiverside and PlanEnergyBioLab,
the error difference for a given timestamp difference is significantly
higher than for the focus-type videos. The stationarity of latent er-
rors is hence lower in exploration videos, and error estimates from
the past timestamps should yields better estimates in Focus videos,
which we investigate in the next section.

5.3 Results on trajectory likelihood estimation
Datasets: The results below are obtained on the same 3 datasets as
those considered in Sec. 4.4.
Metrics: We measure the quality of the trajectory likelihood/error es-
timate with its Pearson correlation coefficient with the ground truth.
Indeed, as the motivation for the present contribution is to benefit
from such estimates in a stochastic formulation of resource optimiza-
tion (see Sec. 3.2), we want to evaluate how much are the produced
estimates linearly correlated with the ground truth error. If the cor-
relation coefficient was 1, we would obtain the true likelihood. For
any past window size r , for every tuple (v,u, t), we are interested
in how the corresponding K samples

{
(errku ,v ,t , êrr

k
u ,v ,t (r ))

}K
k=1

are correlated. To allow considering a larger number of samples to
obtain more confident estimates of the correlation coefficient, we
consider

{
(errku ,v ,t , êrr

k
u ,v ,t (r ))

}
k ,u ,t . However, to do so without

artificially increasing the correlation coefficient owing to different
average values of the samples over the (u, t) tuples, we first normal-
ize

{
(errku ,v ,t , êrr

k
u ,v ,t (r ))

}K
k=1 independently for every (u, t). The

correlation coefficient for every value of r is then computed on the
normalized pairs of ground truth error and error estimate.
Results: Figures 12-14 show the evolution of the Pearson correlation
coefficient (PCC) with the past window size r ∈ [0,H ], with the
shaded area representing the 95% confidence interval. To assess the

correlation strength, we follow the recommendation from recent
literature [2, 68]: low: 0.1 ≤ |corr| < 0.3; moderate; 0.3 ≤ |corr|
< 0.6; high: 0.6 ≤ |corr| ≤ 1.0.
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Figure 12: PCC between estimated and ground truth error of
predicted trajectories, on the MMSys18 dataset. Left: average
over all test videos. Right: average per test video.
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Figure 13: PCC between estimated and ground truth error, on
the PAMI18 dataset. Left: average over all test videos. Right:
average per group.
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Figure 14: PCC between estimated and ground truth error, on
the CVPR18 dataset. Left: average over all test videos. Right:
average per group.
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It is important to note that the LSM is a novel type of charac-
terization for 360° video. While previous characterizations were
directly based on the video content or the user traces [4, 44, 53], the
LSM represents characteristics of the latent space in connection with
prediction performance. Investigating how the LSM can be a novel
characterization for different videos, and possibly different users, is
left for future work. In this work, we develop a useful application of
such characterization for deep learning-based predictors.

For the test sets of the PAMI18 and CVPR18 datasets, Fig. 13-left
and 14-left show that there is a moderate significant correlation of
the estimates with the ground truth errors. For the test set of the
MMSys18 dataset, there is a moderate to low correlation, the signifi-
cance being low possibly owing to the very low number of videos in
the test set (only 5). We also observe that the correlation generally
increases with r for the MMSys18 and PAMI18 datasets in Fig. 12
and 13 (reaching maximum level for r ≥ 2 sec. and r ≥ 3.5 sec.,
respectively), while for the CVPR18 dataset in Fig. 14, the average
correlation reaches a maximum for r = 3 seconds then decreases. It
is interesting to disaggregate the results and analyze the correlation
per video type. Fig. 12-right shows the correlation results for each
of the 5 test videos in the MMSys18 dataset. For both videos of type
exploration, PortoRiverside and PlanEnergyBiolab, the correlation
is significantly low. However for the focus-type videos (Warship,
WaterPark and Turtle), the correlation is moderate, being significant
for the first two for 2 ≤ r ≤ 3 sec., while for Turtle, the performance
in unstable (it is worth noting that Turtle is of type moving focus
video, which is not present in the training set). We also notice that
the maximum correlation is obtained for r ≤ 1.5 sec. for exploration
videos, while the maximum is obtained for r ≥ 3 sec. for focus-type
videos. The other two datasets have 16 (PAMI18) and 42 (CVPR18)
test videos. Therefore, to categorize the video automatically between
exploration and focus-type video, we resort to the method presented
by Romero et al. [52], consisting in associating exploration (resp. fo-
cus) videos with low (resp. high) entropy values of the saliency maps
obtained from the user traces. Fig. 13-right and 14-right show the
correlation results broken down into the 10% of videos with highest
entropy, 10% with lowest entropy, and the rest. In Fig. 13-right, we
observe that for PAMI18 focus videos, the correlation is strong and
significant for r ≥ 3 sec., while it is low significant for exploration
videos and moderate significant for the rest. Similar trends can be
observed with CVPR18 videos, where the correlation is low and
significant for exploration videos, and moderate and significant for
the rest. For exploration videos, the correlation is maximum for
r ∼ 2 sec., while it is maximum for r ∼ 3 sec. for the rest.

Therefore, we have shown that our method is able to predict
multiple diverse trajectories, providing estimates of their respec-
tive likelihood to leverage in stochastic optimization of resource
allocation. The estimates are shown to correlate with ground truth,
the level of correlation and past window size r providing highest
correlation depending on the video category.

6 DISCUSSION
To the best of our knowledge, this article presents the first proposal
to generate multiple plausible 360° head trajectories. Our work there-
fore establishes a first baseline for comparison, and paves the way
for more principled approaches to stochastic optimization of 360°

streaming, and immersive streaming in general. Indeed, the DVMS
approach proposed here is general and can be adapted to 6DoF mo-
tion, and more innovative streaming systems where, e.g., ultra-high
resolution headset would require to narrow the high-quality region
below the FoV to the foveated area, or interactive and user-adaptive
strategies could be adaptively triggered based on the expected pre-
dictability of the user’s movements [57].

Considering uncertainty in prediction is often approached with
Bayesian neural networks [33, 45, 70]. However, these approaches
are computationally intensive and do not allow to capture mode
diversity in the data [20]. Alternatives exist to better learn data diver-
sity, e.g., Monte-Carlo dropout [22], or approaches based on memory
networks like [41]. In contrast, our DVMS method builds on deep
latent variable models, and proves lightweight, flexible and suited
to the head motion data diversity. It confirms the interest in inves-
tigating more dynamic VAE, to possibly design proper inference
networks and conditional prior p(z |x0:t ) in test.

We have exemplified the DVMS prediction framework with a
video-agnostic neural architecture. A direct perspective is to in-
vestigate DVMS performance when used in conjunction with a
content-aware architecture. DVMS is compatible by design with
sequence-to-sequence architectures, such as those used in the head
motion prediction literature [46, 52, 67]. Finally, it will be most in-
teresting to analyze DVMS latent space in connection with trajectory
features (such as angular acceleration between past and future, etc.),
with user and video profiles to characterize attentional phases and
motion predictability.

7 CONCLUSION
In this article, we presented the first method for multiple head mo-
tion prediction in 360° videos. We showed that the need for multiple
trajectories is motivated by the diversity of future trajectories in
real-world user data. Our main contribution is a new learning frame-
work, called DVMS, which builds on deep latent variable models
and allows to predict multiple future trajectories from a given past.
We design a training procedure to obtain a flexible and lightweight
stochastic prediction model compatible with sequence-to-sequence
architectures. Experimental results on 3 datasets show that DVMS
matches relevant baselines for single trajectory prediction and out-
performs competitors adapted from the self-driving domain by up
to 37%, on prediction horizons up to 5 seconds. By exploiting the
stationarity of the prediction error over the latent space, our method
provides likelihood estimates of every predicted trajectory, enabling
direct integration in streaming optimization. DVMS paves the way
for multiple head motion prediction in 360° videos, and future works
will evaluate the gains when predicted trajectories and their likeli-
hoods are used by a 360° adaptive streaming system.
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A ARTIFACT APPENDIX
A.1 Abstract
This artifact appendix contains information about the source code for
the DVMS-based architecture that we propose. Information about
the model, datasets, and required libraries is provided.

We explain how to run the experiments and reproduce the results
that we obtain in the article by including code as well as a Jupyter
notebook. Model trained weights are also provided to allow for easy
reproducibility.

A.2 Artifact check-list
• Model: DVMS-based sequence-to-sequence neural network imple-

mentation using PyTorch with 110k parameters.
• Datasets: 3 datasets described in Sec 4.4 included in the repository.
• Run-time environment: Python3 with required libraries.
• Hardware: GPU with at least 2GB of VRAM is recommended. Run-

ning the experiments without GPU is possible, but takes considerably
more time.

• Experiments: the model can be trained and evaluated using different
parameters.

• Output: Training output: LOG text file and PTH weights file. Evalu-
ation output: Pickle error file and Pickle trajectory file.

• Approximate disk space required: 3GB including evaluation out-
put.

• Approximate time needed to complete experiments (GPU): Train-
ing: 72 (14.4) hours for all K on all datasets sequentially (5 in parallel).
Evaluation: 10 (2) minutes for all K on all datasets sequentially (5 in
parallel). Notebook: 5 minutes. Training and evaluation can be done
in parallel if more than 2GB of VRAM available.

• Approximate time needed to complete experiments (CPU): Train-
ing: 125 hours for all K on all datasets sequentially. Evaluation: 10
minutes for all K on all datasets sequentially. Notebook: 5 minutes.
As PyTorch already uses multiple CPU cores during a single run,
training and evaluation cannot be done in parallel without GPU.

• Publicly available: Yes, public GitLab repository.
• Code license: GNU GPL v3.0.

A.3 Description
A.3.1 How to access. The code and datasets are publicly avail-
able on a public GitLab repository. The repository may be cloned by
running the following command:

git clone https://gitlab.com/DVMS_/DVMS.git

A.3.2 Software dependencies. Python3 is needed to run the
experiments and visualize the results. All the required libraries are
specified in a pip requirements file at the root of the repository. More
details are available in the repository README file.

A.3.3 Datasets. The datasets used for the experiment and men-
tioned in the article are already included in the repository and ready
to use. There is no need for additional download.

A.3.4 Model. An implementation of the DVMS-based architec-
ture that we propose in Sec. 4.3 is available in a single dedicated file
models/dvms.py and can be re-used separately. We also include
the code to train and test the model in the same conditions as we did
for reproducibility.

A.4 Installation
There is no need for specific installation apart from the required
libraries mentioned in Sec. A.3.2.

We recommend using a Python virtual environment by using the
Python venv module. More details are available in the repository
README or in the official Python documentation1.

A.5 Experiment workflow
A.5.1 Training the model. Training DVMS is done using the
--train flag of training_procedure.py. Examples of
commands to train the model are provided in train.sh. We also
provide trained weights of the model corresponding to every com-
mand in train.sh to allow for direct evaluation.

A.5.2 Evaluating the model. Evaluating DVMS is done using
the --evaluate flag of training_procedure.py. Examples of
commands to evaluate the model are provided in evaluate.sh.
Model weights resulting from a training with the same parameters
are necessary for model evaluation.

A.5.3 Visualizing the results. Visualizing the results is done
using the notebook under notebooks/visualize_error.ipynb.
First, start a Jupyter server by following the instructions in the
README. Running the notebook once the model has been evaluated
will generate one figure and one table for each dataset the model has
been tested on.

A.6 Evaluation and expected results
Notebook outputs are already provided and correspond to the outputs
obtained when running the evaluation on the provided model weights.
These outputs match the results presented in Fig. 8, Table 1, and
Table 2 of the article.

A.7 Experiment customization
The model can be re-trained using different command-line param-
eters as detailed when typing python training_procedure.py
-h. Internal parameters of the model may also be changed in the
constructor of the DVMS class in models/dvms.py.

A.8 Running the experiments without a GPU
If you do not have a GPU, the requirements are slightly different
and the version of PyTorch in the pip requirements file should be
changed, as detailed in the repository README file. Running the ex-
periments without a GPU also requires to change the command line
options of training_procedure.py. More details are available in
the repository README file.

1https://docs.python.org/3/library/venv.html
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