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a b s t r a c t 

Automatic image annotation is among the fundamental problems in computer vision and pattern recog- 

nition, and it is becoming increasingly important in order to develop algorithms that are able to search 

and browse large-scale image collections. In this paper, we propose a label propagation framework based 

on Kernel Canonical Correlation Analysis (KCCA), which builds a latent semantic space where correlation 

of visual and textual features are well preserved into a semantic embedding. The proposed approach is 

robust and can work either when the training set is well annotated by experts, as well as when it is noisy 

such as in the case of user-generated tags in social media. We report extensive results on four popular 

datasets. Our results show that our KCCA-based framework can be applied to several state-of-the-art la- 

bel transfer methods to obtain significant improvements. Our approach works even with the noisy tags of 

social users, provided that appropriate denoising is performed. Experiments on a large scale setting show 

that our method can provide some benefits even when the semantic space is estimated on a subset of 

training images. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

A lot of modern applications require image annotation to

search, access and navigate the huge amount of visual data stored

in personal collections or shared online. Whenever you want to re-

trieve photos from a particular concert, recall that pleasant sum-

mer day in which you napped on your comfortable hammock or

look up a person, it is automatic image annotation that enables a

plethora of useful applications. The exponential growth of media

on sharing platforms, such as Flickr or Facebook, has led to the

availability of a huge quantity of images that are enjoyed by mil-

lions of people. In such a huge sea of data, it is indispensable to

teach computers to correctly label the visual content and help us

search and browse image collections. 

In this paper, we tackle the challenging task of automatic image

annotation. Given an image, we want to assign a set of relevant la-

bels by taking into account image appearance and eventually some

prior knowledge on the joint distribution of visual features and la-

bels. Due to its importance, this is a very active subject of research

[1–8] . Previous work typically use images and associated labels to
∗ Corresponding author. 
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uild classifiers and then assign relevant labels to novel images.

he early works usually rely on images labeled by domain experts

2,3,9–11] , while recently several approaches use weak labels such

s user-generated tags in social networks [12–14] or query terms

n search engines [15,16] . 

Despite the source of the labeling, non-parametric models

hich rely on a nearest-neighbor based voting scheme have re-

eived a lot of attention for automatic image annotation [10,17–20] .

he main reason is that these methods have the ability to adapt

o complex patterns as more training data become available. To

nnotate a new image, they apply a common strategy: first, they

etrieve similar images in the training set, and second, they rank

abels according to their frequency in the retrieval set. Automatic

mage annotation is thus achieved by transferring the most fre-

uent labels in the neighborhood to the test image. This is essen-

ially a lazy learning paradigm in which the image-to-label asso-

iation is delayed at test time. In contrast, discriminative models

uch as support vector machines [21–24] or fully supervised end-

o-end deep networks [8] , require to define in advance the vocab-

lary of labels. This is particularly problematic in a large-scale sce-

ario, such as images on social networks, in which you may have

housands of labels that may also change or increase over time. 

Several issues may arise in a nearest-neighbor approach. The

et of retrieved images may contain many incorrect labels, mostly

ecause of the so-called semantic gap [25] . This happens because

isual features may not be powerful enough in abstracting the vi-
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Visual Space

Textual Space

sunset

clouds
sea

dog

flower

Semantic Space

Φ(v; t)

Fig. 1. Labels associated to the images can be used to re-arrange the visual fea- 

tures and induce the semantics not caught by the original features. For instance, 

the sunset images with the red border should be closer to images of clouds and 

sea, according to the text space. A projection �( v ; t ) is learned to satisfy correla- 

tions in visual and textual space. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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ual content of the image. Thus the proposed algorithms tend to

etrieve just the images whose features are very close in the vi-

ual space, but the semantic content is not well preserved. Re-

earchers tried to cope with this issue by improving visual fea-

ures. To this end, the most significant improvement has been the

hift from handcrafting features to end-to-end feature learning,

eading to current state-of-the art convolutional neural network

epresentations [26–28] . Nearest neighbors methods may also suf-

er when images are not paired with enough label information,

eading to a poor statistical quality of the retrieved neighborhood.

his is mostly due to the fact that label frequencies are usually un-

alanced. Modern methods address this issue by introducing label

enalties and metric learning [7,10,18] . 

The image representation can be improved also by shifting to a

ompletely different perspective, namely moving towards a multi-

odal representation. A way of bridging the semantic gap might

e by designing representations that account not just for the im-

ge pixels, but also for its textual representation. Here we follow

his approach by constructing a framework in which the correla-

ion between visual features and labels is maximized. To this end,

e present an automatic image annotation approach that relies on

ernel Canonical Correlation Analysis (KCCA) [29] . Our approach

trives to create a semantic embedding through the connection

f visual and textual modalities. This embedding lives in a latent

pace that we refer to as semantic space . Images are mapped to this

pace by jointly considering the visual similarity between images

n the original visual space, and label similarities. The projected

mages are then used to annotate new images by using a nearest-

eighbor technique or other standard classifiers. Fig. 1 illustrates

ur pipeline. The main take-home message is that, as illustrated in

he figure, the neighborhood of each image will contain more im-

ges associated with the same label (e.g. “sunset”) in the semantic

pace than in the original visual space (see for example the images

ith the red border). 

.1. Main contributions 

(1) The key contribution of our work is to improve image repre-

entations using a simple multimodal embedding based on KCCA.

his approach has several advantages over parametric supervised

earning. First, by combining a visual and textual view of the data,

e reduce the semantic gap. Thus we can obtain higher similar-

ties for images which are also semantically similar, according to

heir textual representation. Second, we are free from predetermin-

ng the vocabulary of labels. This makes the approach well suited

or nearest neighbor methods, which for the specific task of image

nnotation are more robust to label noise. A slight disadvantage
f our method is its inherent batch nature. Although, as shown in

ur experimental results, learning the semantic projection is also

ossible on a subset of the training data. 

(2) Previous works that learn multimodal representations from

anguage and imagery exist [30] , including prior uses of CCA and

CCA [29,31–33] . However, we are the first to propose a frame-

ork that combines the two modalities into a joint semantic space

hich is better exploitable by state-of-the-art nearest neighbor

odels. Interestingly enough, in our framework the textual infor-

ation is only needed at training time, thus allowing to predict

abels also for unlabeled images. 

(3) We provide extensive experimental validations. Our ap-

roach is tested on medium and large scale datasets, i.e. IAPR-TC12

34] , ESP-GAME [35] , MIRFlickr-25k [36] and NUS-WIDE [37] . We

how that our framework is able to leverage recently developed

NN features in order to improve the performance even further.

dditionally, we introduce a tag denoising step that allows KCCA to

ffectively learn the semantic projections also from user-generated

ags, which are available at no cost in a social media scenario. The

calability of the method is also validated with subsampling exper-

ments. 

This paper builds on our previous contribution on cross-modal

mage representations [38] and improves in many ways. We re-

ort new experimental evaluations covering the large dataset NUS-

IDE. Validate our pipeline with modern convolutional neural net-

ork based features. Extend our original approach with a new text

ltering method that allows the semantic space to be computed

rom noisy and sparse tags, such as that from social media. Report

ew insights on several key aspects such as performance and scal-

bility of our approach when subsampling the training set. 

. Related work 

.1. Automatic image annotation: Ideas and main trends 

Automatic image annotation is a long standing area of re-

earch in computer vision, multimedia and information retrieval

14] . Early works often used mixture models to define a joint dis-

ribution over image features and labels [1,3,39] . In these mod-

ls, training images are used as non-parametric density estimators

ver the co-occurrence of labels and images. Other popular prob-

bilistic methods employed topic models, such as pLSA or LDA,

o represent the joint distribution of visual and textual features

2,40,41] . They are generative models, thus they maximize the gen-

rative data likelihood. They are usually expensive or require sim-

lifying assumptions that can be suboptimal for predictive per-

ormance. Discriminative models such as support vector machines

SVM) and logistic regression have also been used extensively [22–

4,42] . In these works, each label is considered separately and a

pecific model is trained on a per-label basis. In testing, they are

sed to predict whether a new image should be labeled with the

orresponding label. While they are very effective, a major draw-

ack is that they require to define in advance the vocabulary of

abels. Thus, these approaches do not handle well large-scale sce-

arios in which you may have thousands of labels and the vocab-

lary may shift over time. 

Despite their simplicity, a class of approaches that has gained

 lot of attention is that of nearest-neighbor based methods

7,10,17,20] . Their underlying intuition is that similar images are

ikely to share common labels. Many of these methods start by re-

rieving a set of visually similar images and then they implement

 label transfer procedure to propagate the most common train-

ng labels to the test image. The most recent works usually imple-

ent also a refinement procedure, such as metric learning [7,10] or

raph learning [43–46] , in order to differently weight rare and

ommon labels or to capture the semantic correlation between la-
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2 In our preliminary experiments we found that this configuration gives the best 

results on all our datasets, although other networks gave similar results. 
bels. They are usually computationally intensive and do not model

the intermodal correlation between visual features and labels. In

contrast, we introduce a framework in which textual and visual

data are mapped to a common semantic space in which labels can

be transferred more effectively. 

2.2. Towards more powerful visual representations 

The most recent breakthrough in computer vision came from

end-to-end feature learning through convolutional neural net-

works. In their seminal paper, Krizhevsky et al. [26] demonstrated

unprecedented improvement in large-scale image classification on

ImageNet [47] using CNNs. These networks are composed of a hi-

erarchy of layers, alternating convolutions and subsampling. They

require high quality supervision with minimal noise in labeling.

Since then, many researchers have applied deep learning to other

visual recognition tasks such as object detection and image parsing

[48] . Deeper architectures have been recently proposed, showing

further gain in image classification accuracy (e.g. [27] ). 

Another interesting property of these architectures is that they

have the ability to learn representations that can be transferred

and used in many other tasks, such as attribute prediction and im-

age retrieval [49] . Convolutional neural networks (CNNs) have been

also recently applied to automatic image annotation [8] , showing

significant improvement in terms of precision and recall. On top

of these powerful features, a number of recent works have used

more advanced encoding schemes in order to improve feature gen-

eralization. For instance, VLAD encoding is applied in [50] to pool

multi-scale CNN features computed over different windows, while

Fisher Vector encoding applied to dense multi-scale CNN activa-

tions is used in [51] . This has been also improved in [52] by apply-

ing Fisher Vector to sparse boxes, selected by objectness or random

selection. However, all these approaches only focus on the visual

modality. 

2.3. Cross-media and multimodal representations 

A number of approaches have been developed for learning mul-

timodal representations from images and labels [1,3,12,30,53,54] .

In particular, we highlight that previous use of CCA and its vari-

ants exists, particularly for the task of cross-modal image re-

trieval [29,31–33,55,56] and multi-view learning [57,58] . This class

of methods is often used to learn multi-view embeddings in a

unimodal setting. For example, Yang et al. [57] use CCA to learn

a common representation from two views in the image space. A

more general approach is presented in [58] where a latent repre-

sentation of samples is learned from multiple views. Their frame-

work can be applied also to combine visual features or imagery

captured in different conditions. 

Hardoon et al. were the first to apply KCCA to image retrieval

with textual query [29] . Successively, Rasiwasia et al. [31] pro-

posed to employ LDA and CCA to perform cross-modal retrieval

on text and images obtaining improved results on single modal-

ities. In [32] , a method to learn importance of textual object is

proposed. They show that features such as word frequency, rel-

ative and absolute label rank are helpful to evaluate importance

of textual information. Multi-modal learning has been applied to

improve ranking in image retrieval fusing visual features and click

features in [56] . A three-way CCA is proposed in [33] to address

the limited expressiveness of CCA. They show that adding a third

view representing categories or clustered labels can improve re-

trieval performance. Murthy et al. [59] propose to combine CNN

features and word embeddings using CCA, but their approach is

only tested on small scale datasets using expert labels. Embed-

dings carry many advantages, nonetheless learning such coupled
epresentation may be extremely computationally expensive. Re-

ently, there have been some attempts at making such approaches

calable [53,60] . These on-line methods have usually low memory

ootprint, and scale very well to large dataset. Nonetheless, they

re not designed to tackle multi-label image annotation and they

re not able to learn from noisy examples such as tags extracted

rom social media. 

Differently from prior work, we tackle the specific problem of

ulti-label image annotation. For this task, only visual features are

vailable at test time. Thus, our approach exploits labels only at

raining time. To this end, we learn a re-organization of the visual

pace to that of a semantic space where images that share similar

abels are closer. Moreover, when combined to a nearest-neighbors

cheme, our approach can predict labels that were not available at

raining time, when the projections have been learned. 

. Approach 

Our key intuition is that the semantic gap of visual features can

e reduced by constructing a semantic space that comprises the

usion of visual and textual information. To this end, we learn a

ransformation that embeds textual and visual features into a com-

on multimodal representation. The transformation is learned us-

ng KCCA [29] . This algorithm strives to provide a common repre-

entation for two views of the same data. Similarly to [29,32] , we

se KCCA to connect visual and textual modalities into a common

emantic space , but differently from them, which focus on cross-

odal retrieval, our framework is designed to effectively tackle the

articular problem of image annotation. Moreover, we are able to

onstruct the semantic space even exploiting noisy labels, such as

he user tags. Advanced nearest neighbors methods are then used

o perform label transfer. An overview of the approach is shown in

ig. 2 . 

Throughout the paper, we use the term labels when we refer to

eneric textual information. We explicitly use the terminology ex-

ert labels and user tags when we refer only to the expert provided

abels or the tags provided by users in social network, respectively.

e now proceed in detailing the visual and textual representation,

ow KCCA is used to build the semantic space, and finally we de-

cribe our label transfer procedures. 

.1. Visual features 

We use a deep convolutional neural network pre-trained on Im-

geNet [47] with the VGG-Net architecture presented in [27] (using

6 layers). 2 We use the activations of the last fully connected layer

s image features. Such representation proved to be good for sev-

ral visual recognition and classification tasks [4 8,4 9] . 

Given an image I i , we first warp it to 224 × 224 in order to fit

he network architecture and subtract the training images mean.

e use this normalized image to extract the activations of the first

ully connected layer. Let φV ( I i ) be the extracted feature of I i . We

se the ArcCosine kernel: 

 

V 
n (φ

V (I i ) , φ
V (I j )) = 

1 

π
|| φV (I i ) || n || φV (I j ) || n J n (θ ) (1)

here J n is defined according to the selected order of the kernel.

ollowing [61] , we set n = 2 which gives us: 

 2 (θ ) = 3 sin θ cos θ + (π − θ )(1 + 2 cos 2 θ ) (2)

here θ is the angle between the inputs φV ( I i ), φ
V ( I j ). This ker-

el provides a representation that is better suited to neural net-

orks activations and gives better results. We also tried other ker-
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Fig. 2. Overview of our approach. Image and textual features are projected onto a common semantic space in which nearest-neighbor voting is used to perform label transfer. 
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els such as linear and radial basis function, obtaining a slightly

nferior performance ( ∼ 1%). 

.2. Textual features 

Depending on how labels are generated, i.e. expert labels or

ser-generated tags, we should use different approaches. While ex-

ert labels can be trusted, user-generated tags are noisy and re-

uire a more robust representation. 

.2.1. Expert labels 

For expert labels, we use simple binary indicator vectors as tex-

ual features. Let D be the vocabulary size, i.e. the number of labels

sed for annotation. We map each label set of a particular image I i 
o a D -dimensional feature vector φT (I i ) = [ w 

i 
1 
, · · · , w 

i 
D 

] , where w k 

s 0 or 1 if that image has been annotated with the corresponding

 th label l k . This results in a highly sparse representation. Then we

se a linear kernel which corresponds to counting the number of

abels in common between two images: 

 

T (φT (I i ) , φ
T (I j )) = 

D ∑ 

k =1 

w 

i 
k w 

j 

k 
. (3)

The basic idea is that we are considering the co-occurrences

f labels in order to measure the similarity between two images.

onetheless, this representation models each label independently

rom the others. It has been shown in previous works that exploit-

ng semantic relations by weighting each label differently can im-

rove performance [13,62] . Therefore, we explore two textual ker-

els that consider semantic relations between labels: an ontology-

ased textual kernel with bag-of-words [63] and one that exploits

he more recent continuous word vector representation [64] . For

he bag-of-words semantic kernel, the idea is to weight each label

n a linear kernel by using a similarity matrix S ∈ R 

D ×D as: 

 

T (φT (I i ) , φ
T (I j )) = φT (I i ) Sφ

T (I j ) T
 . (4)

e set the elements of S as the Lin similarity [65] between each

abel, using WordNet. This measure has been used successfully in

everal works to suggest similar labels (see [14] ). Regarding the

ontinuous word vector kernel, Mikolov et al. [64] recently showed

hat it is possible to learn a word representation from a large scale

orpus in an unsupervised way. The learned word vector features

ere proved to model semantics in form of regularities in several

pplications [53,59] . Given the learned representation of a label w k 

s ζ (w k ) ∈ R 

P , we represent the set of labels of an image I i using

verage pooling 

T (I i ) = 

1 

N 

D ∑ 

k 

w 

i 
k · ζ (l i k ) . (5)

inally, we apply a linear kernel on such representation: 

 

T (φT (I i ) , φ
T (I j )) = φT (I i ) φ

T (I j ) T
 . (6)

e compare the performance obtained with these three textual

epresentations in Section 4.6 . 
.2.2. Denoising user-generated tags 

For user-generated tags, we should first reduce the labeling

oise. To this end, we perform a “pre-propagation” step based on

isual similarity. The purpose of this tag denoising step is two-fold:

rst, we need to improve the quality of tags of each training im-

ge in order to learn a proper embedding; second, we need to cope

ith the sparsity of user tags. For the first issue, our assumption

s that by gathering a neighborhood of visually similar images the

ore frequent tags will fade out noisy tags in favor of content re-

ated ones. Regarding the sparsity issue, images usually are labeled

ith few tags and in extreme cases they can have no tags at all.

or this reason, the visual information is the most reliable infor-

ation we can exploit. 

Thus, we shall obtain a cleaner tag feature-vector ˆ φT (I i ) =
 ̂  w i, 1 , · · · , ˆ w i,D ] and then compute the textual kernel K 

T . We start

rom the representation φT (I i ) = [ w 

i 
1 
, · · · , w 

i 
D 

] , where w k is 0 or 1

f the image I i has been annotated with the corresponding tag t k .

or each image I i we consider the R = 100 most similar images, ac-

ording to the visual kernel K 

V (the same pre-computed in Eq. (1) ),

nd compute the new tag vector: 

ˆ T (I i ) = 

∑ R 
k =1 x k φ

T (I k ) ∑ R 
k =1 x k 

(7) 

here x k = exp (−|| φV (I i ) −φV (I k ) || 2 
σ ) is an exponentially decreasing

eight computed from image similarities. We set σ to the mean of

he distances. This improved tag vector can be seen as an approx-

mation of the probability mass function of tags among its nearest

eighbor images. We use the exp- χ2 kernel: 

 

T ( ̂  φT (I i ) , ˆ φT (I j )) = exp 

( 

− 1 

2 C 

D ∑ 

k =1 

( ̂  w i,k − ˆ w j,k ) 
2 

( ̂  w i,k + 

ˆ w j,k ) 

) 

(8)

here C is set to the mean of the χ2 distances. We demonstrate

n Section 4.5 that this pre-propagation step is essential to learn

he semantic embedding properly, as clearly shown by the results

eported in Table 6 . 

.3. Kernel canonical correlation analysis 

Given two views of the data, such as the ones provided by vi-

ual and textual features, we can construct a common multimodal

epresentation. We first briefly describe CCA and then move to

xplain the extended KCCA algorithm. CCA seeks to utilize data

onsisting of paired views to simultaneously find projections from

ach feature space so that the correlation between the projected

epresentations is maximized. 

More formally, given N training pairs of visual and textual fea-

ures { (φV (I 1 ) , φ
T (I 1 )) , . . . , (φ

V (I N ) , φ
T (I N )) } , the goal is to simul-

aneously find directions z ∗V and z ∗T that maximize the correlation

f the projections of φV onto z ∗
V 

and φT onto z ∗
T 

. This is expressed

s: 
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(a) CNN Features (b) KCCA + Expert Labels (c) KCCA + User Tags

Fig. 3. t-SNE visualization of images on MIRFlickr-25K with different features. Each color corresponds to a different label. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Baseline (b) Our Method

Fig. 4. Nearest neighbors found with baseline representation (a) and with our pro- 

posed method (b) for a water image (first highlighted in blue in both figures) from 

the MIRFlickr-25K dataset. Training images with ground truth label water are high- 

lighted with a green border. Nearest neighbors are sorted by decreasing similarity. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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z ∗V , z 
∗
T = arg max 

z V ,z T 

E[ 〈 φV , z V 〉〈 φT , z T 〉 ] √ 

E[ 〈 φV , z V 〉 2 ]E[ 〈 φT , z T 〉 2 ] 
= arg max 

z V ,z T 

z T  
V 

C v t z T √ 

z T  
V 

C vv z V z T
 

T 
C tt z T 

(9)

where E[ ·] denotes the empirical expectation, while C vv and C tt re-

spectively denote the auto-covariance matrices for φV and φT , and

C vt denotes the between-sets covariance matrix. 

The CCA algorithm can only model linear relationships. As a re-

sult, KCCA has been introduced to allow projecting the data into

a higher-dimensional feature space by using the kernel trick [29] .

Thus, the problem is now to search for solutions of z ∗
V 

and z ∗
T 

that

lie in the span of the N training instances φV ( I i ) and φT ( I i ): 

z ∗V = 

N ∑ 

i =1 

αi φ
V (I i ) , z ∗T = 

N ∑ 

i =1 

βi φ
T (I i ) . (10)

The objective of KCCA is to identify the weights α, β ∈ R 

N that

maximize: 

α∗, β∗ = arg max 
α,β

αᵀ K 

V K 

T β√ 

αᵀ (K 

V ) 2 αβᵀ (K 

T ) 2 β
(11)

where K 

V and K 

T denote the N × N kernel matrices over a sam-

ple of N pairs. As shown by Hardoon et al. [29] , learning should

be regularized in order to avoid trivial solutions. Hence, we penal-

ize the norms of the projection vectors and obtain the generalized

eigenvalue problem: 

(K 

V + κ I) −1 K 

T (K 

T + κ I) −1 K 

V α = λ2 α (12)

where κ ∈ [0, 1]. The top M eigenvectors of this problem yield

bases A = [ α1 . . . αM 

] and B = [ β1 . . . βM 

] that we use to compute

the semantic projections of training and test kernels. For each pair

( αj , β j ) of the given bases, the corresponding eigenvalue r j mea-

sures the correlation between projected input pairs. Higher r j is

associated with higher correlation, thus it is convenient to weight

more the dimensions of higher energy. According to this principle,

we obtain the final features as: 

ψ(I) = (K 

V A ) R (13)

where R = diag ([ r 1 , . . . , r M 

]) . Note that ψ has no dependency on

the textual space. Thus, projecting new test images requires only

their visual features �V , making our approach suitable for auto-

matic image annotation. 

In Fig. 3 we show t-SNE embeddings [66] of the CNN features

and their projection into the semantic space. These plots quali-

tatively show that KCCA improves the separation of the classes,

both in case of expert labels and user-generated tags. This leads to

a more accurate manifold reconstruction and, as our experiments

will confirm, a significant improvement in performance. 
.4. Label transfer 

The constructed semantic space assures that similar images,

n visual space or in textual space, have also similar features.

his property is especially useful for the class of nearest-neighbor

ethods, since they rely on the intuition that similar images share

ommon labels. We show examples of this property in Fig. 4 . We

ompare the neighbors retrieved for the same query using the

aseline visual features and the semantic space features from our

ethod. The query, depicted in a blue box, is an image of water

here green and red lights produce a fascinating visual effect. The

ther images are the most similar images retrieved by one of the

wo settings. We put a box in green on images that have the cor-

ect label “water” associated. We see that neighbors retrieved in

he baseline space share some visual similarity: they mostly have

reen and red colors, some line or dotted patterns that mimic the

uery image. However only one image is really about water. Our

ethod, instead, successfully retrieves 8 of 11 images with the la-

el water, even if they are quite dissimilar in the visual space.

ndeed, it is impossible with the images in Fig. 4 (a) to obtain a

eaningful neighborhood since the correct label “water” is not fre-

uent enough to be relevant in the final labels rank. 

A quantitative characterization of this behavior can be seen

omparing the sets of labels of images in the neighborhood of a

est image with the correct labels of the image itself. We run an

xperiment on NUS-WIDE, measuring this similarity using Jaccard

istance. Specifically, for each image ˆ x of the test set, we retrieve



T. Uricchio et al. / Pattern Recognition 71 (2017) 144–157 149 

0 10 20 30 40 50 60 70 80 90 100
K Neighbors

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

M
ea

n 
Ja

cc
ar

d 
S

im
ila

rit
y

KCCA
Baseline

Fig. 5. Mean Jaccard similarity between label sets of a test image and the label 

sets of images in the neighborhood build using visual and KCCA features varying 

the neighborhood size. 
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he K most similar images { x 1 , x 2 , . . . , x K } using the visual features

nd then compute the mean Jaccard similarity between their sets

f labels as: 

1 

K 

K ∑ 

i =1 

J( ̂  Y , Y i ) = 

1 

K 

K ∑ 

i =1 

| ̂  Y ∩ Y i | 
| ̂  Y | + |Y i | − | ̂  Y ∩ Y i | , 

here ˆ Y and Y i are, respectively, the set of labels of ˆ x and x i . We

ompute this measure for each test image and average them in a

nal similarity index as reported in Fig. 5 . 

The higher Jaccard similarity yielded by KCCA features with

espect to baseline visual features, shows that the neighbors re-

rieved using KCCA have a label distribution which is closer to the

ne of the query. 

Following this key idea, we have used four nearest-neighbor

oting algorithms in our semantic space in order to automatically

nnotate images. Nevertheless, we expect that other general class

f learning algorithms may take advantage of the semantic space.

o this end, we also consider the off-the-shelf SVM classifier. Given

n image and a vocabulary of labels, each algorithm performs auto-

atic image annotation by applying a particular relevance function

14] , as defined in the following. 

.4.1. Nearest-neighbor voting 

The most straightforward approach is to project the test image

nto the semantic space, and then identify its K nearest-neighbors.

ere we rank the vocabulary labels according to the their fre-

uency in the retrieval set. Thus, the relevance function is defined

s: 

f KNN (I, t) := k t (14)

here k t is the number of images labeled as t in the neighborhood

f I . 

.4.2. Tag relevance 

Li et al. [18] proposed a relevance measure based on the con-

ideration that if several people label visually similar images using

he same labels, then these labels are more likely to reflect ob-

ective aspects of the visual content. Following this idea it can be

ssumed that, given a query image, the more frequently the tag oc-

urs in the neighbor set, the more relevant it might be. However,

ome frequently occurring labels are unlikely to be relevant to the

ajority of images. To account for this fact, the proposed tag rele-

ance measurement takes into account both the number of images

ith tag t in the visual neighborhood of I (namely k t ) and in the

ntire collection: 

f TagVote (I, t) := k t − K 

n t 

|S| (15)

here n t is the number of images labeled with t in the entire col-

ection S and K is the number of neighbors retrieved. 
.4.3. TagProp 

Guillaumin et al. [10] proposed an image annotation algorithm

n which the main idea is to learn a weighted nearest neighbor

odel, to automatically find the optimal metric that maximizes

he likelihood of a probabilistic model. The method can learn rank-

ased or distance-based weights: 

f TagProp (I, t) := 

K ∑ 

j 

π j · I(I j , t) (16)

here K is the number of neighbors retrieved, I is the indicator

unction that returns 1 if I j is labeled with t , and 0 otherwise; π j 

s a learned weight that accounts for the importance of the j th

eighbor I j . In addition the model can be extended with a logis-

ic per-tag model to promote rare labels and suppress the frequent

nes. 

.4.4. 2PKNN 

Verma and Jawahar [7] formulated the problem as a probabilis-

ic framework and proposed a two-phase approach: given a test

mage, a first phase is employed to construct a balanced neighbor-

ood. Then, a second phase uses image distances to perform the

ctual estimation of the tag relevance. Given a test image I and a

ocabulary of D labels, the first phase collects a set of neighbor-

oods N (I) composed of the nearest M training images annotated

ith each t in D . On the second phase, the balanced neighborhood

s used to estimate the tag relevance of t to I : 

f 2 PKNN (I, t) := 

∑ 

I j ∈N (I) 

exp (−d(I, I j )) · I(I j , t) (17)

here d ( I, I j ) is a distance function between image I and I j . Since

he distance function is parameterized with a trainable weight for

ach dimension, the algorithm presented in [7] also performs met-

ic learning similarly to TagProp (we refer to the complete algo-

ithm as to 2PKNN-ML). We only consider the version without

etric learning, since our implementation of 2PKNN-ML performs

orse than 2PKNN. 

.4.5. SVM 

For each label, a binary linear SVM classifier is trained using the

2-regularized least square regression, similarly to [67] . Indepen-

ently from the source of labels, be it expert labels or user tags,

he images with the label are treated as positive samples while the

thers as negative samples. To efficiently train our classifier we use

tochastic gradient descent (SGD). The relevance function is thus:

f SV M 

(I, t) := b + 〈 w t , ψ(I) 〉 , (18)

here w t are the weights learned for label t and b is the intercept.

. Experiments 

.1. Datasets 

Automatic image annotation with expert labels has been histor-

cally benchmarked with three datasets: Corel5K, ESP-GAME and

APR-TC12. We follow previous work but discard Corel5K since it is

utdated and not available publicly. Note that these datasets have

oor quality images and they lack metadata as well as user tags.

hus, we additionally consider two popular datasets collected from

lickr, i.e. MIRFlickr-25k and NUS-WIDE. Dataset statistics are sum-

arized in Table 1 . 

ESP-GAME. The ESP-GAME dataset [35] was built through an

nline game. Two players, not communicating with each other, de-

cribe images through labels and obtain points when they agree on

he same terms. Since the image is the only media the players see,

hey are pushed to propose visually meaningful labels. Following
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Table 1 

Datasets statistics. 

Dataset Images Labels Tags Expert User 

Labels Tags 

IAPR-TC12 19,627 291 – � –

ESP-GAME 20,770 268 – � –

MIRFlickr-25k 25,0 0 0 18 1386 � � 

NUS-WIDE 269,648 81 5018 � � 
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previous work, we used the same split of [10] consisting of 18,689

images for training and 2,081 for test. There is an average of 4.68

annotated labels per image out of 268 total candidates. 

IAPR-TC12. This dataset was introduced in [34] for cross-

language information retrieval. It is a collection of 19,627 images

comprised of natural scenes such as sports, people, animals, cities

or other contemporary scenes. Like previous work, we used the

same setting as in [10] . It consists of 17,665 training images and

1,962 testing images. Each image is annotated with an average of

5.7 labels out of 291 candidates. 

MIRFlickr-25K. The MIRFlickr-25K dataset [36] has been in-

troduced to evaluate keyword-based image retrieval. It contains

25,0 0 0 images downloaded from Flickr, 12,500 images for train-

ing and the same amount for testing. For each image, the presence

of 18 labels are available as expert labels as well as user tags (we

consider the same labels as in [67] ). They are annotated with an

average of respectively 2.78 expert labels and 8.94 user tags. Note

that tags corresponding to the expert labels are very scarce in this

dataset. Beside tag annotations, EXIF information and other meta-

data such as GPS are available. While the ground-truth labels are

exact, the user tags are weak, noisy and overly personalized. More-

over, not all of them are relevant to the image content. We used

the same training and test sets as in previous work [67] . 

NUS-WIDE. The NUS-WIDE dataset [37] is composed of 269,648

images retrieved from Flickr. Similarly to MIRFlickr, 81 labels are

provided as expert labels as well as user tags. Images are anno-

tated with an average of 2.40 expert labels and 8.48 user tags, re-

spectively. NUS-WIDE is one of the largest datasets of images col-

lected from social media. The sparsity of labels and user tags is one

of the main challenges in exploiting this dataset as a training set.

Moreover the distribution of labels is unbalanced with few con-

cepts being present in almost 80% of the images: “sky”, “clouds”,

“person” and “water”. Following previous work, we discard images

without any expert label [8] , leaving us with 209,347 images that

we further split into ∼ 125K for training and ∼ 80K for testing, by

using the split provided by the authors of the dataset. 

4.2. Evaluation protocol 

The performance of automatic image annotation on these

datasets has been measured with different metrics. Therefore, for

each dataset, we carefully follow previous work protocols. We em-

ploy four popular metrics to assess the performance of our algo-

rithm and compare to existing approaches. 

Image annotation is usually addressed by predicting a fixed

number of labels, n , per image (e.g. n = 3 , n = 5 ). We compute pre-

cision (Prec@ n ) and recall (Rec@ n ) by averaging these two metrics

over all the labels. Considering that image ground-truth labels may

be less or more than n , and we are constrained by this setup to

predict n labels, perfect precision and recall can not be obtained.

We also report results using Mean Average Precision (MAP), which

takes into account all labels for every image, and evaluates the full

ranking. First, we rank all test images according to the predicted

relevance to compute AP for each label, then we report the mean

value of AP over all labels. Finally we report N + which is often

used to denote the number of labels with non-zero recall. N+ is an
nteresting metric when the set of labels has a moderate to high

ardinality, otherwise it tends to saturate easily not providing ade-

uate information on a method. It has to be noted that each met-

ic evaluates very different properties of each method. Therefore

 method hardly dominates over the competition on every metric.

ome methods, by design, provide better Recall or Precision than

thers. 

For IAPR-TC12 and ESP-GAME, the standard protocol is to report

rec@5, Rec@5 and N+ [9,17] . For completeness we report MAP on

hese two datasets although, as can be seen in Table 2 , few previ-

us work also report this metric. 

For MIRFlickr, considering that annotated labels are used to per-

orm image retrieval, the few existing works report only the MAP

67] . We also report Prec@5 and Rec@5. Considering the low car-

inality of the tag vocabulary (18), N+ is not reported for this

ataset. 

For NUS-WIDE, performances are usually reported either as

AP or precision and recall. Since NUS-WIDE has a lower average

umber of labels per image than IAPR-TC12 and ESP-GAME, we re-

ort results with n = 3 labels, as in [8,13] . 

.3. Implementation details and baselines 

In order to avoid degeneracy with non-invertible Gram matri-

es and to increase computational efficiency, we approximate the

ram matrices using the Partial Gram-Schmidt Orthogonalization

PGSO) algorithm provided by Hardoon et al. [29] . In all the ex-

eriments we have empirically fixed κ = 0 . 5 (see Eq. (12) ) since

t gave the best performance in early experiments on IAPR-TC12.

e use approximate kernel matrices given by the PGSO algorithm,

here we consider at most 4,096 dimensions (i.e. the dimension of

he semantic space). Thus the dimensionality of ψ( I ) in Eq. (13) is

,096. In this case, the distance between two images is defined as

he cosine distance between ψ features. 

Since our approach is based on semantic space built from visual

ata and the available labels, we consider as baselines the label

ransfer methods trained on the bare visual features. The distance

etween two images I q and I i is defined as d(I q , I i ) = 1 − K 

V (I q , I i ) ,

here K 

V is the visual kernel described in Eq. (1) , normalized with

alues in [0, 1]. 

The number of nearest neighbors K and the C of SVM were fixed

y performing a 3-fold cross-validation on the training set for each

ataset. 

.4. Experiment 1: Performance with expert labels 

As a first experiment we analyze the performance of our

ethod when the semantic space is built from expert labels. In

ables 2–4 we report the performance of the state of the art, the

ve methods ran in the visual feature space and in the seman-

ic space, respectively. Our best result is superior to the state of

he art on NUS-WIDE and MIRFlickr-25K while it is comparable to

ore tailored methods on IAPR-TC12 and ESP-GAME. 

Table 2 shows the performance of the state of the art meth-

ds, the baselines and our approach on IAPR-TC12 and ESP-GAME.

e first note that the majority of previous works report results

ith 15 handcrafted features (HC) [10] while we use the more re-

ent VGG16 CNN activations, the same as [59] . By exploiting this

eature, simple nearest neighbor methods like NNvot and TagRel

each a higher Prec@5 and Rec@5 compared to the similar JEC-15

17] which uses a combination of HC features. Our baseline Tag-

rop has a slight inferior performance to that reported in [10] ,

robably due to the lower number of learnable parameters, having

nly one single feature versus 15. Comparing our approach ver-

us the baselines, we observe that all metrics consistently report

igher values when label transfer is applied in the semantic space.
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Table 2 

Results of our method compared to the state of the art on IAPR-TC12 and ESP-GAME, using expert labels . 

Method Visual Feat IAPR-TC12 ESP-GAME 

MAP Prec@5 Rec@5 N + MAP Prec@5 Rec@5 N + 

State of the art: 

MBRM [39] HC – 24 23 223 – – – –

JEC-15 [17] HC – 29 19 211 – – – –

TagProp [10] HC 40 46 35 266 28 39 27 239 

GS [5] HC – 32 29 252 – – – –

RF-opt [68] HC – 44 31 253 – – – –

2PKNN-ML [7] HC – 54 37 278 – 53 27 252 

KSVM-VT [24] HC – 47 29 268 – 55 25 259 

SKL-CRM [69] HC – 47 32 274 – 41 26 248 

CCA-KNN [59] VGG16 – 41 34 273 – 44 32 254 

RLR [42] Alexnet – 46 41 277 – – – –

Baselines: 

NNvot VGG16 36 39 29 239 28 31 28 232 

TagRel VGG16 35 34 35 262 30 29 31 240 

TagProp VGG16 38 40 32 257 32 34 32 241 

2PKNN VGG16 41 41 39 276 36 43 36 257 

SVM VGG16 34 31 29 221 31 29 30 224 

Our Approach: 

KCCA + NNvot VGG16 40 44 34 250 34 38 34 240 

KCCA + TagRel VGG16 40 41 37 259 35 33 37 249 

KCCA + TagProp VGG16 41 44 34 257 37 38 36 247 

KCCA + 2PKNN VGG16 43 49 38 278 39 45 39 260 

KCCA + SVM VGG16 41 44 35 252 37 38 37 251 

Table 3 

Results of our method compared to the state of the art on the 

dataset MIRFlickr-25K, using expert labels . 

Methods Visual Feat MIRFlickr-25K 

MAP Prec@5 Rec@5 

State of the art: 

TagProp [67] HC 46.5 – –

SVM [67] HC 52.3 – –

Autoencoder [30] HC 60.0 – –

DBM [30] HC 60.9 – –

MKL [54] HC 62.3 – –

Baselines: 

NNvot VGG16 69.9 44.7 69.2 

TagRel VGG16 68.9 41.5 72.1 

TagProp VGG16 70.8 45.5 70.1 

2PKNN VGG16 66.5 46.4 70.9 

SVM VGG16 72.7 38.8 72.4 

Our Approach: 

KCCA + NNvot VGG16 72.9 46.1 73.1 

KCCA + TagRel VGG16 70.7 45.2 72.6 

KCCA + TagProp VGG16 73.0 44.6 74.1 

KCCA + 2PKNN VGG16 67.7 47.3 74.6 

KCCA + SVM VGG16 73.0 38.9 75.0 
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Table 4 

Results on the NUS-WIDE dataset using expert labels . 

Methods Visual Feat NUS-WIDE 

MAP Prec@3 Rec@3 

State of the art: 

CNN + SoftMax [8] RGB – 31.7 31.2 

CNN + WARP [8] RGB – 31.7 35.6 

CNN + NNvot [13] BLVC 44.0 44.4 30.8 

CNN + logistic [13] BLVC 45.8 40.9 43.1 

MIE Ranking [70] BLVC – 37.9 38.9 

MIE Full Model [70] BLVC – 37.8 40.2 

Baselines: 

NNvot VGG16 49.3 39.6 44.0 

TagRel VGG16 49.2 32.1 50.3 

TagProp VGG16 50.9 41.3 44.6 

2PKNN VGG16 48.0 39.7 52.2 

SVM VGG16 50.2 34.6 60.6 

Our Approach: 

KCCA + NNvot VGG16 51.7 40.2 50.5 

KCCA + TagRel VGG16 51.4 34.4 57.2 

KCCA + TagProp VGG16 52.2 45.2 49.2 

KCCA + 2PKNN VGG16 50.7 53.0 47.0 

KCCA + SVM VGG16 51.8 43.3 48.4 
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his suggests that classes in the semantic space are easier to sep-

rate. We reach our best result on IAPR-TC12 and ESP-GAME with

CCA + 2PKNN, still inferior to 2PKNN-ML [7] that is additionally

pplying metric learning. 

Table 3 shows our results on the MIRFlickr-25k dataset. Again,

e first note that by simply switching from HC features to VGG16,

 large boost of MAP is obtained. Focusing on TagProp and SVM

aselines, which are directly comparable with previous work [67] ,

AP increases from 52.3 to 72.7 and from 46.5 to 70.8, re-

pectively. This is consistent with recent literature that suggests

NN activations are way more powerful than handcrafted fea-

ures. We also report the experimental results of [30] , obtained

sing autoencoders and multimodal Deep Boltzmann Machines,

nd [54] (semi-supervised multimodal kernel learning), which are

he previous state-of-the-art results on this dataset. Applying our

CCA-based framework to the five methods results in a general-

zed improvement of all metrics, especially on the four nearest
eighbor schemes. The best MAP is obtained by KCCA + SVM that

eaches a score of 73.0, higher than the best baseline. Interestingly,

CCA + NNvot and KCCA + TagProp reach a score of 72.9, that is

igher than the best baseline SVM. We can observe that our se-

antic space improves both Rec@5 and Prec@5, specifically an av-

rage increase of 3.1 for Rec@5 and of 2.1 of Prec@5 can be mea-

ured for all 5 baseline methods. 

We report in Table 4 the results of the comparison on the large-

cale NUS-WIDE dataset. Previous works used BLVC (Caffe refer-

nce model) features (e.g. [13] ) while we use VGG16, but this

oes not provide significant differences in performance. Moreover

ong et al. [8] attempted to train the network from scratch, ob-

aining an inferior performance with respect to pre-trained fea-

ures on ImageNet [8,13] . A higher score of Rec@3 is observed in

ll our experiments with respect to the state of the art. This sug-

ests that our approach is able to work with unbalanced distribu-

ion of labels, and improves recall of rare labels. KCCA + TagProp
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Table 5 

Results on the MIRFlickr-25k and NUS-WIDE datasets using user tags . 

Methods Visual Feat MIRFlickr-25k NUS-WIDE 

MAP Prec@5 Rec@5 MAP Prec@5 Rec@5 

State of the art: 

SVM v [67] HC 35.4 – – – – –

SVM v + t [67] HC 37.9 – – – – –

TagProp [67] HC 38.4 – – – – –

FisherBoxes [52] VGG128 54.8 – – 39.7 – –

Baselines: 

NNVot VGG16 59.3 34.2 67.1 43.1 30.1 46.3 

TagRel VGG16 59.2 34.8 68.0 42.5 27.9 49.7 

TagProp VGG16 58.1 33.5 66.0 42.8 28.4 50.2 

2PKNN VGG16 51.4 35.9 67.1 41.2 37.5 43.7 

SVM VGG16 43.8 40.0 50.8 35.5 30.4 45.2 

Our Approach: 

KCCA + NNvot VGG16 60.6 35.4 68.8 43.7 36.3 48.0 

KCCA + TagRel VGG16 59.8 37.2 68.5 43.5 29.0 55.1 

KCCA + TagProp VGG16 59.7 33.6 67.4 42.9 29.3 51.3 

KCCA + 2PKNN VGG16 56.8 42.9 65.4 42.0 56.9 34.0 

KCCA + SVM VGG16 47.1 37.5 56.5 41.6 37.9 47.6 
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Fig. 6. MAP difference of the four methods trained with KCCA on ESPGame, IAPR- 

TC12, MIRFlickr -25k and NUS-WIDE. KCCA is trained using expert labels . 
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is the overall best method on this dataset, even superior to SVM

that is commonly recognized as better than kNN-based methods

for classification. 

In summary, our framework is always able to improve perfor-

mance in all datasets with every metric. This is an important re-

sult since each particular metric captures different properties. On

smaller datasets, such as IAPR-TC12 and ESP-GAME, metric learning

based approaches [7,10] take more advantage from using 15 dif-

ferent but weaker features then a single, stronger one, as we do.

Although on larger and more challenging datasets, such as MIR-

Flickr and NUS-WIDE, this effect is largely moderated. Finally, Fig. 6

shows the difference of MAP between the semantic space and their

baseline, for all the five methods. We highlight that the improve-

ment is generally higher on IAPR-TC12 and ESP-GAME, where fewer

training examples are available. In particular, SVM has the largest

gain followed by the simpler NNvot and TagRel. This might be be-

cause these methods suffer on rare concepts due to sample insuf-

ficiency. 

4.5. Experiment 2: Performance with user tags 

We now turn our attention to the more difficult setting of noisy

user tags. Instead of using expert labels, we rely on user tags as

training labels and repeat the same experiments of Section 4.4 .

Only MIRFlickr-25k and NUS-WIDE provide user tags, therefore we

report results on these datasets. 

Table 5 shows the performance of the state of the art, the base-

lines and our approach on MIRFlickr-25k and NUS-WIDE. As previ-

ously noted, changing the features from HC to VGG16 has a strong
ositive impact. Comparing the methods ran in the semantic space

o the baselines ran on the bare visual feature, we observe that ev-

ry metric is generally improved. FisherBoxes [52] uses improved

eatures with the same TagProp algorithm, as our baseline. Since

ur TagProp MAP is higher than FisherBoxes, this suggests that

GG16 features alone are more powerful than the combinations of

GG128 boxes. SVM is inferior to nearest neighbor techniques in

erms of MAP while having comparable precision and recall. Con-

istently to expert labels results, 2PKNN performs poorly on NUS-

IDE. In the first phase few images per label are selected, thus

educing its power to address the high visual variability of images

ith frequent labels. We also note that all scores are lower than

hose reported with expert labels in Tables 3 and 4 . In particular

VM MAP is the most hampered. This is expected given the noise

n user tags, and was also noted in previous work [67] . 

In Fig. 7 we report the relative MAP difference of the five meth-

ds with our technique and the baselines. We observe that largest

ains are obtained with 2PKNN and SVM. We believe this is due to

he fact that 2PKNN and SVM have numerous learning parameters

hat are likely to generate complex boundaries with label noise. In

ontrast, the other three schemes have few or no parameters at all.

his suggests that features in the semantic space have also some

obustness to tag noise. 

We believe that such robustness is partially due to the denois-

ng algorithm. To confirm this, we perform an ablation study on

IRFlickr-25k with the same settings as before, except that we

mit the pre-propagation step. We report in Table 6 the MAP of

hree different cases: (i) the baseline methods (Baseline); (ii) our
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Table 6 

Ablation study on the denoising method. Results are in 

terms of MAP. 

Methods MIRFlickr-25k 

Baseline KCCA - NoPreProp KCCA 

NNvot [17] 59.3 56.2 60.6 

TagRel [18] 59.2 54.5 59.8 

TagProp [10] 58.1 54.9 59.7 

2PKNN [7] 51.4 42.9 56.8 

SVM [10] 43.8 41.3 47.1 
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Fig. 8. MAP of NN-voting, TagRel and TagProp trained with KCCA on ESPGame, 

IAPR-TC12, MIRFlickr-25k and NUS-WIDE varying the number of nearest neighbors. 

KCCA is trained with expert labels . Dashed lines represent baseline methods. 
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trained with user tags . Dashed lines represent baseline methods. 
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pproach without the pre-propagation step (KCCA - NoPreProp);

iii) our full approach (KCCA). We observe that avoiding the de-

oising step leads to an inferior MAP, even less than the baseline

ase. This confirms that, in presence of excessive sparsity like that

n MIRFlickr-25k, KCCA alone is unable to improve the visual fea-

ures. 

.6. Experiment 3: Performance with different textual features 

In this section, we compare the performance of the three pro-

osed textual kernels, defined in Section 3.2.1 , on expert labels:

 bag-of-words linear kernel ( Linear ), a semantic ontology-based

ernel ( Ontology ) and a continuous word vector kernel ( Word2Vec ).

ere we perform an experiment with the same settings as exper-

ment 1 ( Section 4.4 ), but the Linear kernel is swapped with the

ntology or Word2Vec kernels. For the Ontology kernel we use

ordNet as the underlying ontology while for Word2Vec we em-

loy the pre-trained word vectors on news article. In Table 7 , we

eport results on the two largest datasets MIRFlickr-25k and NUS-

IDE, but similar results were obtained on ESP-Game and IAPR-

C12. 

We observe that all methods have better performance than the

aseline when using our approach, regardless of the textual kernel.

ome combinations of kernels and methods favor one metric over

he others, although the Linear Kernel has almost always the best

AP. Nevertheless, these slight differences in performance do not

uggest a superiority of a kernel over the others. We believe that

urther studies on how to integrate label relations in KCCA are re-

uired, leaving the problem of choosing a better textual kernel for

CCA open. 

.7. Experiment 4: Varying the size of neighborhood 

Nearest neighbor methods proved to be well performing on all

ettings we considered. Although they are simple and do not re-

uire much training, they still depend on choosing the right num-

er K of nearest neighbors. Thus, we conduct an evaluation of how

 affect the performance for both our approach and the baselines.

ince SVM does not use neighbors, we only perform this evaluation

n NNvot, TagRel, TagProp and 2PKNN. 

We report in Figs. 8 and 9 the MAP scores when using the ex-

ert labels and the user tags, respectively. As can be seen from

oth figures, the KCCA variant of the nearest neighbor methods

solid lines) have systematically better MAP than baselines, for any

umber of neighbors used. As expected, MAP scores are lower

hen using user tags ( Fig. 9 ). Nevertheless, a gain is observed

or each method with any number of neighbors selected. This

gain confirms that features in the semantic space are better re-

rranged, since images with similar semantics are closer in this

pace. 

.8. Experiment 5: Scaling by subsampling the training set 

One key issue with KCCA is that it can be onerous to scale the

raining over millions of images. The most expensive effort is car-
ied out in the training phase where the projection vectors are es-

imated. At test time, the computational cost is negligible since it

s only given by the multiplication of the features with the esti-

ated projection vectors. 

As also noted by Hardoon et al. [29] , big training sets with large

ernel matrices can lead to computational problems. Two main is-

ues arise: (i ) high computational cost to compute the generalized

igenvalues problem, and (ii ) the memory footprint of handling

arge kernel matrices. 

For the first issue, we compute only a reduced number of di-

ensions in the semantic space by using partial Gram-Schmidt or-

hogonalization (PGSO), i.e. we solve the generalized eigenvalues

ith an incomplete Cholesky factorization of the kernel matrices.

his is a reasonable approximation because the projection is built

p as the span of a subset of independent projections, and it re-

onstructs a limited amount of energy. 

For the second issue, the memory footprint increases quadrat-

cally with the number of training images. In this section we ex-

lore the possibility of using a subsample of the training set to

anage also this problem. To this end, we randomly select a sub-

et of size M from the original training set used to train KCCA,

nd obtain the projections. Then we use them to project the full

raining set and test the methods in this approximate semantic

pace. We run the experiment only on NUS-WIDE since it has the

ighest number of images. The whole experiment is repeated with

ve different splits in the two settings of using expert labels or

ser tags. Note that this setting is different from the one used in
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Table 7 

Results of our method with the Linear, Ontology and Word2Vec textual kernels on MIRFlickr-25k and 

NUS-WIDE, using expert labels . 

Method Textual Kernel MIRFlickr-25k NUS-WIDE 

MAP Prec@5 Rec@5 MAP Prec@5 Rec@5 

Baselines: 

NNvot – 69.9 44.7 69.2 49.3 39.6 44.0 

TagRel – 68.9 41.5 72.1 49.2 32.1 50.3 

TagProp – 70.8 45.5 70.1 50.9 41.3 44.6 

2PKNN – 66.5 46.4 70.9 48.0 39.7 52.2 

SVM – 72.7 38.8 72.4 50.2 34.6 60.6 

Our Approach: 

KCCA + NNvot Linear 72.9 46.1 73.1 51.7 40.2 50.5 

KCCA + NNvot Ontology 72.5 46.6 72.3 51.2 46.7 46.3 

KCCA + NNvot Word2Vec 72.3 46.9 73.4 50.6 40.8 50.1 

KCCA + TagRel Linear 70.7 45.2 72.6 51.4 34.4 57.2 

KCCA + TagRel Ontology 70.6 47.4 73.9 49.5 35.9 54.3 

KCCA + TagRel Word2Vec 70.9 47.2 74.2 49.8 34.9 57.0 

KCCA + TagProp Linear 73.0 44.6 74.1 52.2 45.2 49.2 

KCCA + TagProp Ontology 72.7 44.6 73.7 51.7 45.2 48.1 

KCCA + TagProp Word2Vec 72.9 45.3 73.8 51.6 40.9 50.6 

KCCA + 2PKNN Linear 67.7 47.3 74.6 50.7 53.0 47.0 

KCCA + 2PKNN Ontology 65.7 44.1 76.1 49.2 46.3 51.1 

KCCA + 2PKNN Word2Vec 66.2 44.2 75.7 48.9 47.3 51.4 

KCCA + SVM Linear 73.0 38.9 75.0 51.8 43.3 48.4 

KCCA + SVM Ontology 71.4 39.3 73.0 51.4 44.7 46.7 

KCCA + SVM Word2Vec 71.8 39.5 74.1 50.2 42.7 47.7 

NNVot TagRel TagProp
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Fig. 10. Qualitative results of the baseline methods and our proposed representation on IAPR-TC12. Labels ordered according to their relevance scores. 
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Sections 4.4 and 4.5 for NUS-WIDE, where we used the split pro-

vided by the authors of the dataset. 

Fig. 11 shows the MAP scores obtained with a subset of the

training data. We report results by increasing M from 100 to the

full training set size (with exponential steps). Using more training

data, we expect the quality of the projections to be improved. Ei-

ther with expert labels or user tags, more the training data, the

better the projections obtained. We note that a minimum quantity

of data is required to obtain a performance higher than the base-

line; this corresponds to the point in the figure in which the corre-
ponding dashed and solid lines intersect each other. The specific

ubset of training data depends on the method and on the quality

f the annotations. When expert labels are available, NNvot and

agRel obtains an improvement even with a very small amount

f training images. In contrast, TagProp requires more data to gain

AP because of its rank learning phase. This means that our ap-

roach can provide some improvements even when very few la-

eled images are available, but more data may be needed with

dvanced nearest neighbors schemes. Considering the scenario of

ser tags, the three methods show similar performance with simi-
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Fig. 11. Training KCCA with a subset of data. MAP of the five methods trained 

with KCCA on NUS-WIDE varying the number of images used for training the pro- 

jections, with expert labels (on the left) and user tags (on the right). Dashed lines 

represent baseline methods. 
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ing KCCA. We report separately the time for visual kernel, textual kernel and KCCA 

computation. The time is dominated by the visual kernel computation. 
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ar numbers of training images. This suggests that differently from

xpert labels, the noise in user tags is responsible for the ham-

ered performance and more data is needed to reliably estimate

ood projections. 

We evaluate the additional computational cost of our approach,

y timing the run of KCCA on NUS-WIDE on our sub-sampling ex-

eriment. It can be noted from Fig. 12 that the overall computa-

ion is dominated by the visual kernel computation. Since we ap-

roximated the kernel matrices with GSD to a fixed rank value,

he running time required to compute the KCCA projections can

nly increase up to a fixed maximum value, independently from

he number of samples. 

.9. Qualitative analysis 

Fig. 10 shows four examples of annotations produced by our

ethod on the IAPR-TC12 dataset. It can be seen that TagProp

nd TagRel perform better for both baseline representation and the

roposed semantic space. Thanks to the integration of labels into

he semantic space, our technique allows nearest neighbor meth-

ds to distinguish between visually similar but semantically differ-

nt images. Look for instance at the first example: a salt desert.

aseline approaches wrongly predict that this might be a “beach”

mage, since the salt visually resembles sand. Differently, our se-

antic space dismisses beach images and allows NN methods to

nd samples with “desert” and “salt”, thus obtaining a correct im-

ge labeling. 

Moreover, our method can also deal with information that was

issing in the visual space. A good example is given by the second

icture shown in Fig. 10 . This image depicts two people and an

hammock”. Since the label “hammock” is not in the 1K concepts

sed to train the VGG16 network, similar hammock images are dif-
cult to be retrieved for the baseline methods. In contrast, our

ethod has integrated this missing information into the seman-

ic space, allowing TagRel and TagProp to find semantically similar

mages and predict the presence of the hammock correctly. 

The third and fourth images demonstrate that our technique is

ble to bring closer images with fine-grained labels. For instance,

he third image is a close-up of a person wearing several well vis-

ble clothing. Baseline methods correctly found easy concepts like

man”, “cap” or “hair”, while label transfer methods operating in

he semantic space can also predict more specific labels such as

shirt”, “polo” and “portrait”. Finally, the fourth image depicts a

tatue portrayed from below, in contrast with the blue sky. This

mage is correctly annotated with the difficult labels “man” and

view” only by TagProp when trained on the semantic space. 

. Conclusion 

This paper presents a novel automatic image annotation frame-

ork based on KCCA. Our work shows that it is indeed useful to

ntegrate textual and visual information into a semantic space that

s able to preserve correlation with the respective original features.

ur method does not require the textual information at test time,

nd it is therefore suitable for label prediction on unlabeled im-

ges. We additionally propose a label denoising algorithm that al-

ows to exploit user tags in place of expert labels. This scenario is

f extreme interest given the abundance of images with user tags

hat can be extracted from social media. Finally, we show that se-

antic projections can be learned also with a subset of the train-

ng set, making it possible to obtain some benefits even on large-

cale datasets. 

We report extensive experimental results on all the classic au-

omatic image annotation datasets, as well as more recent datasets

ollected from Flickr. Our experiments show that label transfer in

he semantic space allows consistent improvement over standard

chemes that rely only on visual features. All the best performing

mage annotation methods have shown to be able to exploit the

roposed embedding. We believe that our framework will provide

 strong baseline to compare and better understand future auto-

atic image annotation algorithms. 
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