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Abstract—Image compression is a need that arises in many
circumstances. Unfortunately, whenever a lossy compression
algorithm is used, artifacts will manifest. Image artifacts, caused
by compression tend to eliminate higher frequency details and in
certain cases may add noise or small image structures. There are
two main drawbacks of this phenomenon. First, images appear
much less pleasant to the human eye. Second, computer vision
algorithms such as object detectors may be hindered and their
performance reduced. Removing such artifacts means recovering
the original image from a perturbed version of it. This means
that one ideally should invert the compression process through
a complicated non-linear image transformation. We propose an
image transformation approach based on a feed-forward fully
convolutional residual network model. We show that this model
can be optimized either traditionally, directly optimizing an
image similarity loss (SSIM), or using a generative adversarial
approach (GAN). Our GAN is able to produce images with more
photorealistic details than SSIM based networks. We describe
a novel training procedure based on sub-patches and devise a
novel testing protocol to evaluate restored images quantitatively.
We show that our approach can be used as a pre-processing step
for different computer vision tasks in case images are degraded
by compression to a point that state-of-the art algorithms fail. In
this case, our GAN-based approach obtains better performance
than MSE or SSIM trained networks. Differently from previously
proposed approaches we are able to remove artifacts generated
at any QF by inferring the image quality directly from data.

Index Terms—Image Compression, Image Restoration, Object
Detection

I. INTRODUCTION

Every day billions of images are shared on the web, and
many more are produced and kept on private systems as mobile
phones, cameras and surveillance systems. To practically store
and transmit these images it is necessary to compress them,
in order to reduce bandwidth and storage requirements. Apart
from a few cases where compression has to be lossless,
e.g. medical imaging or technical drawings, the algorithms
used are lossy, i.e. they result in a more or less strong loss
of content fidelity with respect to the original image data, to
achieve a better compression ratio. A typical use case in which
a high compression is desirable is that of web images, in which
image files must be kept small to reduce web page latency and
thus improve user experience. Another case is that of wireless
cameras, in particular mobile and wearable ones, that may
need to limit power consumption reducing the energy cost
of image transmission applying strong compression. Also in
tasks such as entertainment video streaming, like Netflix, there
is need to reduce as much as possible the required bandwidth,
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to avoid network congestions and to reduce costs. Since user
experience is also affected by image quality, compression
algorithms are designed to reduce perceptual quality loss,
according to some model of the human visual system. In
fact, when compressing images several artifacts appear as
shown in Fig. 1. These artifacts are due to the different
types of lossy compressions used. Considering JPEG, the
most common algorithm used nowadays, these artifacts are
due to the chroma subsampling (i.e. dropping some color
information of the original image) and the quantization of the
DCT coefficients; these effects can be observed also in MPEG
compressed videos, that is basically based the same schema
with the addition of motion compensation and coding.

In the past, compression artifact removal has been addressed
mainly without learning from large dataset the denoising
function. This can be done optimizing DCT coefficients [54] or
by regularizing image patches based on adaptive distribution
modeling. The majority of existing work is not using any learn-
ing and is not considering the use of deep convolutional neural
networks (CNN). CNNs have been proposed for reducing
artifacts in two works [9], [43] and for image denoising [53].
Nonetheless this approach has been used fruitfully in super-
resolution[26], that is the task of generating larger images by
adding missing details to down-sampled sources.

In this work we propose a solution to artifact removal
based on convolutional neural networks trained on large sets
of patches compressed at different qualities. Our approach can
work as a post-processing on decompressed images and can
therefore be applied on many lossy compression algorithms
such as JPEG, JPEG2000, WebP and the intra-frame coding
of H.264/AVC and H.265/HEVC.

One of the main advantages of working on artifact removal
is that our method can be applied just on the receiving end
of a coding pipeline, thus avoiding any modification to the
usually hardware based compression pipeline. It is also more
common that a streaming signal changes in quality over time
to cope with bandwidth availability. This would not be true in
case we rely on super-resolution which would require image
sub-sampling also on the coding end.

To assess the performance of the artifact removal process,
and the quality of restored images, there is need to assess
both subjective and objective evaluations. The former are
needed since most of the time a human will be the ultimate
consumer of the compressed media. The latter are important
since obtaining subjective evaluations is slow and costly; to
this end several objective metrics have been proposed to
predict perceived visual quality automatically. Peak Signal-to-
Noise Ratio (PSNR) and Mean Squared Error (MSE) are the
most widely used objective image quality/distortion metrics.
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(a) (b)Fig. 1: Left: An image compressed using JPEG. Two highly degraded regions are highlighted. Right: Output of our reconstruction
method. Both regions appear sharper and with far less artifacts. Best viewed in color on computer screen.

However, they have been criticized since they are not con-
sistent with perceived quality measurement [44]. Considering
that the human visual system is highly adapted for extracting
structural information from a scene, a framework for quality
assessment based on the degradation of structural information,
called Structural Similarity index (SSIM), has been introduced
in [45]. Finally, we can expect that more and more images will
be processed by computer vision systems that automatically
analyze media content, e.g. to interpret it to perform some
task. To consider also this scenario we have to assess the
performance of computer vision algorithms when processing
reconstructed images.

In this work we show that it is possible to train CNNs
to remove compression artifacts even from highly degraded
images. Our network can be trained optimizing directly the
SSIM on output images. This approach leads to state-of-the-
art results. However, it can be shown that SSIM is yet a
too simplistic model assess quality according to the complex
human visual system. We show that Generative Adversarial
Models, learning the conditional distribution of compressed
and uncompressed images, lead to better reconstruction. We
provide a system capable of understanding image quality
automatically which can therefore reconstruct images at any
level of compression.

We assess the performance of our approach using both
subjective and objective assessments. We design a novel
experimental protocol to assess the quality of reconstructed
images based on the evaluation of a semantic task on restored
images. GAN reconstruction provides higher fidelity images
according to human viewers and higher performance in object
detection.

II. RELATED WORK

There is a vast literature of image restoration, targeting
image compression artifacts. The majority of approaches is
processing based [8], [12], [20], [27], [28], [48], [49], [52],

[54] while few methods are learning based [22], [9], [31],
[43], [46]. In the following we will review both kind of
methods. We will also cover other works solving different
image transformation tasks which are related to our problem.
Finally we will state our contributions in relation to existing
state of the art.

A. Processing Based Methods

This class of methods typically relies on information in
the DCT domain. Foi et al. [12] developed the SA-DCT
method, based on the use of clipped or attenuated DCT coef-
ficients to reconstruct a local estimation of the image signal
within an adaptive shape support. Yang et al. [49], applied
a DCT-based lapped transform directly in the DCT domain,
to remove the artifacts produced by quantization. Zhang et
al. [54], proposed to fuse two predictions for estimating DCT
coefficients of each image block: the first prediction is based
on quantized values of coefficients and the second is computed
from nonlocal blocks coefficients as a weighted average. Li
et al. [28] have proposed to eliminate the artifacts due to
contrast enhancement, through decomposition of the image in
structure and texture components, and then eliminating the
artifacts that are in the texture component. Chang et al. [5]
have proposed to obtain a sparse representation over a learned
dictionary from a set of training images, and then use it
to remove the block artifacts in JPEG-compressed images.
More recently, Dar et al. [8] have proposed to reduce artifacts
through a regularized restoration of the original signal. The
procedure is formulated as a regularized inverse-problem for
estimating the original signal from its reconstructed form;
to obtain a tractable formulation the nonlinear compression-
decompression process is approximated by a linear operator.
Finally, Li et al. [27] have used an iterative approach to
address blocking artifacts; this method can also perform super-
resolution.
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The main issue of these methods is that the reconstructed
image is typically over-smooth. In fact, it is hardly possible
to add consistent details at higher frequencies without any
semantic cue of the content of the image.

B. Learning Based Methods
Following the success of deep convolutional neural net-

works (DCNN), a learning driven paradigm has recently
emerged in the artifact removal literature. The main idea
of this strategy is to learn a function to perform an image
transformation from a degraded input image to a restored
output. Labeled data can be easily obtained by generating
degraded versions of images which are used as samples for
which the ground truth or target is the original image. Learning
based methods have the advantage that they estimate very
accurately the image manifold, thanks to the large amount of
data that they ingest during training. Moreover, such manifold
can also be made aware of image semantics and is not just
relying on local properties or DCT coefficient statistics.

Kang et al. [22] address both super-resolution and deblock-
ing in the case of highly-compressed images, learning sparse
representations that model the relationship between low- and
high-resolution image patches with and without blocking ar-
tifacts. The approach is tested on highly compressed JPEG
images, with QF values between 15 and 25. Following their
previous work on super-resolution CNN (SRCNN), Dong et
al. [9] propose an artifact reduction CNN (AR-CNN) which
shares a common structure with SRCNN: a feature extraction
layer, a feature enhancement layer, and a non-linear mapping
and a reconstruction layer. This structure is designed following
sparse coding pipelines. Svoboda et al. [43] obtain improved
results in image restoration by learning a feed-forward CNN
in which, differently from [9], the layers have no specific
functions; to obtain better reconstruction quality the authors
combine residual learning, skip architecture and symmetric
weight initialization. Cavigelli et al. [4] use a 12-layers CNN
with hierarchical skip connections and a multi-scale loss
function to suppress JPEG compression artifacts, proposing
an architecture that is able to shorten the paths from input to
output, so to ease the training. Yoo et al. [51] aim at restoring
high-frequency details in JPEG compressed images employing
and encoder-decoder architecture, driven by a local frequency
classifier to restore compressed images; cross-entropy is used
to train the classifier, and MSE loss is used for encoder-
decoder. He et al. [18] have developed a method, tightly bound
to HEVC coding, to improve frame appearance; it smartly
exploits coding unit partitioning to learn a two-stream CNN
that receives the decoded frame, and then combines it with a
mask computed from the partition data.

A few recent approaches tackle the problem from a different
angle by designing the image coding algorithm based on
learning a latent representation[2], [39]. The main drawback of
such approaches is that they can not be applied to existing low
quality images and they require that both parties involved in
the image transmission adopt the learning based codec. In our
case we only act on the receiving side of the communication
party, therefore our method is more flexible and applicable to
existing compressed data.

C. Other Image Transformation Tasks

Other image transformation problems, such as image super-
resolution [3], [26], [21], [7], [6], [25], style-transfer [15], [21]
and image de-noising [53] have been targeted by approaches
close to ours. Zhang et al. [53] have recently addressed
the problem of image denoising, proposing a convolutional
neural networks to eliminate unknown level Gaussian noise
and showing that single residual units of the network combined
with batch normalization are beneficial. The proposed network
obtains promising results also on other tasks such as super
resolution and JPEG deblocking. Style transfer is the process
of altering an image so that its semantic content remains the
same but its style is altered, transferring it from another image.
Gatys et al. [15] have shown that optimizing a loss accounting
for style and content similarity it is possible to perform
this task. Similarly, Johnson et al. [21] propose a generative
approach to solve style transfer, building on the method of
[15]. The improvement in terms of performance, with respect
to [15], is due to the fact that optimization is performed
beforehand, for each style; moreover, it is possible to apply
the transformation in real-time. Adding a slight variation on
the learning procedure they are able to perform also super-
resolution. Regarding super-resolution, Kim et al. [23] propose
to use a deeper architecture (VGG, [42]) trained on residual
images; in order to speed-up learning they apply gradient
clipping. Bruna et al. [3] addressed super-resolution using a
CNN to learn sufficient statistics for the high-frequency com-
ponent. Ledig et al. [26] used a deep residual convolutional
generator network, trained in an adversarial fashion. Dahl et
al. [7] propose to use a PixelCNN architecture and apply
it to magnification of 8 × 8 pixel images obtaining better
quality results compared to L2 regression according to human
evaluators.

D. Contribution

In this paper we make several contributions to the problem
of image enhancement. Existing learning based methods [9],
[4], [51], [13] are trained to remove artifacts generated by
some encoder knowing the parameters in advance. Consider-
ing that this is an unrealistic setting, we address this issue
proposing an ensemble of Generative Adversarial Networks
[16] driven by a quality predictor. We show experimentally that
quality can be predicted effectively and that we can enhance
images without knowing the encoding parameters in advance.

Our model is fully convolutional as the one proposed by
Svoboda et al. [43] and can therefore process images at any
input resolution. Differently from [43] we use a deep residual
architecture[17] and use Generative Adversarial Networks. We
show that our model can be trained with direct supervision
with a MSE loss as in [43] or with a better SSIM based loss.
Nonetheless such training procedure leads to overly smoothed
images as also happens in super-resolution.

Exploiting GANs instead, considering their ability to model
complex multi-modal distributions, we are able to obtain
sharper and more realistic images. To the best of our knowl-
edge, this is the first work exploiting multiple GANs to
recover from compression artifacts generated by an encoder at
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a unknown quality. We train conditional GANs [33], to better
capture the image transformation task. A relevant novelty of
our work is the idea of learning the discriminator over sub-
patches of a single generated patch to reduce high frequency
noise, such as mosquito noise which is hard to remove using
a full-patch discriminator.

Another major contribution of this work is the evaluation
methodology. Instead of focusing on signal based metrics we
exploit well defined semantic tasks and evaluate its perfor-
mance on reconstructed images. Specifically, we evaluate two
tasks: object detection and object mask proposal generation.

We improved our previous work [13] proposing an ensemble
of GAN models, each specialized on a single QF; we drive
the ensemble with our QF prediction framework which is
described in Sect. IV. Newer and more up to date experiments
are provided in Sect. V, including detection and segmentation
tests on MS-COCO and additional comparisons on PASCAL
VOC. Moreover a full in-depth evaluation in realistic settings,
i.e. when image encoder parameters are not known in advance,
is performed in Sect. V-D. Interesting insights on our method
can be gained following our novel evaluation approach; specif-
ically, in Sect. V-C3 we analyze the correlation between the
degradation of intermediate feature maps of object detectors
and the resulting performance drop.

III. METHODOLOGY

The goal of compression artifact removal is to obtain
a reconstructed output image IR from a compressed input
image IC . In this scenario, IC = A (I) is the output image
of a compression algorithm A and I is an uncompressed
input image. Different A algorithms will produce different
IC images, with different compression artifacts. Many image
and video compression algorithms (e.g. JPEG, JPEG2000,
WebP, H.264/AVC, H.265/HEVC) work in the YCrCb color
space, separating luminance from chrominance information.
This allows a better de-correlation of color components leading
to a more efficient compression; it also permits a first step of
lossy compression sub-sampling chrominance, considering the
reduced sensitivity of the human visual system to its variations.

We represent images IR, IC and I as real valued tensors
with dimensions W ×H ×C, where W and H are width and
height, respectively, and C is the number of color channels. In
cases where the quality assessment is performed on luminance
only we transform images to gray-scale considering only the
Y channel, and C = 1, in all other cases we have C = 3,
considering RGB.

The compression of an uncompressed image I ∈
[0, 255]W×H×C is performed according to:

IC = A (I,QF ) ∈ [0, 255]W×H×C (1)

using a function A, representing some compression algo-
rithm, which is parametrized by some quality factor QF . The
problem of compression artifacts removal can be seen as to
compute an inverse function G ≈ A−1QF that reconstructs I
from IC :

G
(
IC
)

= IR ≈ I (2)

Each generator can in principle be trained with images ob-
tained from different QFs. In practice we show, in Sect. IV,
that single QF generators perform better and can be driven by
a QF predictor.

To this end, we train a convolutional neural network
G
(
IC ; θg

)
where θg = {W1:K ; b1:K} are the parameters

representing weights and biases of the K layers of the network.
Given N training images we optimize a custom loss function
lAR by solving:

θ̂g = arg min
θg

1

N

N∑
n=1

lAR
(
I,G

(
IC , θg

))
(3)

The elimination of compression artifacts is a task that belongs
to the class of image transformation problem, that comprises
other tasks such as super-resolution and style-transfer. This
category of tasks is conveniently addressed using generative
approaches, i.e. learning a fully convolutional neural network
(FCN) [30] that given a certain input image is able to output
an improved version of it. A reason to use FCN architectures
in image processing is that they are extremely convenient
to perform local non-linear image transformations, and can
process images of any size. Interestingly, we take advantage
of such property to speed up the training. Indeed, the artifacts
we are interested in removing appear at scales close to the
block size. For this reason we can learn models on smaller
patches using larger batches.

We propose a fully convolutional architecture that can be
either optimized with direct supervision or combined in a
generative adversarial framework with a novel discriminator.
Details of the proposed networks are presented in the follow-
ing, together with the devised loss functions.

A. Generative Network

In this work we use a deep residual generative network,
composed only by blocks of convolutional layers with non-
linear LeakyReLU activations. Our generator is inspired
by [17]. We use layers with 64 convolution kernels with a
3×3 support, followed by LeakyReLU activations. After a first
convolutional layer, we apply a layer with stride two to half the
size of feature maps. Then we apply 15 residual blocks using a
1 pixel padding after every convolution with replication strat-
egy to mitigate border effects. A nearest-neighbour upsampling
layer is used to obtain feature maps at the original size[35].
Considering that upsampling may lead to artifacts we apply
another stride one convolutional layer. Finally, to generate
the image we use single kernel convolutional layer with a
tanh activation. This produces output tensors with values in
[−1, 1], which are therefore comparable to the rescaled image
input. Adding batch normalization helps training of the GAN,
resulting in a moderately improved performance, as shown in
Sect. V-C1.

B. Loss Functions for Direct Supervision

In this sub-section we discuss how to learn a generative
network with direct supervision, i.e. computing the loss as a
function of the reconstructed image IR and of the original
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uncompressed input image I . Classical backpropagation is
used to update the network weights.

1) Pixel-wise MSE Loss: As a baseline we use the Mean
Squared Error loss (MSE):

lMSE =
1

WH

W∑
x=1

H∑
y=1

(
Ix,y − IRx,y

)2
. (4)

This loss is commonly used in image reconstruction and
restoration tasks [9], [43], [31]. It has been shown that lMSE

is effective to recover the low frequency details from a
compressed image, but the drawback is that high frequency
details are suppressed.

2) SSIM Loss: The Structural Similarity (SSIM) [45] has
been successfully proposed as an alternative to MSE and Peak
Signal-to-Noise Ratio (PSNR) image similarity measures, be-
cause both these measures have shown to be inconsistent with
the human visual perception of image similarity.

The formula to compute the SSIM of the uncompressed
image I and the reconstructed image IR is:

SSIM
(
I, IR

)
=

(2µIµIR + C1) (2σIIR + C2)(
µ2
I + µ2

IR
+ C1

) (
σ2
I + σ2

IR
+ C2

) (5)

Considering that the SSIM function is fully differentiable a
loss can be defined as:

lSSIM = − 1

WH

W∑
x=1

H∑
y=1

SSIM
(
Ix,y, I

R
x,y

)
(6)

The network can then be trained minimizing Eq. 6, which
means maximizing the structural similarity score computed
on uncompressed and reconstructed image pairs.

C. Generative Adversarial Artifact Removal

The network defined by the architecture described in
Sect. III-A can be coupled with a discriminator and used
as generator to obtain a generative adversarial framework.
The recent approach of adversarial training [16] has shown
remarkable performances in the generation of photo-realistic
images and in super-resolution tasks [26]. In this approach,
the generator network G is encouraged to produce solutions
that lay on the manifold of the real data by learning how
to fool a discriminative network D. On the other hand, the
discriminator is trained to distinguish reconstructed patches
IR from the real ones I . In particular, we use a conditional
generative approach, i.e. we provide as input to the generative
network both positive examples I|IC and negative examples
IR|IC , where ·|· indicates channel-wise concatenation. For
samples of size N ×N × C we discriminate samples of size
N ×N × 2C.

1) Discriminative Network: The architecture of the dis-
criminator is based on a series of convolutional layers without
padding and with single-pixel stride followed by LeakyReLU
activations. The number of filters is doubled every two layers,
with the exception of the last one. There are no fully connected
layers. The size of the feature map is decreased solely because
of the effect of convolutions reaching unitary dimension in the

last layer, in which the activation function used is a sigmoid.
A schema of this architecture is shown in Fig.2.

The set of weights ψ of the D network are learned by
minimizing:

ld =− log
(
Dψ

(
I|IC

))
− log

(
1−Dψ

(
IR|IC

))
(7)

As shown Fig. 2, discrimination is performed at the sub-patch
level; this is motivated by the fact that compression algorithms
decompose images into patches and thus artifacts are typically
created within them. To encourage the generation of images
with realistic patches, I and IR are partitioned into P patches
of size 16×16, that are then fed into the discriminator network.
In Figure 3 it can be seen the beneficial effect of this approach
in the reduction of mosquito noise and ringing artifacts.

Fig. 3: Left: reconstruction without sub-patch strategy. Right:
our sub-patch strategy reduces mosquito noise and ringing
artifacts.

2) Perceptual Loss: Following the contributions of Doso-
vitskiy and Brox [10], Johnson et al. [21], Bruna et al. [3] and
Gatys et al. [14] we use a loss based on perceptual similarity
in the adversarial training. The distance between images is
computed after projecting I and IR on a feature space by some
differentiable function φ and taking the Euclidean distance
between the two feature representations:

lP =
1

WfHf

Wf∑
x=1

Hf∑
y=1

(
φ (I)x,y − φ

(
IR
)
x,y

)2
(8)

where Wf and Hf are respectively the width and the height
of the feature maps. The images reconstructed by the model
trained with the perceptual loss are not necessarily accurate
according to the pixel-wise distance measure, but on the other
hand the output will be more similar from the point of view
of feature representation. In this work we compute φ (I) by
extracting the feature maps from a pre-trained VGG-19 model
[42], using the second convolution layer before the last max-
pooling layer of the network, namely conv5_3.

3) Adversarial Patch Loss: We train the generator combin-
ing the perceptual loss with the adversarial loss thus obtaining:

lAR = lP + λladv. (9)

Where ladv is the standard adversarial loss:

ladv = − log
(
Dψ

(
IR|IC

))
(10)

that rewards solutions that are able to “fool” the discriminator.
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Fig. 2: Architecture of Discriminator Network where n indicates the number of filters for each Convolutional Layer. Sub-patch
loss strategy is highlighted: white squares indicate real (I) or reconstructed patches (IR), while purple ones are their respective
compressed versions IC .
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Fig. 4: System schema: the compressed image IC is analyzed by the compression quality estimator that predicts the QF used
to compress the image. This value is used to select an appropriate GAN from the ensemble, to reconstruct the improved image
IR.

IV. UNIVERSAL COMPRESSION ARTIFACT REMOVAL

The quality of an image can not be known in advance. To
apply a model in real-world scenarios we can not depend on
the prior knowledge of such information. The trivial approach
of training a single GAN fed with all QFs is not viable
unfortunately; in fact, as shown in Sect. V-D, we observe mode
collapse towards higher compression rates. We believe that this
effect is due to the fact that images with lower QFs contain
more artifacts and generate more signal, thus overcoming the
learning of subtle pattern removal that is needed at better
qualities.

To cope with this problem, our full solution comprises two
modules. The first module predicts, via regression the true QF
of an image. This is possible with an extremely high precision.
The compression quality estimator is used to drive the image
signal to one of the fixed QF trained GANs of our ensemble.
A schema of the system is shown in Fig. 4.

A. Quality Agnostic Artifact Removal

Our compression quality predictor consists of a stack of
convolutional layers, each one followed by a non-linearity and
Batch Normalization, and two Fully Connected layers in the
last part. The architecture is shown in detail in Tab. I.

The training set is selected from the DIV2k dataset [1],
that contains 800 high definition high resolution raw images.
During the training process, we compress the images to a
random QF in a 5-95 range and we extract 128×128 patches.

Layer KernelSize/Stride OutputSize
Conv11 3× 3/1 128× 128× 64
Conv12 3× 3/2 64× 64× 64
Conv21 3× 3/1 64× 64× 128
Conv22 3× 3/2 32× 32× 128
Conv31 3× 3/1 32× 32× 256
Conv32 3× 3/2 16× 16× 256
Conv41 3× 3/1 16× 16× 512
Conv42 3× 3/2 8× 8× 512

FC5 - 1024
FC6 - 1

TABLE I: Network architecture of the proposed QF predictor.

For the optimization, we used a standard MSE loss, computed
over predicted and ground truth QF. We train the model as a
regressor rather than a classifier since the wrong predictions
that are close to the ground truth should not be penalized
too much, as the corresponding reconstructions still result
acceptable. On the other hand, predictions that are far from the
ground truth lead to bad reconstructions, therefore we should
penalize them accordingly in the training process.

In the inference phase, we extract 8 random crops of
128 × 128 from a compressed image, we feed them into
the QF predictor and we average the prediction results. We
use this prediction to reconstruct the corrupted image with
the appropriate model for the input image quality. For this
reason, we have trained 6 different generators, each one with
fixed QF training images (5,10,20,30,40,60). Depending on the
prediction, we give in input the corrupted image to the fixed
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QF reconstruction network closer to the QF predictor output.

V. EXPERIMENTS

A. Implementation Details

We trained our reconstruction models with a NVIDIA
Maxwell Titan X GPU using MS-COCO [29] as training set,
that contains 80 object classes and a total of more than 300K
images. In all experiments, we have extracted 16 random
128×128 patches from the training data, with random flipping
and rotation data augmentation. All the images have been
compressed with the standard MATLAB JPEG compressor at
different quality factors to ensure a proper experimental setup
both for learning and evaluation. At the training stage, we have
used Adam [24] with momentum 0.9 and a learning rate of
10−4 for the first 50,000 iterations, decaying to 10−5 in the last
50,000. To stabilize the training of the Generative Adversarial
framework we have followed the guidelines described in [40],
in particular we have performed the one-sided label smoothing
for the discriminator training.

B. Comparison with State-of-the-Art

We first report results of our generator network trained
without the adversarial approach, evaluating the improvements
of the residual architecture and the effects of SSIM and MSE
losses in such training. We conducted experiments on two
commonly used benchmarks: LIVE1 [41] and the validation
set of BSD500 [32] using JPEG as compression. For a fair
comparison with the state-of-the art methods, we adopted the
same evaluation procedure of related artifact removal works.
To quantify the quality of our results we have evaluated PSNR,
PSNR-B [50] and SSIM measures for the JPEG quality factors
10, 20, 30 and 40. The performance of our generator is
compared with the standard JPEG compression and three state-
of-the-art approaches: SA-DCT [12], AR-CNN from Dong et
al. [9] and the work described by Svoboda et al. [43]. Also
the more recent results obtained Cavigelli et al. [4] (CAS-
CNN), and Yoo et al. [51] (ED, CED-EST and CED-GT) are
reported, when available.

We report in Table II the results of our approaches on
BSD500 and LIVE1 datasets compared to the other state-of-
the-art methods for the JPEG artifact removal task. As can be
seen, our method outperforms the other approaches for each
quality measure, except in two cases: PSNR-B at 10 and 40
where [4] has a slightly better performance. In particular, we
have a more remarkable improvement of PSNR and PSNR-B
measures for the networks trained with the classic MSE loss,
while as expected the SSIM measure improves a lot in every
evaluation when the SSIM loss is chosen for training. As a
final consideration please note that competing deep models [4],
[51] use more parameters, roughly two and three times more
than ours.

Furthermore, we report the performance of our generator
trained in an adversarial fashion. We can state that we obtain
a lower performance than classic approaches from a quality
index point of view. However, the GAN reconstructed images
are perceptually more convincing for human viewers, as it will
be shown in Sect. V-F, in a subjective study. Indeed, it’s the

combination of perceptual and adversarial loss that makes the
textures of output images much more realistic rather than the
smooth patches of the MSE/SSIM based methods that lack of
high frequency details, since the latter tend to evaluate better
more conservative blurry averages over more photo realistic
details, that could be added slightly displaced with respect
to their original position, as observed also in super-resolution
tasks [7].

QF Method LIVE1 BSD500
PSNR PSNR-B SSIM PSNR PSNR-B SSIM

10 JPEG 27.77 25.33 0.791 27.58 24.97 0.769
SA-DCT [12] 28.65 28.01 0.809 - - -
AR-CNN [9] 29.13 28.74 0.823 28.74 28.38 0.796
L4 [43] 29.08 28.71 0.824 28.75 28.29 0.800
CAS-CNN, MS loss[4] 29.36 28.92 0.830 - - -
CAS-CNN, w/ loss FT[4] 29.44 29.19 0.833 - - -
ED [51] 29.40 29.09 0.833 28.96 28.57 0.806
CED-EST [51] 29.40 29.08 0.832 28.95 28.56 0.805
CED-GT [51] 26.54 26.51 0.767 26.00 25.97 0.731
Our MSE 29.47 29.13 0.833 29.05 28.64 0.806
Our SSIM 28.94 28.46 0.841 28.53 27.97 0.816
Our GAN 27.65 27.63 0.777 27.31 27.28 0.749

20 JPEG 30.07 27.57 0.868 29.72 26.97 0.852
SA-DCT [12] 30.81 29.82 0.878 - - -
AR-CNN [9] 31.40 30.69 0.890 30.80 30.08 0.868
L4 [43] 31.42 30.83 0.890 30.90 30.13 0.871
L8 [43] 31.51 30.92 0.891 30.99 30.19 0.872
CAS-CNN, MS loss[4] 31.67 30.84 0.894 - - -
CAS-CNN, w/ loss FT[4] 31.70 30.88 0.895 - - -
ED[51] 31.68 31.14 0.895 31.08 30.33 0.875
CED-EST [51] 31.65 31.13 0.895 31.04 30.32 0.875
CED-GT [51] 29.33 29.32 0.854 28.62 28.58 0.825
Our MSE 31.81 31.29 0.897 31.23 30.49 0.877
Our SSIM 31.51 30.84 0.901 30.92 30.01 0.883
Our GAN 29.99 29.69 0.864 29.48 29.03 0.841

30 JPEG 31.41 28.92 0.900 30.98 28.23 0.886
SA-DCT [12] 32.08 30.92 0.908 - - -
AR-CNN [9] 32.69 32.15 0.917 - - -
Our MSE 33.21 32.51 0.923 32.53 31.57 0.906
Our SSIM 32.95 32.17 0.926 32.26 31.16 0.911
Our GAN 31.65 31.38 0.900 31.04 30.57 0.881

40 JPEG 32.35 29.96 0.917 31.88 29.14 0.906
SA-DCT [12] 32.99 31.79 0.924 - - -
AR-CNN [9] 33.63 33.12 0.931 - - -
CAS-CNN, MS loss[4] 33.98 32.83 0.935 - - -
CAS-CNN, w/ loss FT[4] 34.10 33.68 0.937 - - -
Our MSE 34.17 33.42 0.937 33.45 32.34 0.923
Our SSIM 33.98 33.07 0.939 33.25 31.94 0.926
Our GAN 31.64 31.17 0.903 30.98 30.16 0.884

TABLE II: Average PSNR, PNSR-B and SSIM results on
BDS500 and LIVE1. Evaluation using luminance. All models
are QF-specific.

C. Object Detection

In this experiment we evaluate the object detector perfor-
mance on images compressed at different QFs. We evaluated
the object detector performance for different reconstruction
algorithms on PASCAL VOC2007 [11] and MS-COCO [29].
PASCAL VOC2007 is a long standing small scale benchmark
for object detection, it comprises 20 classes for a total of
roughly 11K images. Regarding MS-COCO [29], we per-
formed detection experiments using the 20,000 images in the
test-dev subset.

1) Experiments on VOC2007: As we can expect, the more
an image is degraded by the JPEG compression the lower
is the performance of the object detector, especially if the
QF parameter is really low. We employ Faster R-CNN [38]
as object detector for this experiment and we evaluate its
performance on different compression quality versions of
PASCAL VOC2007 dataset; we report the results on Tab. IV.
To establish an upper bound for this reconstruction task, we
report the mean average precision (mAP) on the unaltered
dataset. On the other hand, the lower bound is the performance
of Faster R-CNN on images JPEG compressed with QF set to
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Original JPEG 20 AR-CNN Our GAN Original Detail

Fig. 5: Qualitative results shown on two complex textured details. JPEG compression introduces severe blocking, ringing
and color quantization artifacts. AR-CNN is able to slightly recover but produces a blurry result. Our reconstruction is hardly
discernible from the original image.

Codec Compressed GAN
WebP 60.1 64.1
JPEG2000 58.7 61.6
BPG 62.3 64.4

TABLE III: Object detection performance (mAP) of our
method on other codecs on VOC2007 for similar bitrate.

20 (6, 7× less bitrate). In this experiment, we evaluate the
object detection performance on the different reconstructed
versions of the compressed images, comparing AR-CNN [9],
our generative MSE and SSIM trained approaches with the
GAN. In the first place, we notice that the overall mAP
obtained on JPEG compressed images drops down signifi-
cantly with respect to the upper bound. AR-CNN, MSE and
SSIM based generators are able recover part of the object
information, but the improvements compared to the lower
bound are not that impressive, as they gain around 2.1, 2.4
and 2.5 points respectively. As we can see in Table IV, our
best configuration of the GAN approach is able to restore the
degraded images in a much more effective manner yielding the
best result increasing the performance by 8.2 points, just 6.0
points less than the upper bound. Compared to our previous
result [13], the use of Batch Normalization combined with the
QF predictor proposed in Sect. IV (GAN-VGG-BN), improves
from 62.3% to 63.1%.

Smaller networks such as AR-CNN [9], are able to achieve
reasonable, yet lower, results with respect to our approach.
We therefore test a smaller GAN with 7 residual layers to
see how much the depth of the network is relevant to obtain
quality results. Our GAN recovers 8% mAP points while
[9] only adds 3%, when dealing with object detection on
compressed images. The smaller network gains 6% mAP point
leading to .611, which is still better than [9] but worse than
the full network, showing that, as noted for classification
tasks [17], [42], network depth matters also for compression
artifact removal and image restoration.

Interestingly, our GAN-based approach obtains impressive
results on some particular classes, such as cat (+16.6), cow
(+12.5), dog (+18.6) and sheep (+14.3), i.e. classes with highly
articulated objects and where texture is the most informative

cue. In some cases, MSE and SSIM generators are even
deteriorating the performance on these categories, as a further
confirmation that the absence of higher frequency components
alters the recognition capability of an object detector.

Using color gives an obvious advantage in this benchmark,
indeed looking at results obtained training the GAN using
only luminance (GAN-Y) we lose from from 2.5 to 3.3 with
respect to GAN-VGG and GAN-VGG-BN. The perceptual
loss lP is relevant in providing sensible semantic cues, this can
be seen comparing results with a simpler L1 loss (GAN-L1)
which attains much lower performance. Apart from mitigating
mosquito noise and ringing, our sub-patch discriminator leads
to superior results also in this benchmark. Indeed, training the
GAN with a full patch discriminator we obtain 60.5 of mAP
while our sub-patch strategy leads to a 62.3 map. The Sub-
Patch loss accounts for 1.8% mAP points, highlighting the
importance of this novel method.

We analyze the effects of different compression levels in
Fig. 6, changing the quality factor of JPEG compressor. As we
can see in the figure, GAN approach always outperform other
restoration algorithms; in particular, GAN is able to recover
significant details even for very high compression rates, such
as QF=10. The gap in performance is reduced when QF raises,
e.g QF=40 (4, 3× less bitrate).

Finally, since there are many modern codecs available
nowadays we also test our method for different codecs, which
not always share artifact behavior with JPEG. In particular we
considered WebP, JPEG2000 and BPG. We tuned all codecs to
obtain the same average bitrate on the whole VOC2007 dataset
of the respective JPEG codec using a QF of 20. Results are
reported in Table III, and show that our novel approach is
effective also for all these compression algorithms.

Additional comparison in terms of mAP for the task of
object detection is reported in Table V, where a subset of
PASCAL VOC 2007 has been used, following the experimen-
tal setup of [51]. Our proposed GAN method obtains a better
result than the current state-of-the-art.

2) Experiments on MS-COCO: In Figure 7 we show how
mean Average Precision (mAP) varies on the MS-COCO
test set. When aggressive compression is used GANL1

and
GANVGG get the best results, while the simpler AR-CNN is
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JPEG 20 58.7 69.2 51.6 43.4 35.0 67.3 71.0 55.9 33.4 55.9 57.9
AR-CNN [9] 64.1 68.6 52.3 41.3 36.7 70.2 74.2 53.0 36.3 57.4 60.7
MSE 64.7 69.6 51.2 40.6 40.9 71.3 75.0 54.2 38.6 54.6 61.4
Our SSIM 65.5 70.6 51.3 41.7 41.1 71.3 74.6 55.5 38.7 53.8 61.5
Our GAN-Y 65.7 69.6 54.7 46.1 35.4 71.9 70.8 67.3 38.0 65.3 60.5
Our GAN-L1 64.4 75.0 52.4 42.1 42.7 69.1 75.5 66.7 40.2 61.6 59.7
Our GAN-VGG 66.6 75.3 56.5 47.5 39.5 72.7 77.0 72.5 40.3 68.4 60.2
Our GAN-VGG-BN 65.4 78.7 57.4 50.2 39.9 72.7 77.1 76.4 42.8 70.0 60.2
Original 69.8 78.8 69.2 55.9 48.8 76.9 79.8 85.8 48.7 76.2 63.7

mAP
JPEG 20 53.2 69.1 66.5 63.8 26.0 48.2 43.4 70.7 57.0 54.9
AR-CNN [9] 58.1 72.4 66.1 65.8 31.3 49.9 52.6 71.2 57.8 57.0
Our MSE 59.5 71.3 66.8 66.4 31.0 48.5 52.2 67.6 60.0 57.3
Our SSIM 59.6 72.0 66.6 66.3 30.8 48.2 53.2 66.8 59.8 57.4
Our GAN-Y 68.1 73.8 66.1 66.2 29.0 60.8 54.4 72.2 60.0 59.8
Our GAN-L1 67.9 74.9 66.6 66.4 30.9 54.3 58.7 65.5 61.3 59.8
Our GAN-VGG 71.8 75.3 70.7 67.0 30.3 62.5 58.6 71.2 61.1 62.3
Our GAN-VGG-BN 72.4 77.4 72.3 68.0 32.0 56.8 58.4 71.7 63.3 63.1
Original 79.0 80.2 75.7 76.3 37.6 68.3 67.2 77.7 66.7 69.1

TABLE IV: Object detection performance measured as mean average precision (mAP) on PASCAL VOC2007 for different
reconstruction algorithms. Bold numbers indicate best results.
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Fig. 6: Mean average precision (mAP), for different Qual-
ity Factors (QF), and restoration approaches, on PASCAL
VOC2007.

Method mAP
JPEG 10 35.9
AR-CNN-Y[9] 42.9
SA-DCT[12] 48.5
Our MSE[13] 51.9
ED [51] 52.5
CED-EST [51] 52.6
CED-GT [51] 55.0
Our GAN 55.6
Original 70.5

TABLE V: Object detection performance measured on the
subset of PASCAL VOC 2007 dataset used in [51].

less effective. For higher QF values we do not observe such
difference, if AP is measured on all 80 classes. Interestingly,
looking at classes separately we can see that for certain classes
compression artifacts degrade more AP. This is shown in
Tab. VI, where we report the 5 classes that obtain the highest
and the lowest improvements in performance using GANVGG.

5 10 15 20 30 40
QF

m
AP

JPEG
ARCNN
GAN L1
GAN VGG

25

20

15

10

5

0

Fig. 7: Mean Average Precision on MS-COCO varying the
QF (the higher, the better). For high compression rates GAN
methods get the best results. For QFs higher than 30, the
variation is minimal.

It can be noticed that among the 5 classes that obtain the
largest improvements there are several animals (e.g. cat, dog,
bear, etc.): this is due to the reconstruction of finer details like
fur obtained using the proposed GAN approach.

3) Evaluation of compression effects for object detection:
To gain insight on the behavior of semantic computer vi-
sion algorithms on compressed and reconstructed images, we
analyze how deep convolutional features vary under image
compression, and how this variation is moderated when artifact
removal techniques are applied. We run the following test on
MS-COCO, for every quality factor and method involved in
our study, we compute the mean relative error of each layer
of the Faster R-CNN detector [38]:

εl =

∣∣φl (IR)− φl (I)
∣∣

φl (I)
(11)
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QF=5 QF=10 QF=15 QF=20 QF=30 QF=40

Highest
5 gains

pizza 24.9 cat 25.9 cat 20.3 cat 13.5 cat 5.3 tv 2.5
bear 21.5 bear 25.3 couch 12.8 couch 9.2 couch 3.6 cat 2.4
firehydrant 20.8 elephant 21.0 dog 11.6 bear 7.2 mouse 3.1 couch 1.5
giraffe 20.1 dog 17.1 bear 11.3 dog 6.7 toilet 2.8 mouse 1.4
elephant 20.0 toilet 14.7 toilet 9.7 toilet 5.9 microwave 2.6 laptop 1.3

Lowest
5 gains

hairdrier 0.0 train 0.0 train -0.6 giraffe -0.5 train -1.6 train -2.1
handbag 0.2 hairdrier 0.1 bus -0.1 keyboard -0.4 bus -1.4 firehydrant -2.0
toaster 0.4 toaster 0.4 hairdrier 0.0 baseballbat -0.1 giraffe -1.4 broccoli -1.2
book 0.4 book 0.7 scissors 0.1 train -0.1 baseballbat -1.3 elephant -1.0
spoon 0.9 handbag 0.8 carrot 0.2 bicycle 0.1 broccoli -1.2 bear -1.0

TABLE VI: Most and least affected classes in terms of AP for different QF values when using GANVGG method to eliminate
compression artifacts.
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Fig. 8: Mean relative error, averaged over all layers, for
different QF and artifact removal techniques (the lower, the
better). The proposed GAN restoration approach with L1 loss
obtains the smallest error; using VGG loss still improves over
AR-CNN.

where φl(·) are feature maps for layer l.
Results are reported in the plots of Fig. 8, that shows the

mean relative error, averaged over all layers, for different
QF values. For higher QF values JPEG compression affects
little, but noticeably feature map values. The variation is
closer to 30% for QF=60, and applying reconstruction methods
on high quality images, as expected, does not produce any
benefit. Clearly, when QF become smaller all reconstruction
techniques help in generating images with feature maps closer
to the original one, with GANL1

obtaining the best results and
becoming effective from QF=50. The novel GAN approach
obtains better results than AR-CNN also using VGG loss, but
it is particularly effective when using L1 loss for QF ≥ 20.

In Fig. 9 we analyze the behavior for all feature maps,
reporting the mean relative error for all the layers and different
QF values. It is interesting to note that the first and last layers
are less affected, while the ones that exhibit the most relative
error are conv3_2 and conv4_2. As also shown in Fig. 8,
applying reconstruction is not beneficial for QF=60, while
for other QF values it can be seen that the error is reduced
for all layers, and specifically for the ones which are most
affected. Notably, highest average relative errors can reach
100% ∼ 150%.

We can conclude that applying image restoration to images

improves the fidelity of CNN feature maps. Nonetheless the
behavior of our GAN models appear close to that of AR-CNN
which has instead much worse performance in terms of mAP.
Therefore we perform further experiments to understand the
relation of feature map error and object detection quality. In
particular, we measure, for each class, how much the drop in
average precision depends from image corruption. In Fig. 10
we show, for all the analyzed QF values, a scatter plot of
∆APc and εc for each class c. Where

∆APc =
APc −APRc

APc
(12)

is the relative drop in average precision when detection is
performed on original images (I) and restored images (IR),
with a special case of JPEG, when image reconstruction is not
performed at all and

εc =
1

|L|
∑
l∈L

εcl (13)

is the error averaged over the set of layers L for a class c. The
lower the ∆APc, the better the performance of the classifier
and of the reconstruction algorithm.

As shown in Fig. 10, there is an interesting correlation
between feature map error and AP drop per class. Indeed,
the error presented by feature maps, negatively affects perfor-
mance in terms of average precision, in case no reconstruction
is applied. Interestingly when using our GAN based method
it can be seen that feature map error is still present, but with
little correlation with ∆AP , even for extremely aggressive
compression rates (e.g. QF=5, 10). This means that the re-
construction process will yield images that are different from
their original uncompressed version and this is reflected in the
error of feature maps. Nonetheless, image appearance in terms
of semantic content is improved, therefore leading to a lower
drop in AP.

D. QF Predictor and Multi-QF evaluation

We want to understand how our QF compression predictor
helps to improve the GAN reconstruction when the quality
factor of the compressed image is not known. In the first
place, we evaluate the performance of QF selector, judging
its classification capabilities. For this experiment, we have
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(a): JPEG (b): AR-CNN[9] (c): GANL1
(d): GANVGG

Fig. 9: Mean relative error, for all layers, for different QF and artifact removal techniques (the lower, the better); the proposed
GAN approach with L1 loss obtains the least error.
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Fig. 10: Correlation of drop in AP drop with average feature map error for different QF and methods. GAN based methods
attain lowest error and AP drop.

compressed the whole PASCAL VOC 2007 dataset at six
different QFs (5,10,20,30,40,60). We evaluate the QF predictor
as a classifier, rounding the regressor output. We report the
classification performance as a normalized confusion ma-
trix in Fig. 11. Interestingly the accuracy is extremely high
and misclassification are exclusively on close-by factors. In
Tab. VII we analyze the performance of our networks trained
on patches of multiple QF (Multi-QF) and the results obtained
by single QF networks driven by our predictor (QF Predictor).
As reference performance bounds, we report also the results
on the compressed image (JPEG) and the results obtained by
always using the right QF GAN (Oracle). Evaluation is carried
on in terms of PSNR, PSNR-B and SSIM on LIVE1 and
BSD500 datasets, at different QF values. It can be observed
that using our proposed QF predictor always improves over
both the JPEG baseline and the Multi-QF approach, resulting
in figures that are on par with a QF oracle, except for QF=40.
Then, we investigate the behavior of single QF models inside

the ensemble by applying them to images of different QFs. In
Fig. 12 we measure mAP for images compressed at various
QFs and reconstructed with QF specific models. It can be
seen that when we use models for similar QFs mAP varies
smoothly. Interestingly, for images with lower QFs such as 5
and 10 we see improvements for every model applied. Higher
quality images must be restored with models trained with
higher QFs, otherwise performance can even degrade.

Finally, we evaluate the restoration of images using our full
system for the task of object detection on PASCAL VOC 2007.
In Tab. VIII we compare the results obtained with Multi-QF
with the results obtained by our QF Predictor. Again, we report
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Fig. 11: QF compression predictor - confusion matrix.

also the results on the compressed image (JPEG, as lower
bound) and the results obtained by a QF Oracle (upper bound).

Our ensemble is always outperforming the Multi-QF model
attaining performance very close to the oracle. When looking
at some qualitative results, shown in Fig. 13, it can be seen that
the Multi-QF approach is able to recover from most artifacts
but it is also responsible for the introduction of checkerboard
artifacts as in the third row. In general the Multi-QF model
generates softer looking images with fewer details, as can be
observed in the first and fourth lines of Fig. 13.

Using oracle driven ensembles should always yield the best
result. From Tab. VIII it can be seen that the mAP figures for
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QF Method LIVE1 BSD500
PSNR PSNR-B SSIM PSNR PSNR-B SSIM

10 JPEG 27.77 25.33 0.791 27.58 24.97 0.769
Multi-QF MSE 29.45 29.10 0.834 29.03 28.61 0.807
Multi-QF SSIM 28.94 28.46 0.840 28.52 27.93 0.816
Multi-QF GAN 27.29 26.69 0.773 27.01 26.30 0.746
QF Predictor MSE 29.47 29.13 0.833 29.05 28.64 0.806
QF Predictor SSIM 28.94 28.46 0.841 28.53 27.97 0.816
QF Predictor GAN 27.65 27.63 0.777 27.31 27.28 0.749
Oracle MSE 29.47 29.13 0.833 29.05 28.64 0.806
Oracle SSIM 28.94 28.46 0.841 28.53 27.97 0.816
Oracle GAN 27.65 27.63 0.777 27.31 27.28 0.749

20 JPEG 30.07 27.57 0.868 29.72 26.97 0.852
Multi-QF MSE 31.77 31.26 0.896 31.20 30.48 0.876
Multi-QF SSIM 31.38 30.77 0.900 30.79 29.92 0.882
Multi-QF GAN 28.35 28.1 0.817 28.07 27.76 0.794
QF Predictor MSE 31.81 31.29 0.897 31.23 30.49 0.877
QF Predictor SSIM 31.51 30.84 0.901 30.92 30.01 0.883
QF Predictor GAN 29.99 29.69 0.864 29.48 29.03 0.841
Oracle MSE 31.81 31.29 0.897 31.23 30.49 0.877
Oracle SSIM 31.51 30.84 0.901 30.92 30.01 0.883
Oracle GAN 29.99 29.69 0.864 29.48 29.03 0.841

30 JPEG 31.41 28.92 0.900 30.98 28.23 0.886
Multi-QF MSE 33.15 32.51 0.922 32.44 31.41 0.906
Multi-QF SSIM 32.87 32.09 0.925 32.15 30.97 0.909
Multi-QF GAN 28.58 28.75 0.832 28.50 28.00 0.811
QF Predictor MSE 33.21 32.51 0.923 32.54 31.58 0.907
QF Predictor SSIM 32.95 32.17 0.926 32.25 31.15 0.910
QF Predictor GAN 31.65 31.38 0.900 31.02 30.55 0.881
Oracle MSE 33.21 32.51 0.923 32.53 31.57 0.906
Oracle SSIM 32.95 32.17 0.926 32.26 31.16 0.911
Oracle GAN 31.65 31.38 0.900 31.04 30.57 0.881

40 JPEG 32.35 29.96 0.917 31.88 29.14 0.906
Multi-QF MSE 34.09 33.40 0.935 33.30 32.18 0.921
Multi-QF SSIM 33.82 33.00 0.937 33.04 31.72 0.924
Multi-QF GAN 28.99 28.84 0.837 28.61 28.20 0.815
QF Predictor MSE 34.13 33.37 0.936 33.38 32.28 0.922
QF Predictor SSIM 33.95 33.04 0.938 33.17 31.88 0.925
QF Predictor GAN 31.64 31.18 0.903 30.99 30.20 0.883
Oracle MSE 34.17 33.42 0.937 33.45 32.34 0.923
Oracle SSIM 33.98 33.07 0.939 33.25 31.94 0.926
Oracle GAN 31.64 31.17 0.903 30.98 30.16 0.884

TABLE VII: Average PSNR, PNSR-B and SSIM results on
BDS500 and LIVE1 using different reconstruction approaches.
Evaluation using luminance. The proposed approach based on
QF Predictor is typically on par with the use of an oracle.
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Fig. 12: Mean Average Precision on PASCAL VOC2007
varying image QF as well as single QF GANs. Original
mAP reported as dashed lines for every QF. Circular markers
indicate the maximum mAP, obtained with the correct model.

Oracle and QF Predictor are very close (±0.1%) except for
QF=10 where Oracle has 0.8% more. Looking at Fig. 11 it can
be seen that most of the errors occur for images at QF=10, in
particular 7% of the images are classified as QF=5. In Fig. 12
it can be seen that when using a model trained for QF=5 on
images obtained with a higher QF there is always a decrease
in mAP.

The complementary behavior can be observed for QF=5
in Tab. VIII where the Oracle obtains 0.3% less than the
QF Predictor. According to Fig. 11, 2.5% of the samples

compressed with QF=5 are misclassified as 10 and 20. We
measure mAP on this smaller set comparing the GAN trained
for QF=5 and GANs selected by the QF Predictor. The first
obtains 54.9% while the latter 64.1%, showing that this kind of
“misclassification” may even be beneficial. A similar behavior,
although less pronounced, happens for QF=20-60.

5 10 20 30 40 60
JPEG 14.9 35.5 54.9 60.8 63.7 66.3

Multi-QF 37.2 54.0 62.7 64.6 65.0 65.7
QF Predictor 43.5 54.3 63.1 64.7 65.0 67.3

Oracle 43.2 55.1 63.2 64.6 64.9 67.2

TABLE VIII: Mean average precision on PASCAL VOC2007
with different Multi QF approaches.

E. Segmentation Mask Proposal

In this experiment we analyze the performance of the
generation of mask proposals for an image on MS-COCO[29]
using 20,000 images on the test-dev set as in Sect.V-C. These
proposals should precisely segment objects in a scene. Mask
proposals can be used to derive bounding boxes to be fed to an
object detector. Mask proposals, once evaluated by a classifier,
can be used to label image pixels with categories. Differently
from semantic segmentation, modern benchmarks evaluate not
just the label correctness pixel-wise but also instance-wise,
meaning that multiple people close-by should not be assigned
a single “person” mask.

1) Method: Also in this experiment we use a recent method
based on deep neural networks, i.e. SharpMask [37]. This
approach is based on a previous method, proposed by the same
authors named DeepMask [36], which learns to generate a
binary mask jointly optimizing two logistic regression losses:
a patch-wise object presence loss and a pixel-wise mask loss.
Mask loss is inactive when an object is not present inside
the patch. SharpMask proposes a refinement process able to
improve 10-20% in object mask accuracy. Both methods use
a pre-trained VGG-16 network to extract features.

We test SharpMask [37], with the same protocol described
in Sect. V-C. We measure performance in terms of Average
Recall for 10 proposals. This means that we average object
recall over a set of intersection over union values, and report
looking only at the first 10 proposals of every image (AR@10).
Similarly to results reported in Sect. V-C we have GANVGG
obtaining the best performance in recovering from artifacts.
This behavior is consistent for all QFs. Images compressed
with a QF higher than 40 exhibit little loss in AR@10.

F. Subjective evaluation

In this experiment we assess how images obtained with
the proposed methods are perceived by a human viewer,
evaluating in particular the preservation of details and overall
quality of an image using the SSIM loss and the GAN-
based approaches. 10 viewers have participated to the test, a
number that is considered enough for subjective image quality
evaluation tests [47]; no viewer was familiar with image
quality evaluation or the approaches proposed in this work.
A Double-Stimulus Impairment Scale (DSIS) experimental
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Fig. 13: Qualitative comparison in the multiple QF setting.
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Fig. 14: Average Recall for 10 proposals per image for
different QF and methods. Performance at low QFs for GAN
based methods is superior.

setup has been developed using VQone, a tool designed to
perform subjective image quality evaluations [34]. We asked
participants to evaluate reconstructed images comparing them
to the original uncompressed ones with a grade of similarity
on a continuous scale from 0 to 100. A slider with no marked

values is used in order to avoid preferred numbers. A set of
50 images is randomly selected from the BSD500 dataset.
Considering our estimation of test completion time we chose
this amount of images to keep each session under 30 minutes
as recommended by ITU-R BT.500-13 [19].

The selected images contain different subjects, such as
persons, animals, man-made objects, nature scenes, etc. For
each original image have been shown both an image processed
with the SSIM loss network and the GAN network, resulting
in an overall collection of 1,000 judgements. The order of
appearance of the images was randomized to avoid showing
the results of the two approaches always in the same order;
we also randomized the order of presentation of the tests for
each viewer. In Table IX are reported final results as MOS
(Mean Opinion Scores) with standard deviation. They show
that the GAN-based network is able to produce images that
are perceptually more similar to the original ones. In Fig 15 we
report MOS for each image with a 95% confidence interval.
It appears clearly that in roughly 90% of the cases our GAN-
based network restored images are considered more similar to
the original with respect to the one using the SSIM-based loss.
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Method MOS std. dev.
Our SSIM 49.51 22.72
Our GAN 68.32 20.75

TABLE IX: Subjective image quality evaluation in terms of
Mean Opinion Score (MOS) on 50 images of BSD500 dataset.
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Fig. 15: MOS values, with 0.95 confidence, for all the 50
images used in the subjective evaluation.

VI. CONCLUSION

We have shown that compression artifact removal can be
performed by learning an image transformation task with a
deep residual convolutional neural network. We show that
conditional Generative Adversarial Networks produce higher
quality images with sharp details which are relevant not only
to the human eye but also for semantic computer vision tasks.
Our model, trained by minimizing SSIM based loss obtains
state of the art results according to standard image similarity
metrics. Nonetheless, images reconstructed as such appear
blurry and missing details at higher frequencies. Our GAN,
trained alternating full size patch generation with sub-patch
discrimination solve this issue.

Considering that compression parameters are not known in
advance, we propose a method which is able to predict the
quality of the image with high accuracy and pick a specialized
GAN model out of an ensemble to restore the image, obtaining
results on par with the same ensemble driven by an oracle.

We have extensively analyzed the behavior of deep CNN
based algorithms when processing images that are compressed,
evaluating results at different compression levels. As expected
artifacts appearing even at moderately compression rates mod-
ify feature maps. This phenomenon is shown to correlate
with errors in semantic tasks such as object detection and
segmentation. We have shown a high drop in performance
for classes where texture is an important cue and entities are
deformable and articulated, such as cats and other animals.

Human evaluation and quantitative experiments in object
detection show that our GAN generates images with finer
consistent details and these details make a difference both for
machines and humans.
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[2] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston. Variational
image compression with a scale hyperprior. In Proc. of ICLR, 2018.

[3] J. Bruna, P. Sprechmann, and Y. LeCun. Super-resolution with deep
convolutional sufficient statistics. CoRR, abs/1511.05666, 2015.

[4] L. Cavigelli, P. Hager, and L. Benini. CAS-CNN: A deep convolutional
neural network for image compression artifact suppression. In Proc. of
IJCNN, 2017.

[5] H. Chang, M. K. Ng, and T. Zeng. Reducing artifacts in JPEG
decompression via a learned dictionary. IEEE Transactions on Signal
Processing, 62(3):718–728, Feb 2014.

[6] H. Chen, X. He, L. Qing, and Q. Teng. Single image super-resolution via
adaptive transform-based nonlocal self-similarity modeling and learning-
based gradient regularization. IEEE Transactions on Multimedia,
19(8):1702–1717, 2017.

[7] R. Dahl, M. Norouzi, and J. Shlens. Pixel Recursive Super Resolution.
ArXiv preprint arXiv:1702.00783, Feb. 2017.

[8] Y. Dar, A. M. Bruckstein, M. Elad, and R. Giryes. Postprocessing of
compressed images via sequential denoising. IEEE Transactions on
Image Processing, 25(7):3044–3058, July 2016.

[9] C. Dong, Y. Deng, C. Change Loy, and X. Tang. Compression artifacts
reduction by a deep convolutional network. In Proc. of ICCV, 2015.

[10] A. Dosovitskiy and T. Brox. Generating images with perceptual
similarity metrics based on deep networks. In Proc. of NIPS, 2016.

[11] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn,
and A. Zisserman. The PASCAL visual object classes challenge: A
retrospective. International Journal of Computer Vision, 111(1):98–136,
2015.

[12] A. Foi, V. Katkovnik, and K. Egiazarian. Pointwise shape-adaptive DCT
for high-quality denoising and deblocking of grayscale and color images.
IEEE Transactions on Image Processing, 16(5):1395–1411, 2007.

[13] L. Galteri, L. Seidenari, M. Bertini, and A. Del Bimbo. Deep generative
adversarial compression artifact removal. In Proc. of ICCV, 2017.

[14] L. A. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis and
the controlled generation of natural stimuli using convolutional neural
networks. CoRR, abs/1505.07376, 2015.

[15] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using
convolutional neural networks. In Proc. of CVPR, 2016.

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Proc. of NIPS, 2014.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proc. of CVPR, 2016.

[18] X. He, Q. Hu, X. Zhang, C. Zhang, W. Lin, and X. Han. Enhancing
HEVC compressed videos with a partition-masked convolutional neural
network. In Proc. of ICIP, 2018.

[19] ITU. Rec. ITU-R BT.500-13 - Methodology for the subjective assessment
of the quality of television pictures, 2012.

[20] V. Jakhetiya, W. Lin, S. P. Jaiswal, S. C. Guntuku, and O. C. Au. Max-
imum a posterior and perceptually motivated reconstruction algorithm:
A generic framework. IEEE Transactions on Multimedia, 19(1):93–106,
2017.

[21] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time
style transfer and super-resolution. In Proc. of ECCV, 2016.

[22] L. W. Kang, C. C. Hsu, B. Zhuang, C. W. Lin, and C. H. Yeh. Learning-
based joint super-resolution and deblocking for a highly compressed
image. IEEE Transactions on Multimedia, 17(7):921–934, 2015.

[23] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-resolution
using very deep convolutional networks. In Proc. of CVPR, 2016.

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
In Proc. of ICLR, 2015.

[25] N. Kumar and A. Sethi. Super resolution by comprehensively exploiting
dependencies of wavelet coefficients. IEEE Transactions on Multimedia,
20(2):298–309, 2018.

[26] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. P. Aitken, A. Te-
jani, J. Totz, Z. Wang, and W. Shi. Photo-realistic single im-
age super-resolution using a generative adversarial network. CoRR,
abs/1609.04802, 2016.

[27] T. Li, X. He, L. Qing, Q. Teng, and H. Chen. An iterative framework of
cascaded deblocking and super-resolution for compressed images. IEEE
Transactions on Multimedia, 2017.

[28] Y. Li, F. Guo, R. T. Tan, and M. S. Brown. A contrast enhancement
framework with JPEG artifacts suppression. In Proc. of ECCV, 2014.

[29] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick. Microsoft COCO: Common objects in
context. In Proc. of ECCV, 2014.



GALTERI et al. : DEEP UNIVERSAL GENERATIVE ADVERSARIAL COMPRESSION ARTIFACT REMOVAL 15

[30] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for
semantic segmentation. In Proc. of CVPR, 2015.

[31] X. Mao, C. Shen, and Y.-B. Yang. Image restoration using very deep
convolutional encoder-decoder networks with symmetric skip connec-
tions. In Proc. of NIPS, 2016.

[32] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics. In Proc. of ICCV, 2001.

[33] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784, 2014.

[34] M. Nuutinen, T. Virtanen, O. Rummukainen, and J. Häkkinen. VQone
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