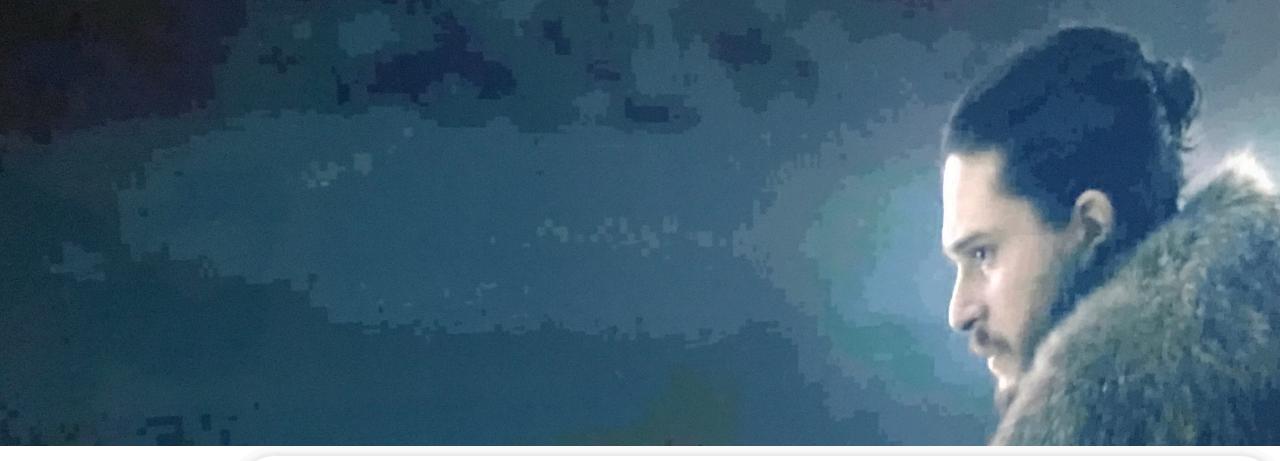
# Improving Quality of Compressed Video Using GAN

Lorenzo Seidenari - Assistant Professor University of Florence, Italy





Google

#### why the long night

why the long night was bad

why the long night **was good** why the long night **was so dark** why the long night **was terrible** why the long night **was a disappointment**  **୍ର** ପ୍

Remove

# Why does this happens? (in 2019...)

- First Episode of Season 2 had 15M viewers
- Stream this at reasonable quality at a cost of 0,020 \$/GB\*

# -1,125,000\$



\*Amazon Cloud Outbound Traffic

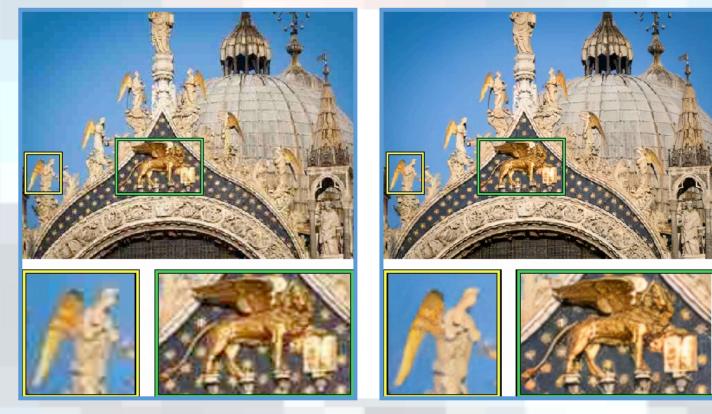
# How can we fix it







# Improving Compressed Images with GANs



 $G(x_{LQ})$ 

Given an uncompressed frame  $x_{HO}$ 

$$x_{LQ} = \mathcal{C}(x_{HQ};\theta)$$

We want to learn a function

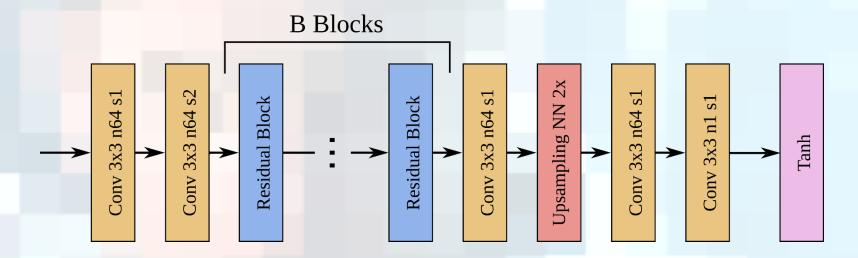
$$G(x_{LQ}) \approx \mathcal{C}^{-1}(x_{HQ};\theta)$$

**ICCV'17** 

where  $\theta$  are codec parameters.

 $x_{LQ}$ 

## A Deep Residual Network for Reconstruction

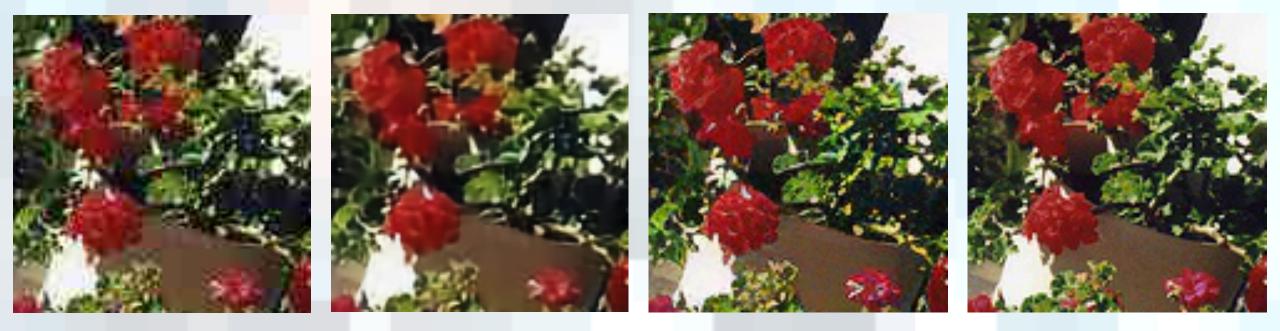


**ICCV'17** 

- We use strided convolution to reduce feature map size.
- We avoid checkerboard artifacts with NN upsampling followed by 2 more convolutional layers
- Trained on patches 128x128 pixel extracted from MS-COCO.

# Limitations of MSE and SSIM Losses

- SSIM and MSE losses are able to reduce effectively compression artefacts.
- However, reconstructions appear blurry and there are many missing details with respect to the uncompressed version of the image.



JPEG

SSIM Loss

GAN



E ICCV'17

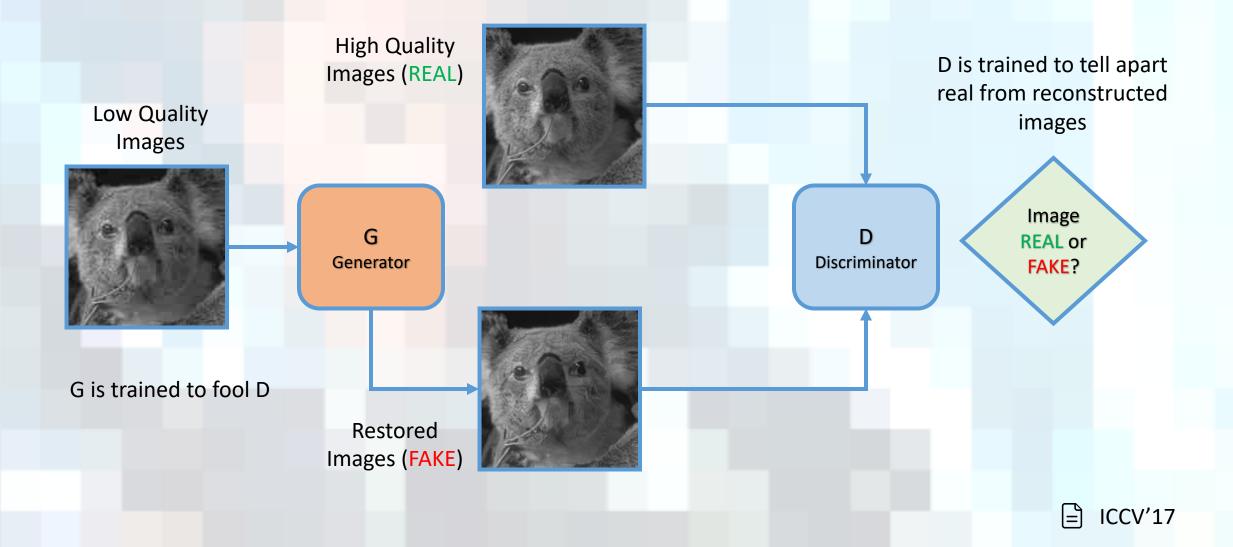
# Limitations of MSE and SSIM Losses

- SSIM and MSE losses are able to reduce effectively compression artefacts.
- However, reconstructions appear blurry and there are many missing details with respect to the uncompressed version of the image.

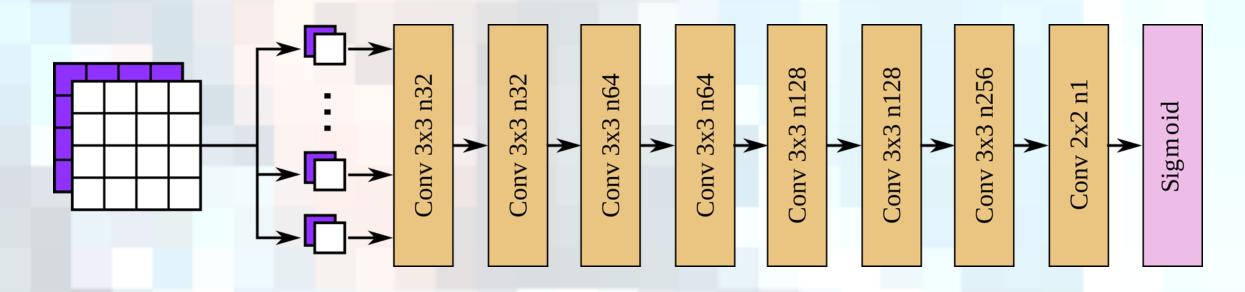


JPEG SSIM Loss GAN Original

# **Generative Adversarial Network**



#### **The Sub-Patch Discriminator**



 128 x 128 patches are split into smaller 16x16 sub-patches, concatenated with correspondent input subpatches and processed by the discriminator.

ICCV'17

• The discriminator is trained with a binary cross-entropy loss over all the sub-patches.

# **Effect of Sub-Patch Discriminator**

• This technique allows to reduce the mosquito noise present in reconstructions.

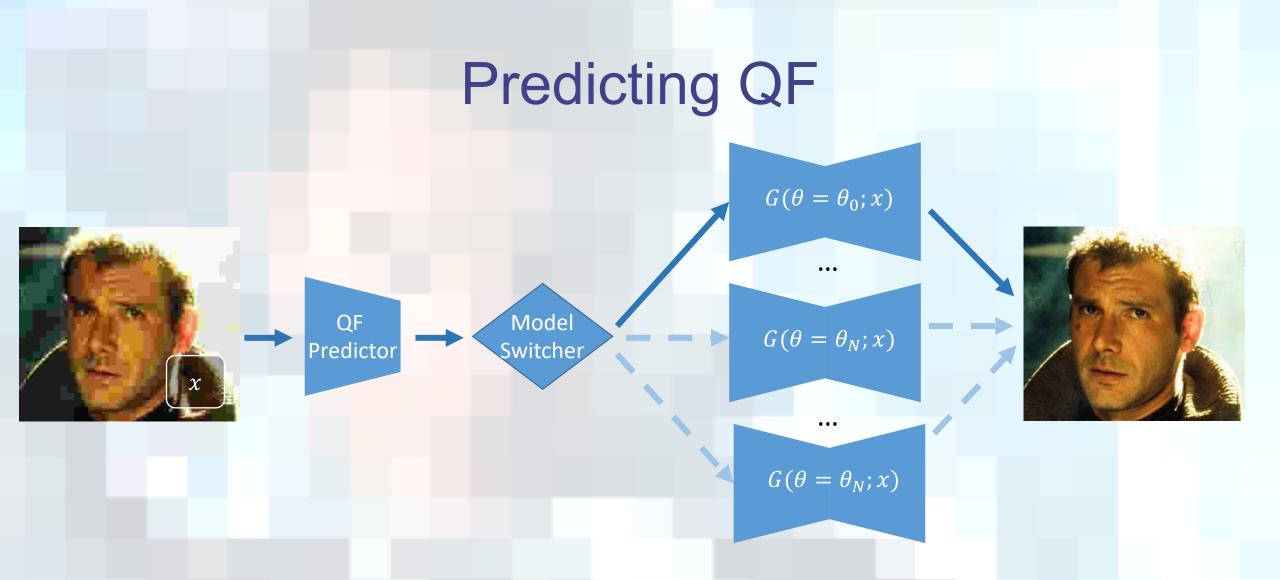




W/o Sub-Patch

With Sub-Patch

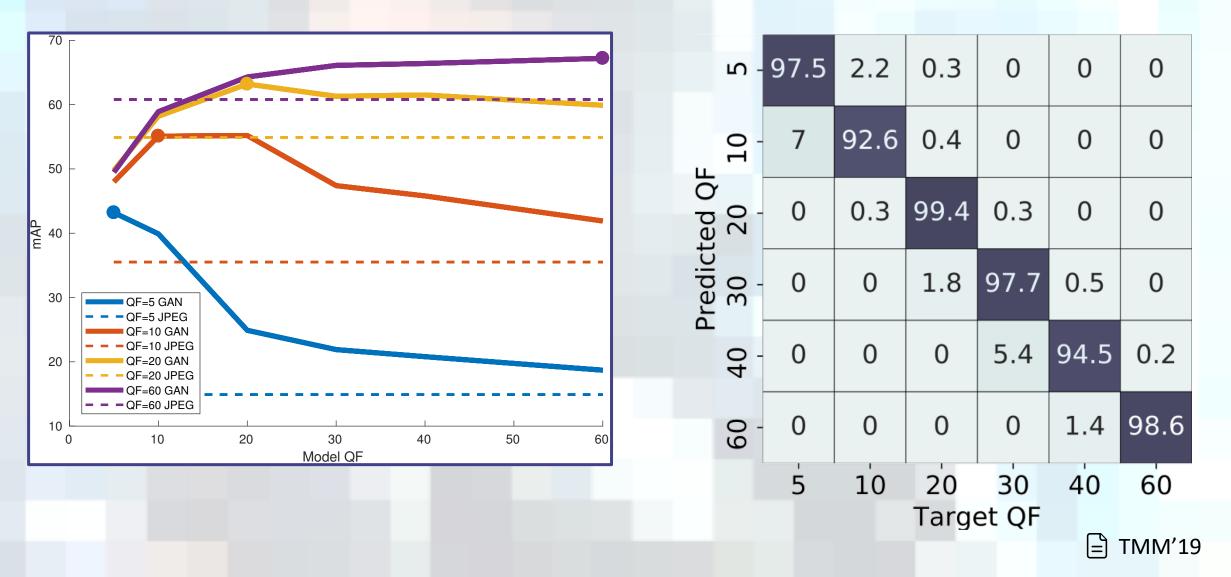
E ICCV'17



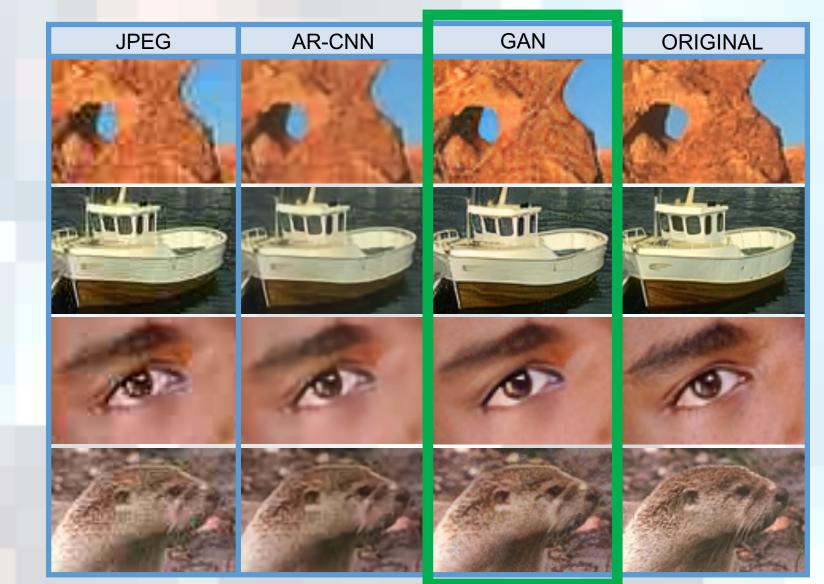
TMM'19

- We train a CNN regressor, named QF predictor, to drive a finite Ensemble of Generators
- We use the most appropriate Generator to restore the image

#### **Quality Prediction Results**

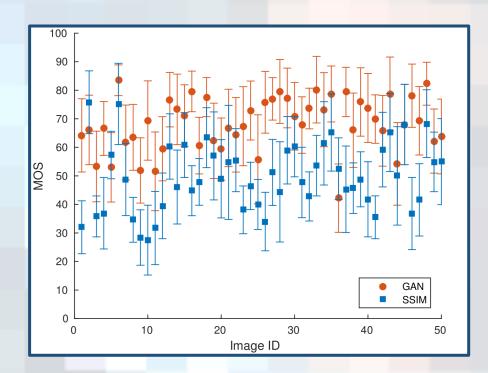


#### **Qualitative Results**



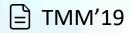
E TMM'19

# **Subjective Evaluation**



| Method | MOS   | Std. Dev. |
|--------|-------|-----------|
| SSIM   | 49.51 | 22.72     |
| GAN    | 68.32 | 20.75     |

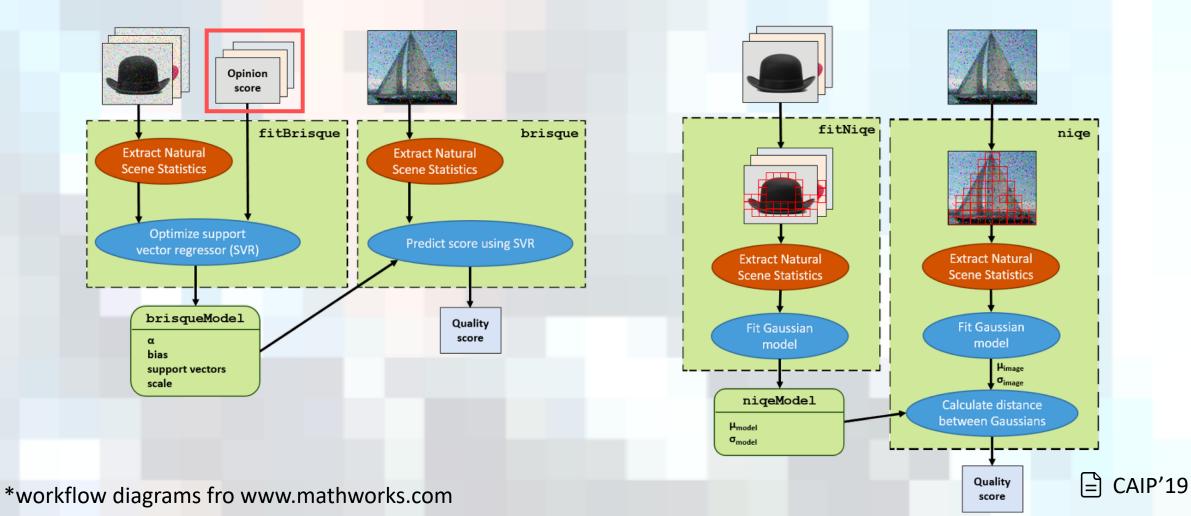
- DSIS setup test image compared to original and similarity scored in 0-100
- We compare SSIM Loss vs Adversarial Training using the same Generator architecture.
- Subjects have a strong preference for GAN restored images over SSIM ones.



# **No-Reference Image Assessment**

#### BRISQUE [Mittal'12]

NIQE [Mittal'13]



# **No-Reference vs Full Reference**

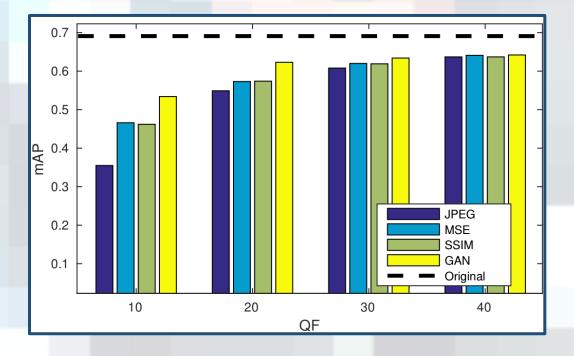
- Our GAN obtains poor scores on Full Reference metrics
- On the other hand NIQE and BRISQUE value GAN images as 'more natural' the the original ones!

|                  | PSNR           | SSIM   | NIQE  | BRISQUE   |
|------------------|----------------|--------|-------|-----------|
| JPEG10           | <b>24.8245</b> | 0.7852 | 6.36  | -53.17    |
| GAN              | 23.8412        | 0.7605 | 4.27  | 19.65     |
| ORIG             | _              | -      | 4.35  | 24.32     |
| higher is better |                |        | lower | is better |

Under Review

# **Object Detection Results**

- Use an object detector, Faster R-CNN to assess the visual quality of restored images
- Compute mAP on PASCAL VOC using several JPEG quality factors and the correspondent reconstructions.



| Class | GAN<br>AP gain<br>@QF 20 |
|-------|--------------------------|
| Dog   | +18.6                    |
| Cat   | +16.6                    |
| Sheep | +14.3                    |
| Cow   | +12.5                    |

- Large increase in detector performance
- Largest gainers are deformable 'furry' objects such as animals

🖹 TMM'19

# **Evaluation using Language**

• Use [Anderson et al. CVPR18] image captioning algorithm to evaluate the fine semantics of the image





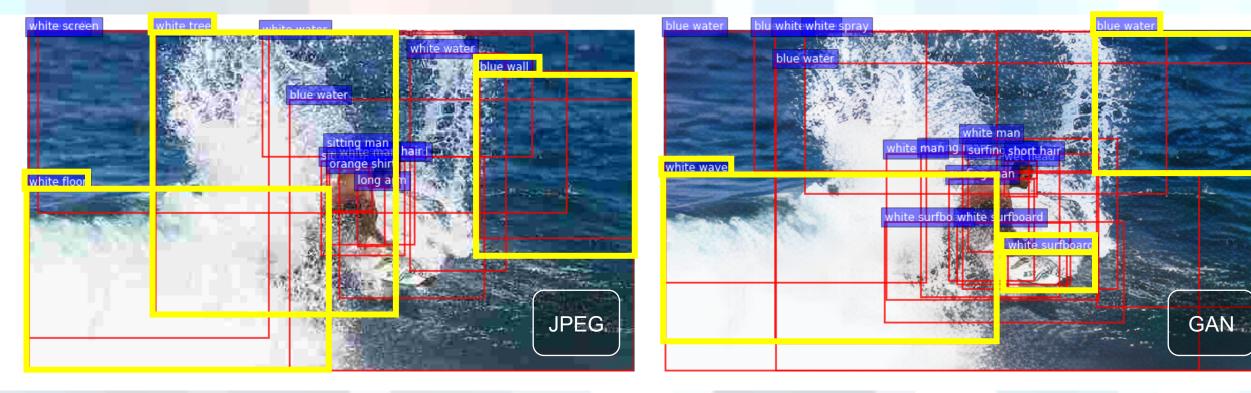


# **Quantitative Analysis**

• According all captioning metrics, images enhanced with our GAN are tagged more accurately

|      | BLEU_1 | BLEU_2 | BLEU_3 | BLEU_4 | METEOR | ROUGE | CIDEr | SPICE | VIFIDEL |
|------|--------|--------|--------|--------|--------|-------|-------|-------|---------|
| JPEG | 0.685  | 0.500  | 0.360  | 0.250  | 0.220  | 0.490 | 0.810 | 0.150 | 0.309   |
| GAN  | 0.770  | 0.600  | 0.450  | 0.330  | 0.260  | 0.540 | 1.090 | 0.200 | 0.313   |
| ORIG | 0.800  | 0.630  | 0.480  | 0.360  | 0.280  | 0.570 | 1.200 | 0.210 | 0.313   |

## **Qualitative Analysis**



A couple of people sitting next to a christmas tree.

A man riding a wave on a surfboard in the ocean

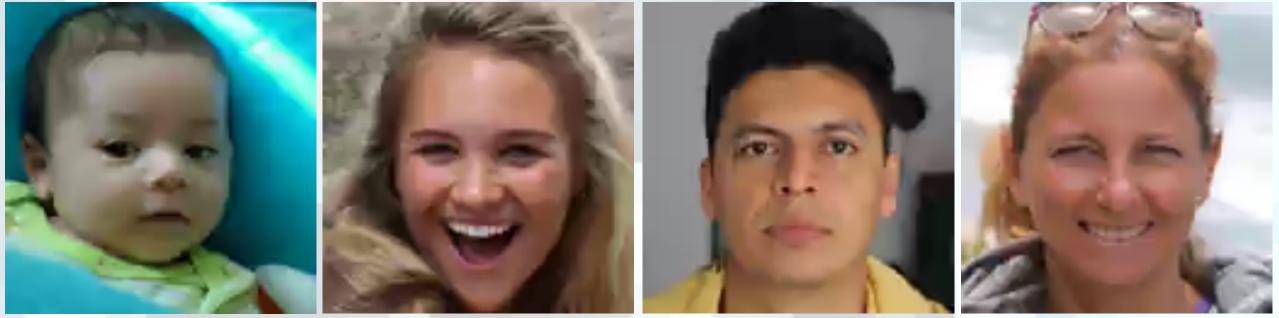
Language&Vision@CVPR'19

#### Compressed

#### Restored

# **Specialized Artifact Removal**

- GANs are well known to work well when the distribution is simpler
- Faces are possibly the most interesting object we are willing to transmit
- Here what we can do with a severe degradation and a specialized GAN





# **Specialized Artifact Removal**

- GANs are well known to work well when the distribution is simpler
- Faces are possibly the most interesting object we are willing to transmit
- Here what we can do with a severe degradation and a specialized GAN

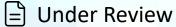




# **Specialized Artifact Removal**

- On a h.264 coded 'talking head' video bandwidth reduced by 150x
- Runs @24 FPS on Iphone X exploiting Neural Engine





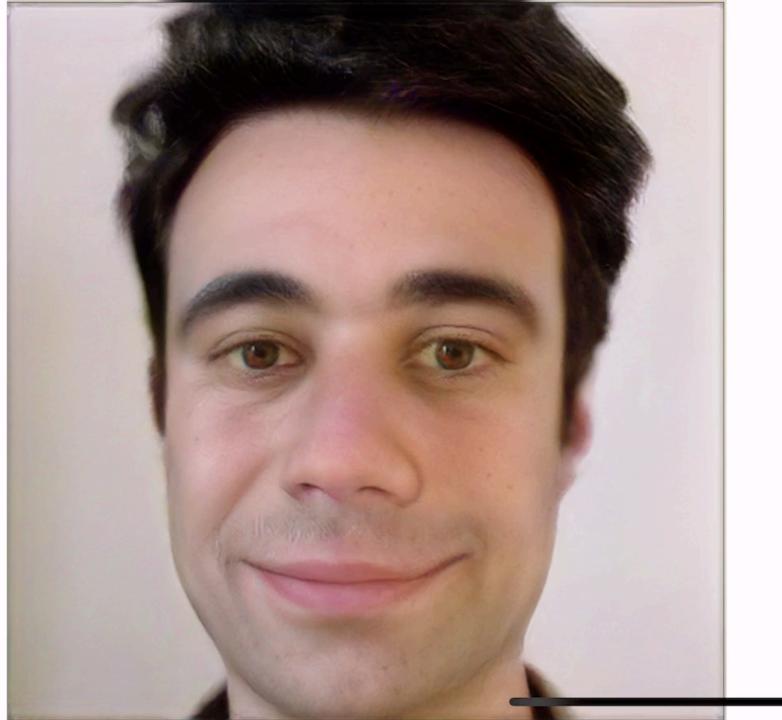




#### **Enable Smart Decompression**









#### **Enable Smart Decompression**





### Conclusion

- GANs are great for image enhancement. Training allows domain specialization e.g.: faces
- Do not trust standard signal based metrics to evaluate you results
- Humans >> Semantic Tasks > No Reference > Full Reference
- We may in the future see the use of these algorithms to improve user experience

#### References

- L. Galteri, L. Seidenari, M. Bertini, A. Del Bimbo, 'Deep Generative Adversarial Compression Artifact Removal', IEEE ICCV 2017
- L. Galteri, L. Seidenari, M. Bertini, A. Del Bimbo, 'Deep Universal Generative Adversarial Compression Artifact Removal', IEEE TMM 2019
- L. Galteri, L. Seidenari, M. Bertini, A. Del Bimbo, 'Towards Real-Time Image Enhancement GANs', CAIP 2019
- L. Galteri, L. Seidenari, P. Madhyastha, M. Bertini, L. Specia, A. Del Bimbo, 'Using Language to Evaluate Image Enhancement Tasks', Language&Vision Workshop@CVPR 2019
- A. Mittal, A. K. Moorthy, and A. C. Bovik. No-Reference Image Quality Assessment in the Spatial Domain. IEEE TIP 2012.
- A. Mittal, R. Soundararajan, and A. C. Bovik. Making a "completely blind" image quality analyzer. IEEE Signal Processing Letters 2013
- P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang. Bottom-up and top-down attention for image captioning and visual question answering. CVPR 2018

# Thanks





www.small-pixels.com

# Thanks





#### www.small-pixels.com