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ORGANIZATION OF THE TUTORIAL

9:00 – 10:00 Part 1: Introduction 
Part 2: Taxonomy

10:00 – 10:30 Part 3: Experimental protocol
Part 4: Evaluation

10:30 – 11:00 Coffee break

11:00 – 12:30 Part 4: Evaluation cont’d

12:30 – 13:00 Part 5: Conclusion and future directions
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READING MATERIAL

Socializing the Semantic Gap: A Comparative Survey on Image 
Tag Assignment, Refinement and Retrieval, 
ACM Computing Surveys, 49(1):14, June 2016.
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PART 1
INTRODUCTION

• Problem statement
• Course organization
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PROGRESS IN IMAGE RETRIEVAL

- Query-by-Image content

5

IBM,	QBIC



PROGRESS IN IMAGE RETRIEVAL

- Query-by-sketch
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Del	Bimbo,	PAMI	1997



PROGRESS IN IMAGE RETRIEVAL

- By 2000 problem well understood
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Smeulders,	PAMI	2000



PROGRESS IN IMAGE RETRIEVAL

- By 2008 the field blossomed, but social context mostly ignored
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Datta,	CSUR	2008



IMAGES WANT TO BE SHARED
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Almost all these services allow users to tag, rate, like, and swipe photos. 



DAILY NUMBER OF PHOTOS SHARED ON
SELECT PLATFORMS
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Mary	Meeker	Internet	Trends	2016



BUSINESS CASE
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Mary	Meeker	Internet	Trends	2016



AVERAGE DAILY TIME SPENT PER USA USER
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Mary	Meeker	Internet	Trends	2016



EXAMPLES
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EXAMPLES
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EXAMPLES
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PROBLEMS OF TAGS: IRRELEVANCE

- Tags are few, imprecise, ambiguous, and overly personalized 
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Nikon
Airplane
2016



PROBLEMS OF TAGS: DYNAMICS

- In a social network, users continuously add images and create 
new terms given the freedom of tagging.
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Brexit



PROBLEMS OF TAGS: SCALE

- Web-scale quantity of media.
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THE LONG TAIL OF IMAGE TAGS
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• Some tags are popular and have millions of example images.
• Others are rare, occurring in few images

Kordumova et al. MMM 2016



TAGGING BEHAVIOR

Study by Sigurbjörnsson and van Zwol in WWW 2008 on Flickr
- The head of the distribution contains too generic tags to be useful 

(the top 5 most frequent: 2006, 2005, wedding, party, and 2004).
- The tail contains the infrequent tags with incidentally occurring 

terms such as misspellings and complex phrases. 
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AN N-GRAM PERSPECTIVE

Study by Kordumova et al in MMM 2016 on Flickr
- Most of the frequent tags are unigrams. 
- As the frequency goes down more bigrams appear. 
- Towards the end trigrams and four-grams occur

21christmas tree kaffir cat wine	cellar	barrel	storagemediterranean water	shrew



TAGS PER PHOTO (IN 2008)

- A few photos are exceptionally well tagged
- 64% of photos have 1, 2 or 3 tags only. 

22Sigurbjörnsson and van Zwol, WWW 2008 



WORDNET CATEGORIES OF TAGS

- 48% of 3.7M tags could not be matched.
23
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Figure 1: Distribution of the Tag Frequency in
Flickr.

by a power law [19, 1], and the probability of a tag having
tag frequency x is proportional to x

�1.15. With respect to
the tag recommendation task, the head of the power law
contains tags that would be too generic to be useful as a
tag suggestion. For example the top 5 most frequent occur-
ring tags are: 2006, 2005, wedding, party, and 2004. The
very tail of the power law contains the infrequent tags that
typically can be categorised as incidentally occurring words,
such as mis-spellings, and complex phrases. For example:
ambrose tompkins, ambient vector, and more than 15.7 mil-
lion other tags that occur only once in this Flickr snapshot.
Due to their infrequent nature, we expect that these highly
specific tags will only be useful recommendations in excep-
tional cases.
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Figure 2: Distribution of the number of tags per
photo in Flickr.

Figure 2 shows the distribution of the number of tags per
photo also follows a power law distribution. The x-axis rep-
resents the 52 million photos, ordered by the number of tags
per photo (descending). The y-axis refers to the number
of tags assigned to the corresponding photo. The proba-
bility of having x tags per photo is proportional to x

�0.33.
Again, in context of the tag recommendation task, the head
of the power law contains photos that are already exception-
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Figure 3: Most frequent WordNet categories for
Flickr tags.

ally exhaustively annotated, as there are photos that have
more than 50 tags defined. Obviously, it will be hard to
provide useful recommendations in such a case. The tail of
the power law consists of more than 15 million photos with
only a single tag annotated and 17 million photos having
only 2 or 3 tags. Together this already covers 64% of the
photos. Typically, these are the cases where we expect tag
recommendation to be useful to extend the annotation of
the photo.

To analyse the behaviour of the tag recommendation sys-
tems for photos with di↵erent levels of exhaustiveness of the
original annotation, we have defined four classes, as shown
in Table 1. The classes di↵erentiate from sparsely annotated
to exhaustively annotated photos, and take the distribution
of the number of tags per photo into account as is shown in
the last column of the table. In Section 6, we will use this
categorisation to analyse the performance for the di↵erent
annotation classes.

Tags per photo Photos
Class I 1 ⇡ 15,500,000
Class II 2 – 3 ⇡ 17,500,000
Class III 4 – 6 ⇡ 12,000,000
Class IV > 6 ⇡ 7,000,000

Table 1: The definition of photo-tag classes and the
number of photos in each class.

3.3 Tag Categorisation
To answer the question “What are users tagging?”, we

have mapped Flickr tags onto the WordNet broad cate-
gories [10]. In a number of cases, multiple WordNet cat-
egory entries are defined for a term. In that case, the tag is
bound to the category with the highest ranking. Consider
for example the tag London. According to WordNet, London
belongs to two categories: noun.location, which refers to
the city London, and noun.person, referring to the novelist
Jack London. In this case the location category is ranked
higher than the person. Hence, we consider the tag London
to refer to the location.

Figure 3 shows the distribution of Flickr tags over the
most common WordNet categories. Following this approach,
we can classify 52% of the tags in the collection, leaving 48%

329

WWW 2008 / Refereed Track:  Rich Media April 21-25, 2008. Beijing, China

Sigurbjörnsson and van Zwol, WWW 2008 



ABOUT THIS TUTORIAL

- This tutorial focuses on challenges and solutions for content-based 
image retrieval in the context of online image sharing and tagging. 

- We present a unified review on three closely linked problems, i.e., 
tag assignment, tag refinement, and tag-based image retrieval. 

- We introduce a taxonomy to structure the literature, understand the 
ingredients of the main works, clarify their connections and 
difference, and recognize their merits and limitations. 

- We present an open-source testbed, with training sets of varying 
sizes and three test datasets, to evaluate 11 methods of varied 
learning complexity. 

http://www.micc.unifi.it/tagsurvey/
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TASK: TAG ASSIGNMENT

- Given an unlabeled image, tag assignment strives to assign a 
number of tags related to the image content
- How many tags ? Fixed or variable number ?

29



TASK: TAG REFINEMENT

- Given an image associated with some initial tags, tag refinement 
aims to remove irrelevant tags from the initial tag list and enrich it 
with novel, yet relevant, tags.

30



TASK: TAG RETRIEVAL

- Given a tag and a collection of images labeled with the tag (and 
possibly other tags), the goal of tag retrieval is to retrieve images 
relevant with respect to the tag of interest.

31

Query:	bride



PART 2
TAXONOMY

• Foundations
• tag relevance

• A two-dimensional taxonomy
• Media for tag relevance
• Learning for tag relevance

32



FOUNDATIONS

The basic elements to be considered when developing methods for 
tag assignment, refinement and retrieval are:

- An image x
- A tag t
- A user u

- A user u can share an image x, assigning tag t to it

33



FOUNDATIONS

A set of users U contributes a set of n socially tagged images X. 
All tags used to describe X form a vocabulary V composed of m tags.

34

Vocabulary = {court, 1, number, bristol, roby, fishing, me}



FOUNDATIONS

- Depending on the social network we can assume the availability 
of a set of user information 𝜣 (e.g. user contacts, geo-localization, 
etc.)

35



TAG RELEVANCE

Tag assignment, refinement and retrieval share an essential component: 
a way to measure the relevance between a tag and a given image

This function considers the image x, tag t and user information 𝜣:

fɸ(x, t; 𝜣)

36



EXAMPLE FOR TAG REFINEMENT

37
Li et al. TMM 2009



UNIFIED FRAMEWORK
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UNIFIED FRAMEWORK
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UNIFIED FRAMEWORK

Training media is obtained from social networks, i.e. with unreliable user-
generated annotations. It can be filtered to remove unwanted tags or images.
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UNIFIED FRAMEWORK
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AUXILIARY COMPONENTS: FILTER

- A common practice is to  eliminate overly personalized tags like 
‘hadtopostsomething’
- e.g. by excluding tags that are not part of WordNet or Wikipedia

- Often tags that do not appear enough times in the collection are 
eliminated.

- Reduction of vocabulary size is also important for when using an 
image-tag association matrix

- Since batch tagging tends to reduce the quality of tags, these 
types of images can be excluded

42



BATCH TAGGING

A unique user constraint prevents ‘spam’ from batch tagging

43
Li et al. TMM 2009



AUXILIARY COMPONENTS: PRECOMPUTE

- It is practical to precompute information for the learning.

- A common precomputation is tag occurrence and co-occurrence.

- Occurrence can be used to penalize excessively frequent tags

- Co-occurrence is used to capture semantic similarity of tags directly 
from users’ behavior
- Semantic similarity typically obtained by Flickr context distance

44



FLICKR CONTEXT DISTANCE

title tags

description

comments

(a) (b)

FCS (bridge, river) = 0.65

Figure 2: (a) Rich context information associated
with a Flickr image. (b) The total number of images
returned using keyword-based search in Flickr image
context.

co-occurrence statistics in visual data rather than the text
corpora used in [27, 20, 19, 8, 5].

Given two words, we compute their relatedness based on
the number of Flickr images associated with them. With
the number of hits returned by Flickr, we apply NGD de-
rived from Kolmogorov complexity theory to estimate word
distance [5]:

NGD(x, y) =
max{log h(x), log h(y)}− log h(x, y)

log N − min{log h(x), log h(y)} , (1)

where h(x) denotes the number of images associated with
word x in their context, and h(x, y) denotes the number of
images associated with both words x and y; N is the total
number of images on Flickr, which is roughly estimated as
3.5 billion by the time we did the experiments. The NGD
is then converted to Flickr context similarity (FCS) using a
Gaussian kernel, defined as

FCS(x, y) = e−NGD(x,y)/ρ, (2)

where the parameter ρ is empirically set as the average pair-
wise NGD among a randomly pooled set of words. Similar
way of setting ρ has been shown to be effective for kernel
based classification tasks [38]. An example of calculating
FCS is shown in Figure 2 (b).

The major advantage of using full context information
instead of tags alone is the better coverage of words. Fig-
ure 3 shows the frequency of 374 LSCOM concepts in vari-
ous sources including Google web search, Flickr image con-
text/tags, and the LSCOM manual annotations on TRECVID
2005 development set (43,873 shots). Obviously Google web
search has the best coverage: the most rare concept (Dredge
Powershovel Dragline) still appears in 2,120 web pages. Also,
it can be clearly seen that the concept coverage of Flickr con-
text is much better than that of Flickr tags. Only 2 concepts
have zero frequency in context (Non-US National Flags and
Dredge Powershovel Dragline), while in the tags, 53 con-
cepts were not found. Although the coverage of Flickr con-
text is not as good as Google web search, as will be shown
in the experiments, it has the merit of reflecting the visual
co-occurrence of words.

It is worthwhile to point out that the web-based sources
are indeed noisy. For example, the precision of Flickr tags
was found to be around 50% in [15]. The noise issue also
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Figure 3: The frequency of 374 LSCOM semantic
concepts in various sources. Note that the Y-axis is
plotted in log scale.

exists in many web pages indexed by Google. A web page
may contain multiple paragraphs of texts discussing differ-
ent topics, resulting in misleading estimation of word co-
occurrence. However, as was noted in [5], such noise can be
partially made up by the huge data base size. This can be
explained intuitively by the fact that two unrelated words
may occasionally co-occur because of the noise, but prob-
ably not always. In other words, when the data base size
increases, the number of co-occurrence of two related words
will mostly increase at a much faster rate than that between
two unrelated words. While we believe that techniques such
as tag disambiguation [32] and image content based verifica-
tion (Flickr distance [33]) are promising for alleviating the
issue of noise, practically FCS is a much easier and cheaper
way to measure the visual co-occurrence of all the words in
human vocabulary.

4. SEMANTIC CONTEXT TRANSFER
This section describes our semantic context transfer al-

gorithm. We start by defining a few notations. Let C =
{c1, c2, · · · , cm} denote a semantic lexicon of m concepts
and {Xtrn,Ytrn} be a training data set, where Ytrn is the
ground-truth label of Xtrn. Based on the training set, a
classifier/detector is developed for each concept ci using any
supervised learning algorithm, such as SVMs. Another piece
of useful information that can be learnt from the training set
is inter-concept relationship, which can be easily computed
based on the correlation of ground-truth labels. Formally,
these are expressed as

{Xtrn,Ytrn} → {Wtrn,D}, (3)

where D denotes a concept detection function for the m
concepts and Wtrn ∈ Rm×m indicates the pairwise concept
affinity. A large value wij in Wtrn means two concepts ci and
cj frequently co-occur (e.g., car and road). The detection
function is then applied to a target data set Xtgt containing
n test samples and produce detection score:

Ftgt = D(Xtgt), (4)

where Ftgt = {f(ci)}i=1,··· ,m ∈ Rm×n.
In the search process, given a textual query q, external

knowledge source such as WordNet ontology or Flickr con-
text is used to measure query-detector similarity. This re-
sults in a vector wq = {s(q, ci)}i=1,··· ,m, which weighs the
importance of the m detectors to the query q. The term
s(q, ci), representing the similarity of ci to q, is computed
by accumulating the similarity of ci to each query word in q.

45
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exists in many web pages indexed by Google. A web page
may contain multiple paragraphs of texts discussing differ-
ent topics, resulting in misleading estimation of word co-
occurrence. However, as was noted in [5], such noise can be
partially made up by the huge data base size. This can be
explained intuitively by the fact that two unrelated words
may occasionally co-occur because of the noise, but prob-
ably not always. In other words, when the data base size
increases, the number of co-occurrence of two related words
will mostly increase at a much faster rate than that between
two unrelated words. While we believe that techniques such
as tag disambiguation [32] and image content based verifica-
tion (Flickr distance [33]) are promising for alleviating the
issue of noise, practically FCS is a much easier and cheaper
way to measure the visual co-occurrence of all the words in
human vocabulary.

4. SEMANTIC CONTEXT TRANSFER
This section describes our semantic context transfer al-

gorithm. We start by defining a few notations. Let C =
{c1, c2, · · · , cm} denote a semantic lexicon of m concepts
and {Xtrn,Ytrn} be a training data set, where Ytrn is the
ground-truth label of Xtrn. Based on the training set, a
classifier/detector is developed for each concept ci using any
supervised learning algorithm, such as SVMs. Another piece
of useful information that can be learnt from the training set
is inter-concept relationship, which can be easily computed
based on the correlation of ground-truth labels. Formally,
these are expressed as

{Xtrn,Ytrn} → {Wtrn,D}, (3)

where D denotes a concept detection function for the m
concepts and Wtrn ∈ Rm×m indicates the pairwise concept
affinity. A large value wij in Wtrn means two concepts ci and
cj frequently co-occur (e.g., car and road). The detection
function is then applied to a target data set Xtgt containing
n test samples and produce detection score:

Ftgt = D(Xtgt), (4)

where Ftgt = {f(ci)}i=1,··· ,m ∈ Rm×n.
In the search process, given a textual query q, external

knowledge source such as WordNet ontology or Flickr con-
text is used to measure query-detector similarity. This re-
sults in a vector wq = {s(q, ci)}i=1,··· ,m, which weighs the
importance of the m detectors to the query q. The term
s(q, ci), representing the similarity of ci to q, is computed
by accumulating the similarity of ci to each query word in q.

• Based on the Normalized Google 
Distance.

• Measures the co-occurence of two
tags with respect to their single tag
occurrencies.

• No semantics is involved, works for 
any tag.

FCS(x, y) = e

�NGD(x,y)/�

h(x)

h(y)

h(x,y)

[Jiang et al. 2009]
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MEDIA FOR TAG RELEVANCE

Depending on the modalities exploited we can divide the methods 
between those that use:

- Tag
- e.g. considering ranking of tags as a proxy of user’s priorities

- Tag + image 
- e.g. considering the set of tags assigned to an image

- Tag, image + user information
- e.g. considering the behaviors of different users tagging similar images

49



MEDIA: TAGS

These methods reduce the problem to text retrieval

Find similarly tagged images by 
- user-provided tag ranking [Sun et al. 2011],  
- tag co-occurrence [Sigurbjönsson and van Zwol 2008; Zhu et al. 2012] or 
- topic modelling [Xu et al. 2009]

These methods assume that test images have already 
been tagged as well, so unsuited for tag assignment.
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MEDIA: TAGS AND IMAGES

The main idea of these works is to exploit visual 
consistency, i.e. the fact that visually similar images should 
have similar tags.

Three main approaches:
1.Use visual similarity between test image and database 
2.Use similarity between images with same tags
3.Learn classifiers from social images + tags
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MEDIA: TAGS AND IMAGES

Two tactics to combine the similarity between images and 
tags

1. Sequential: compute visual similarity, then use the tag 
modality

2. Simultaneous: use both modalities at the same time, 
• A unified graph composed by the fusion of a visual similarity graph with 

an image-tag connection graph [Ma et al. 2010]
• Tag and image similarities as constraints to reconstruct an image-tag 

association matrix [Wu et al. 2013; Xu et al. 2014; Zhu et al. 2010] 
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MEDIA: TAGS, IMAGES AND USER INFO

In addition to tags and images, this group of works exploits user 
information, motivated from varied perspectives. Such as:
• User identities [Li et al. 2009b], 
• Tagging preferences [Sawant et al. 2010],
• User reliability [Ginsca et al. 2014], 
• Photo time stamps [Kim and Xing 2013, McParlane et al. 2013a]
• Geo-localization [McParlane et al. 2013b]
• Image group memberships [Johnson et al. 2015]
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LEARNING FOR TAG RELEVANCE

- We can divide the learning methods in transductive and 
inductive. The former do not make a distinction between learning 
and test dataset, the latter may be further divided in methods that 
produce an explicit model and those that are instance based.

- We therefore divide the methods in instance-based, 
model-based and transduction-based.

- Typically inductive methods have better computational scalability 
than transductive ones.
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INSTANCE BASED

- This class of methods compares new test images with training 
instances.

- There are no parameters and the complexity grows with the 
number of instances.

- Approaches are typically based on variants of k-NN, with or 
without weighted voting
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MODEL BASED

- This class of methods learns its parameters from a training set.
A model can be tag-specific or holistic, i.e. for all tags.

- Tag-specific: use linear or fast intersection kernel SVMs trained on 
features augmented by pre-trained classifiers of popular tags, or 
relevant positive and negative examples

- Holistic: use topic modeling with relevance computed using a topic 
vector of the image and a topic vector of the tag.
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TRANSDUCTION BASED

- This class of methods evaluate tag relevance for a given image-
tag pair by minimizing a cost function over a set of images.

- The majority of these methods is based on matrix factorization
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PROS AND CONS

Instance-based 
- Pro: flexible and adaptable to manage new images and tags. 
- Con: require to manage training media, a task that may become 

complex with increasing amount of data.

Model-based
- Pro: training data is represented compactly, leading to swift 

computations, especially when using linear classifiers.
- Con: need to retrain to cope with new imagery of a tag or when 

expanding the vocabulary.

Transduction-based
- Pro: exploit better inter-tag and inter-image relationships, through matrix 

factorization.
- Con: difficult to manage large datasets, because of memory and/or 

computational complexity.
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ORGANIZATION OF THE TUTORIAL

9:00 – 10:00 Part 1: Introduction 
Part 2: Taxonomy

10:00 – 10:30 Part 3: Experimental protocol
Part 4: Evaluation

10:30 – 11:00 Coffee break

11:00 – 12:30 Part 4: Evaluation cont’d

12:30 – 13:00 Part 5: Conclusion and future directions
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PART 3
OUR EXPERIMENTAL PROTOCOL

• Limitations in current evaluation
• Training and test data
• Evaluation setup 

64



LIMITATIONS IN CURRENT EVALUATION

- Results are not directly comparable
- homemade datasets
- selected subsets of a benchmark set
- varied implementation

- preprocessing, parameters, features, …

- Results are not easily reproducible
- For many methods, no source code or executable is provided

- Single-set evaluation
- Split a dataset into training/testing, at risk of overfitting
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PROPOSED PROTOCOL

- Results are easily comparable
- use public full-size test datasets
- same implementation whenever applicable

- Results are reproducible
- open-source

- Cross-set evaluation
- Training and test datasets are constructed independently
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SOCIALLY-TAGGED TRAINING DATA

- Data gathering procedure [Li et al. 2012]

- using WordNet nouns as queries to uniformly sample Flickr images uploaded
between 2006 and 2010

- remove batch-tagged images (simple yet effective trick to improve data quality)

- Training sets of varied size
- Train1M  (a random subset of the collected Flickr images)
- Train100k (a random subset of Train1m)
- Train10k (a random subset of Train1m)
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ImageNet already provides labeled examples for over 20k
categories. Is it necessary to learn from socially tagged data?



SOCIAL TAGS VERUS IMAGENET ANNOTATIONS

- ImageNet annotations
- computer vision oriented, focusing on fine-grained visual objects
- single label per image

- Social tags
- follow context, trends and events in the real world
- describe both the situation and the entity presented in the visual content
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cloud	
field

2008-02-17

...

A Flickr user’s album

Credits: http://www.flickr.com/people/regina_austria



IMAGENET EXAMPLES ARE BIASED

- By web image search engines

69

D. Vreeswijk, K. van de Sande, C. Snoek, A.
Smeulders, All Vehicles are Cars: Subclass
Preferences in Container Concepts, ICMR 2012

Credit: figure from [Vreeswijk et al. 2012]



TEST DATA

- Three test datasets
- contributed by distinct research groups
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Test dataset Contributors
MIRFlickr[Huiskes 2010] LIACS Medialab,	Leiden	University

NUS-WIDE[Chua	2009] LMS, National	University	of	Sigapore

Flickr51[Wang	2010] Microsoft	Research	Asia



MIRFLICKR

- Image collection
- 25,000 high-quality photographic images from Flickr

- Labeling criteria
- Potential labels: visibile to some extent
- Relevant labels: saliently present

- Test tag set
- 14 relevant labels: baby, bird, car, cloud, dog, flower, girl, man, night 

people, portrait, river, sea, tree

- Applicability
- Tag assignment
- Tag refinement
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M. Huiskes, B. Thomee,M. Lew. “New trends and ideas in visual concept detection: the MIR
Flickr retrieval evaluation initiative”, MIR 2010

http://press.liacs.nl/mirflickr/



NUS-WIDE
- Image collection

- 260K images randomly crawled from Flickr

- Labeling criteria
- An active learning strategy to reduce the amount of manual labeling

- Test tag set
- 81 tags containing objects (car, dog), people (police, military), scene 

(airport, beach), and events (swimming, wedding)

- Applicability
- tag assignment
- tag refinement
- tag retrieval
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T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y.-T. Zheng. “NUS-WIDE: A Real-World Web Image
Database from National University of Singapore”, CIVR 2009

http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm



FLICKR51
- Image collection

- 80k images collected from Flickr using a predefined set of tags as
queries

- Labeling criteria
- Given a tag, manually check the relevance of images labelled with the tag
- Three relevance levels: very relevant, relevant, and irrelevant

- Test tag set
- 51 tags, and some are ambiguous, e.g, apple, jaguar

- Applicability
- Tag retrieval
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[1] M. Wang, X.-S. Hua, H.-J. Zhang. “Towards a relevant and diverse search of social images”, IEEE
Transactions on Multimedia 2010
[2] Y. Gao, M. Wang , Z.-J. Zha, J. Sheng, X. Li, X. Wu. “Visual-Textual Joint Relevance Learning for Tag-
Based Social Image Search”, IEEE Transactions on Image Processing, 2013



VISUAL FEATURES

- Traditional bag of visual words [van de Sande 2010]

- SIFT points quantized by a codebook of size 1,024
- Plus a compact 64-d color feature vector [Li 2007]

- CNN features
- A 4,096-d FC7 vector after ReLU activation, extracted by the pre-trained 16-

layer VGGNet [Simonyan 2015]
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EVALUATION

Three tasks as introduced in Part 1
- Tag assignment
- Tag refinement
- Tag retrieval
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EVALUATING TAG ASSIGNMENT/REFINEMENT

- A good method for tag assignment shall
- rank relevant tags before irrelevant tags for a given image
- rank relevant images before irrelevant images for a given tag

- Two criteria
- Image-centric: Mean image Average Precision (MiAP)

- Tag-centric: Mean Average Precision (MAP)
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MiAP is biased towards frequent tags
MAP is affected by rare tags



EVALUATING TAG RETRIEVAL

- A good method for tag retrieval shall
- rank relevant images before irrelevant images for a given tag

- Two criteria
- Mean Average Precision (MAP) to measure the overall ranks

- Normalized Discounted Cumulative Gain (NDCG) to measure the top ranks
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SUMMARY
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Data servers

[1] http://www.micc.unifi.it/tagsurvey
[2] http://www.mmc.ruc.edu.cn/research/tagsurvey/data.html



LIMITATIONS IN OUR PROTOCOL

- Tag informativeness in tag assignment

79

dog 
pet

dog
beach 

versus

X. Qian, X.-S. Hua, Y. Tang, T. Mei, Social
Image Tagging With Diverse Semantics, IEEE
Transactions on Cybernetics 2014

How to assess informativeness?



LIMITATIONS IN OUR PROTOCOL

- Image diversity in tag retrieval
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Figure from [Wang et al. 2010]

How to measure diversity? M. Wang, X.-S. Hua, H.-J. Zhang, Towards a relevant
and diverse search of social images, IEEE Transactions
on Multimedia 2010



LIMITATIONS IN OUR PROTOCOL

- Semantic ambiguity
- E.g., search for jaguar in Flickr51
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SemanticField RelExamples

Need fine-grained annotation

X. Li, S. Liao, W. Lan, X. Du, G. Yang,
Zero-shot image tagging by
hierarchical semantic embedding,
SIGIR 2015
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PART 4
EVALUATION: ELEVEN KEY METHODS

• Goal: evaluates key methods based on various Media and Learning 
paradigm

• Q: What are their key ingredients ?

• Q: What is the computational cost of each of them ?
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KEY METHODS

• Covering all published methods is obviously impractical

• We do not consider methods:
- Which do not show significant improvements or novelties w.r.t. the seminal

papers in the field
- Methods that are difficult to replicate

• We drive our choice by the intention to cover methods that aim
for each of the three tasks, exploiting varied modalities and using
distinct learning mechanisms

• We select 11 representative methods
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KEY METHODS

• Each method is required to output tag relevance of each test 
image and each test tag
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f(x1, t1) f(x1, t2) . . . f(x1, tm)
f(x2, t1) f(x2, t2) . . . f(x2, tm)

...
...

. . .
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n images
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• Tags of similar semantics usually co-occur in user images
• SemanticField measures an averaged similarity between a tag

and the user tags already assigned to the image
• Two similarity measures between words:

- Flickr context similarity
- Wu-Palmer similarity on WordNet

SEMANTICFIELD
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[Zhu et al. 2012] Instance-Based Tag

red
sun

beach
birthday
canon

sunset
is it similar?

band
lights

concert
personal

guitar

cat

is it similar?

0.9

0.1

Zhu et al. Sampling and Ontologically Pooling Web Images for Visual Concept Learning. IEEE TMM 2012



FLICKR CONTEXT SIMILARITY

title tags

description

comments

(a) (b)

FCS (bridge, river) = 0.65

Figure 2: (a) Rich context information associated
with a Flickr image. (b) The total number of images
returned using keyword-based search in Flickr image
context.

co-occurrence statistics in visual data rather than the text
corpora used in [27, 20, 19, 8, 5].

Given two words, we compute their relatedness based on
the number of Flickr images associated with them. With
the number of hits returned by Flickr, we apply NGD de-
rived from Kolmogorov complexity theory to estimate word
distance [5]:

NGD(x, y) =
max{log h(x), log h(y)}− log h(x, y)

log N − min{log h(x), log h(y)} , (1)

where h(x) denotes the number of images associated with
word x in their context, and h(x, y) denotes the number of
images associated with both words x and y; N is the total
number of images on Flickr, which is roughly estimated as
3.5 billion by the time we did the experiments. The NGD
is then converted to Flickr context similarity (FCS) using a
Gaussian kernel, defined as

FCS(x, y) = e−NGD(x,y)/ρ, (2)

where the parameter ρ is empirically set as the average pair-
wise NGD among a randomly pooled set of words. Similar
way of setting ρ has been shown to be effective for kernel
based classification tasks [38]. An example of calculating
FCS is shown in Figure 2 (b).

The major advantage of using full context information
instead of tags alone is the better coverage of words. Fig-
ure 3 shows the frequency of 374 LSCOM concepts in vari-
ous sources including Google web search, Flickr image con-
text/tags, and the LSCOM manual annotations on TRECVID
2005 development set (43,873 shots). Obviously Google web
search has the best coverage: the most rare concept (Dredge
Powershovel Dragline) still appears in 2,120 web pages. Also,
it can be clearly seen that the concept coverage of Flickr con-
text is much better than that of Flickr tags. Only 2 concepts
have zero frequency in context (Non-US National Flags and
Dredge Powershovel Dragline), while in the tags, 53 con-
cepts were not found. Although the coverage of Flickr con-
text is not as good as Google web search, as will be shown
in the experiments, it has the merit of reflecting the visual
co-occurrence of words.

It is worthwhile to point out that the web-based sources
are indeed noisy. For example, the precision of Flickr tags
was found to be around 50% in [15]. The noise issue also
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Figure 3: The frequency of 374 LSCOM semantic
concepts in various sources. Note that the Y-axis is
plotted in log scale.

exists in many web pages indexed by Google. A web page
may contain multiple paragraphs of texts discussing differ-
ent topics, resulting in misleading estimation of word co-
occurrence. However, as was noted in [5], such noise can be
partially made up by the huge data base size. This can be
explained intuitively by the fact that two unrelated words
may occasionally co-occur because of the noise, but prob-
ably not always. In other words, when the data base size
increases, the number of co-occurrence of two related words
will mostly increase at a much faster rate than that between
two unrelated words. While we believe that techniques such
as tag disambiguation [32] and image content based verifica-
tion (Flickr distance [33]) are promising for alleviating the
issue of noise, practically FCS is a much easier and cheaper
way to measure the visual co-occurrence of all the words in
human vocabulary.

4. SEMANTIC CONTEXT TRANSFER
This section describes our semantic context transfer al-

gorithm. We start by defining a few notations. Let C =
{c1, c2, · · · , cm} denote a semantic lexicon of m concepts
and {Xtrn,Ytrn} be a training data set, where Ytrn is the
ground-truth label of Xtrn. Based on the training set, a
classifier/detector is developed for each concept ci using any
supervised learning algorithm, such as SVMs. Another piece
of useful information that can be learnt from the training set
is inter-concept relationship, which can be easily computed
based on the correlation of ground-truth labels. Formally,
these are expressed as

{Xtrn,Ytrn} → {Wtrn,D}, (3)

where D denotes a concept detection function for the m
concepts and Wtrn ∈ Rm×m indicates the pairwise concept
affinity. A large value wij in Wtrn means two concepts ci and
cj frequently co-occur (e.g., car and road). The detection
function is then applied to a target data set Xtgt containing
n test samples and produce detection score:

Ftgt = D(Xtgt), (4)

where Ftgt = {f(ci)}i=1,··· ,m ∈ Rm×n.
In the search process, given a textual query q, external

knowledge source such as WordNet ontology or Flickr con-
text is used to measure query-detector similarity. This re-
sults in a vector wq = {s(q, ci)}i=1,··· ,m, which weighs the
importance of the m detectors to the query q. The term
s(q, ci), representing the similarity of ci to q, is computed
by accumulating the similarity of ci to each query word in q.
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Y-G. Jiang, C.-W. Ngo, S.-F. Chang. Semantic context transfer across heterogeneous sources for
domain adaptive video search. ACMMultimedia 2009
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co-occurrence statistics in visual data rather than the text
corpora used in [27, 20, 19, 8, 5].

Given two words, we compute their relatedness based on
the number of Flickr images associated with them. With
the number of hits returned by Flickr, we apply NGD de-
rived from Kolmogorov complexity theory to estimate word
distance [5]:

NGD(x, y) =
max{log h(x), log h(y)}− log h(x, y)

log N − min{log h(x), log h(y)} , (1)

where h(x) denotes the number of images associated with
word x in their context, and h(x, y) denotes the number of
images associated with both words x and y; N is the total
number of images on Flickr, which is roughly estimated as
3.5 billion by the time we did the experiments. The NGD
is then converted to Flickr context similarity (FCS) using a
Gaussian kernel, defined as

FCS(x, y) = e−NGD(x,y)/ρ, (2)

where the parameter ρ is empirically set as the average pair-
wise NGD among a randomly pooled set of words. Similar
way of setting ρ has been shown to be effective for kernel
based classification tasks [38]. An example of calculating
FCS is shown in Figure 2 (b).

The major advantage of using full context information
instead of tags alone is the better coverage of words. Fig-
ure 3 shows the frequency of 374 LSCOM concepts in vari-
ous sources including Google web search, Flickr image con-
text/tags, and the LSCOM manual annotations on TRECVID
2005 development set (43,873 shots). Obviously Google web
search has the best coverage: the most rare concept (Dredge
Powershovel Dragline) still appears in 2,120 web pages. Also,
it can be clearly seen that the concept coverage of Flickr con-
text is much better than that of Flickr tags. Only 2 concepts
have zero frequency in context (Non-US National Flags and
Dredge Powershovel Dragline), while in the tags, 53 con-
cepts were not found. Although the coverage of Flickr con-
text is not as good as Google web search, as will be shown
in the experiments, it has the merit of reflecting the visual
co-occurrence of words.

It is worthwhile to point out that the web-based sources
are indeed noisy. For example, the precision of Flickr tags
was found to be around 50% in [15]. The noise issue also
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exists in many web pages indexed by Google. A web page
may contain multiple paragraphs of texts discussing differ-
ent topics, resulting in misleading estimation of word co-
occurrence. However, as was noted in [5], such noise can be
partially made up by the huge data base size. This can be
explained intuitively by the fact that two unrelated words
may occasionally co-occur because of the noise, but prob-
ably not always. In other words, when the data base size
increases, the number of co-occurrence of two related words
will mostly increase at a much faster rate than that between
two unrelated words. While we believe that techniques such
as tag disambiguation [32] and image content based verifica-
tion (Flickr distance [33]) are promising for alleviating the
issue of noise, practically FCS is a much easier and cheaper
way to measure the visual co-occurrence of all the words in
human vocabulary.

4. SEMANTIC CONTEXT TRANSFER
This section describes our semantic context transfer al-

gorithm. We start by defining a few notations. Let C =
{c1, c2, · · · , cm} denote a semantic lexicon of m concepts
and {Xtrn,Ytrn} be a training data set, where Ytrn is the
ground-truth label of Xtrn. Based on the training set, a
classifier/detector is developed for each concept ci using any
supervised learning algorithm, such as SVMs. Another piece
of useful information that can be learnt from the training set
is inter-concept relationship, which can be easily computed
based on the correlation of ground-truth labels. Formally,
these are expressed as

{Xtrn,Ytrn} → {Wtrn,D}, (3)

where D denotes a concept detection function for the m
concepts and Wtrn ∈ Rm×m indicates the pairwise concept
affinity. A large value wij in Wtrn means two concepts ci and
cj frequently co-occur (e.g., car and road). The detection
function is then applied to a target data set Xtgt containing
n test samples and produce detection score:

Ftgt = D(Xtgt), (4)

where Ftgt = {f(ci)}i=1,··· ,m ∈ Rm×n.
In the search process, given a textual query q, external

knowledge source such as WordNet ontology or Flickr con-
text is used to measure query-detector similarity. This re-
sults in a vector wq = {s(q, ci)}i=1,··· ,m, which weighs the
importance of the m detectors to the query q. The term
s(q, ci), representing the similarity of ci to q, is computed
by accumulating the similarity of ci to each query word in q.

• Based on the Normalized Google 
Distance.

• Measures the co-occurence of two
tags with respect to their single tag
occurrencies.

• No semantics is involved, works for 
any tag.

FCS(x, y) = e

�NGD(x,y)/�

h(x)

h(y)

h(x,y)



WU-PALMER SIMILARITY
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Sim(w1, w2) = max

h
2 ⇤ depth(LCS(w1, w2))

length(w1, w2) + 2 ⇤ depth(LCS(w1, w2))

i
• It is a measure between

concepts in an ontology
restricted to taxonomic links.

• Considers the depth of x, y 
and their least common 
subsumer (LCS).

• Typically used with WordNet.

Z. Wu, M. Palmer. Verb semantics and lexical selection. ACL 1994



• Sim is the similarity between t and the other image tags

• Needs some user tags. Not applicable to Tag Assignment

• Complexity O(m · lx): the number of image tags lx times m tags

• Memory O(m2): quadratic w.r.t. the vocabulary of m tags

SEMANTICFIELD

91

[Zhu et al. 2012] Instance-Based TagSocializing the Semantic Gap X:17

image:
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where {t
1

, . . . , t
l

x

} is a list of l
x

social tags assigned to the image x, and sim(t, t
i

) de-
notes a semantic similarity between two tags. SemanticField explicitly assumes that
several tags are associated to visual data and their coexistence is accounted in the
evaluation of tag relevance. Following [Zhu et al. 2012], the similarity is computed by
combining the Flickr context similarity and the WordNet Wu-Palmer similarity [Wu
and Palmer 1994]. The WordNet based similarity exploits path length in the Word-
Net hierarchy to infer tag relatedness. We make a small revision of [Zhu et al. 2012],
i.e. combining the two similarities by averaging instead of multiplication, because the
former strategy produces slightly better results. SemanticField requires no training
except for computing tag-wise similarity, which can be computed offline and is thus
omitted. Having all tag-wise similarities in memory, applying Eq. (4) requires l

x

ta-
ble lookups per tag. Hence, the computational complexity is O(m · l

x

), and O(m2

) for
memory.

2. TagRanking [Liu et al. 2009]. The tag ranking algorithm consists of two steps.
Given an image x and its tags, the first step produces an initial tag relevance score
for each of the tags, obtained by (Gaussian) kernel density estimation on a set of n̄ =

1, 000 images labeled with each tag, separately. Secondly, a random walk is performed
on a tag graph where the edges are weighted by a tag-wise similarity. We use the
same similarity as in SemanticField. Notice that when applied for tag retrieval, the
algorithm uses the rank of t instead of its score, i.e.,

f
TagRanking

(x, t) = �rank(t) +

1

l
x

, (5)

where rank(t) returns the rank of t produced by the tag ranking algorithm. The term
1

l

x

is a tie-breaker when two images have the same tag rank. Hence, for a given tag t,
TagRanking cannot distinguish relevant images from irrelevant images if t is the sole
tag assigned to them. It explicitly exploits the coexistence of several tags per image.
TagRanking has no learning stage. To derive tag ranks for Eq. 5, the main computation
is the kernel density estimation on n̄ socially-tagged examples for each tag, followed
by an L iteration random walk on the tag graph of m nodes. All this results in a com-
putation cost of O(m · d · n̄ + L · m2

) per test image. Because the two steps are executed
sequentially, the corresponding memory cost is O(max(dn̄, m2

)).
3. KNN [Makadia et al. 2010]. This algorithm estimates the relevance of a given

tag with respect to an image by first retrieving k nearest neighbors from S based on
a visual distance d, and then counting the tag occurrence in associated tags of the
neighborhood. In particular, KNN builds f

�

(x, t; ⇥) as:

f
KNN

(x, t) := k
t

, (6)

where k
t

is the number of images with t in the visual neighborhood of x. The instance-
based KNN requires no training. The main computation of f

KNN

is to find k nearest
neighbors from S, which has a complexity of O(d · |S| + k · log |S|) per test image, and
a memory footprint of O(d · |S|) to store all the d-dimensional feature vectors. It is
worth noting that these complexities are drawn from a straightforward implemen-
tation of k-nn search, and can be substantially reduced by employing more efficient
search techniques, c.f. [Jégou et al. 2011]. Accelerating KNN by the product quanti-
zation technique [Jégou et al. 2011] imposes an extra training step, where one has
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• TagRanking assigns a rank to each user tag, based on their
relevance to the image content.

• Tag probabilities are first estimated in the KDE phase. 
• Then a random walk is performed on a tag graph, built from visual

exemplar similarity and tags semantic similarity. 
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Figure 4: The illustrative scheme of the tag ranking approach. A probabilistic method is first adopted to
estimate tag relevance score. Then a random walk-based refinement is performed along the tag graph to
further boost tag ranking performance.

ranking, we first adopt a probabilistic approach to estimate
the initial relevance score of each tag for one image indi-
vidually, and then refine the relevance scores by implement-
ing a random walk process over a tag graph in order to
mine the correlation of the tags. In the construction of tag
graphs, we have combined an exemplar-based approach and
a concurrence-based approach to estimate the relationship
among tags. The whole process is automatic and do not
need any manually labeled training data. Experimental re-
sults demonstrate that the proposed scheme is able to rank
Flickr image tags according to their relevance levels.

The rest of this paper is organized as follows. We describe
the tag ranking scheme in Section 2 and provide empirical
justifications in Section 3. In Section 4, we introduce the
three application scenarios and the associated experimen-
tal results. Then we introduce related work in Section 5.
Finally, we conclude the paper in Section 6.

2. TAG RANKING
In this section, we will introduce our tag ranking method.

We firstly give an overview of our tag ranking approach, and
then introduce the probabilistic relevance score estimation
and random walk-based refinement in detail.

2.1 Overview
As illustrated in Fig. 4, the tag ranking scheme mainly

consists of two steps: initial probabilistic tag relevance esti-
mation and random walk refinement. Given an image and
its associated tags, we first estimate the relevance score of
each tag individually through a probabilistic approach. We
will simultaneously consider the probability of the tag given
the image and the descriptive ability of the tag in the rele-
vance score estimation, and we show that it can be accom-
plished by using the Kernel Density Estimation (KDE) [15].
Although the scores obtained in this way reflect the tag rele-
vance, the relationships among tags have not been taken into
account. Thus we further perform a random walk-based re-
finement to boost tag ranking performance by exploring the
relationship of tags. Finally, the tags of the image can be
ranked according to their refined relevance scores. In the
next two sub-sections, we will detail the probabilistic rele-
vance score estimation method and the random walk-based
refinement process, respectively.

2.2 Probabilistic Tag Relevance Estimation
First, we estimate the relevance scores of the tags from

the probabilistic point of view. Given a tag t, its relevance
score to an image x is defined as

s(t, x) = p(t|x)/p(t) (1)

Now we will explain the rationality of Eq. 1. In fact, the
most straightforward way is to directly regard p(t|x) as the
relevance score, since it indicates the probability of tag t
given image x. However, the tag may not be so descriptive
when it appears too frequently in the dataset. For example,
for the tag “image”, the probability p(t|x) will be always
1, but obviously this tag is non-informative. Therefore, we
normalize p(t|x) by p(t), i.e., the prior probability of the tag,
to penalize frequently-appearing tags. This principle has
actually been widely investigated in information retrieval,
e.g., in the design of tf -idf features [16].

Based on Bayes’ rule, we can easily derive that

s(t, x) =
p(x|t)p(t)
p(x)p(t)

=
p(x|t)
p(x)

(2)

where p(x) and p(x|t) are the prior probability density func-
tion and the probability density function of images condi-
tioned on the tag t, respectively. Since the target is to rank
the tags for the individual image and p(x) is identical for
these tags, we can simply redefine Eq. 2 as

s(t, x)
.
= p(x|t) (3)

We adopt the classical Kernel Density Estimation (KDE)
method to estimate the probability density function p(x|t).
Denote by Xi the set of images that contain tag ti, the KDE
approach measures p(x|ti) as

s(ti, x) = p(x|ti) =
1

|Xi|

∑

xk∈Xi

Kσ(x − xk) (4)

where |Xi| is the cardinality of Xi and Kσ is the Gaussian
kernel function with the radius parameter σ, i.e.,

Kσ(x − xk) = exp(−
||x − xk||

2

σ2
) (5)

The relevance score computed in Eq. 4 actually has a very
intuitive explanation. For each image x, the neighbors Xi

Gaussian Kernel
Density Estimation Random walk on Tag graphp(t|x)

D. Liu, X.-S. Hua, L. Yang, M. Wang, H.-J. Zhang. Tag ranking. WWW 2009
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• Suitable only for Tag Retrieval: it doesn’t add or remove user tags. 

• lx is a tie-breaker when two images have the same tag rank.

• Complexity O(m · d · n + L · m2): KDE on n images + L iter 
random walk

• Memory O(max(d · n, m2)): max of the two steps

Socializing the Semantic Gap X:17

image:

f
SemField

(x, t) :=

1

l
x

l

xX

i=1

sim(t, t
i

), (4)

where {t
1

, . . . , t
l

x

} is a list of l
x

social tags assigned to the image x, and sim(t, t
i

) de-
notes a semantic similarity between two tags. SemanticField explicitly assumes that
several tags are associated to visual data and their coexistence is accounted in the
evaluation of tag relevance. Following [Zhu et al. 2012], the similarity is computed by
combining the Flickr context similarity and the WordNet Wu-Palmer similarity [Wu
and Palmer 1994]. The WordNet based similarity exploits path length in the Word-
Net hierarchy to infer tag relatedness. We make a small revision of [Zhu et al. 2012],
i.e. combining the two similarities by averaging instead of multiplication, because the
former strategy produces slightly better results. SemanticField requires no training
except for computing tag-wise similarity, which can be computed offline and is thus
omitted. Having all tag-wise similarities in memory, applying Eq. (4) requires l

x

ta-
ble lookups per tag. Hence, the computational complexity is O(m · l

x

), and O(m2

) for
memory.

2. TagRanking [Liu et al. 2009]. The tag ranking algorithm consists of two steps.
Given an image x and its tags, the first step produces an initial tag relevance score
for each of the tags, obtained by (Gaussian) kernel density estimation on a set of n̄ =

1, 000 images labeled with each tag, separately. Secondly, a random walk is performed
on a tag graph where the edges are weighted by a tag-wise similarity. We use the
same similarity as in SemanticField. Notice that when applied for tag retrieval, the
algorithm uses the rank of t instead of its score, i.e.,

f
TagRanking

(x, t) = �rank(t) +

1

l
x

, (5)

where rank(t) returns the rank of t produced by the tag ranking algorithm. The term
1

l

x

is a tie-breaker when two images have the same tag rank. Hence, for a given tag t,
TagRanking cannot distinguish relevant images from irrelevant images if t is the sole
tag assigned to them. It explicitly exploits the coexistence of several tags per image.
TagRanking has no learning stage. To derive tag ranks for Eq. 5, the main computation
is the kernel density estimation on n̄ socially-tagged examples for each tag, followed
by an L iteration random walk on the tag graph of m nodes. All this results in a com-
putation cost of O(m · d · n̄ + L · m2

) per test image. Because the two steps are executed
sequentially, the corresponding memory cost is O(max(dn̄, m2

)).
3. KNN [Makadia et al. 2010]. This algorithm estimates the relevance of a given

tag with respect to an image by first retrieving k nearest neighbors from S based on
a visual distance d, and then counting the tag occurrence in associated tags of the
neighborhood. In particular, KNN builds f

�

(x, t; ⇥) as:

f
KNN

(x, t) := k
t

, (6)

where k
t

is the number of images with t in the visual neighborhood of x. The instance-
based KNN requires no training. The main computation of f

KNN

is to find k nearest
neighbors from S, which has a complexity of O(d · |S| + k · log |S|) per test image, and
a memory footprint of O(d · |S|) to store all the d-dimensional feature vectors. It is
worth noting that these complexities are drawn from a straightforward implemen-
tation of k-nn search, and can be substantially reduced by employing more efficient
search techniques, c.f. [Jégou et al. 2011]. Accelerating KNN by the product quanti-
zation technique [Jégou et al. 2011] imposes an extra training step, where one has
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• kt is the number of images with t in the visual neighborhood of x.

• User tags on test image are not used. Not applicable to Tag 
Refinement.

• Complexity O(d · |S| + k · log|S|): proportional to d feature
dimensionality and k nearest neighbors

• Memory O(d · |S|): d-dimensional features
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image:

f
SemField

(x, t) :=

1

l
x

l

xX

i=1

sim(t, t
i

), (4)

where {t
1

, . . . , t
l

x

} is a list of l
x

social tags assigned to the image x, and sim(t, t
i

) de-
notes a semantic similarity between two tags. SemanticField explicitly assumes that
several tags are associated to visual data and their coexistence is accounted in the
evaluation of tag relevance. Following [Zhu et al. 2012], the similarity is computed by
combining the Flickr context similarity and the WordNet Wu-Palmer similarity [Wu
and Palmer 1994]. The WordNet based similarity exploits path length in the Word-
Net hierarchy to infer tag relatedness. We make a small revision of [Zhu et al. 2012],
i.e. combining the two similarities by averaging instead of multiplication, because the
former strategy produces slightly better results. SemanticField requires no training
except for computing tag-wise similarity, which can be computed offline and is thus
omitted. Having all tag-wise similarities in memory, applying Eq. (4) requires l

x

ta-
ble lookups per tag. Hence, the computational complexity is O(m · l

x

), and O(m2

) for
memory.

2. TagRanking [Liu et al. 2009]. The tag ranking algorithm consists of two steps.
Given an image x and its tags, the first step produces an initial tag relevance score
for each of the tags, obtained by (Gaussian) kernel density estimation on a set of n̄ =

1, 000 images labeled with each tag, separately. Secondly, a random walk is performed
on a tag graph where the edges are weighted by a tag-wise similarity. We use the
same similarity as in SemanticField. Notice that when applied for tag retrieval, the
algorithm uses the rank of t instead of its score, i.e.,

f
TagRanking

(x, t) = �rank(t) +

1

l
x

, (5)

where rank(t) returns the rank of t produced by the tag ranking algorithm. The term
1

l

x

is a tie-breaker when two images have the same tag rank. Hence, for a given tag t,
TagRanking cannot distinguish relevant images from irrelevant images if t is the sole
tag assigned to them. It explicitly exploits the coexistence of several tags per image.
TagRanking has no learning stage. To derive tag ranks for Eq. 5, the main computation
is the kernel density estimation on n̄ socially-tagged examples for each tag, followed
by an L iteration random walk on the tag graph of m nodes. All this results in a com-
putation cost of O(m · d · n̄ + L · m2

) per test image. Because the two steps are executed
sequentially, the corresponding memory cost is O(max(dn̄, m2

)).
3. KNN [Makadia et al. 2010]. This algorithm estimates the relevance of a given

tag with respect to an image by first retrieving k nearest neighbors from S based on
a visual distance d, and then counting the tag occurrence in associated tags of the
neighborhood. In particular, KNN builds f

�

(x, t; ⇥) as:

f
KNN

(x, t) := k
t

, (6)

where k
t

is the number of images with t in the visual neighborhood of x. The instance-
based KNN requires no training. The main computation of f

KNN

is to find k nearest
neighbors from S, which has a complexity of O(d · |S| + k · log |S|) per test image, and
a memory footprint of O(d · |S|) to store all the d-dimensional feature vectors. It is
worth noting that these complexities are drawn from a straightforward implemen-
tation of k-nn search, and can be substantially reduced by employing more efficient
search techniques, c.f. [Jégou et al. 2011]. Accelerating KNN by the product quanti-
zation technique [Jégou et al. 2011] imposes an extra training step, where one has
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Fig. 2. Learning tag relevance by neighbor voting. The tag relevance value of each tag is estimated by accumulating the neighbor votes it receives from visually
similar images of the seed image. In this example, since four neighbor images are labeled with bridge, the tag relevance value of bridge with respect to the seed
image is 4. Hence, we update the tag frequency of bridge from 1 to 4.

Query expansion methods augment the original query by
automatically adding relevant terms [30]–[32]. In [31], for
instance, the authors use synonyms from a dictionary, whereas
in [30], the authors select strongly related terms from text
snippets returned by web search engines. Another example is
[32], where the authors use clustering methods to find corre-
lated tags. Though adding more query terms may retrieve more
relevant results, how to choose appropriate expansion terms
requires further research [37].

In summary, the reranking and query expansion methods try
to rank images relevant with respect to a query ahead of ir-
relevant images. However, the methods leave the fundamental
problem of subjective user tagging unaddressed.

Though we have witnessed great efforts devoted into im-
proving both image tagging and image retrieval, the efforts are
almost disconnected. Recent research, e.g., [38]–[41], inves-
tigates the potential of leveraging automatic tagging results
for image and video retrieval. To the best of our knowledge,
however, up until now, the solutions to the two problems are
still separated, including our previous works [11], [22] which
deal with social image retrieval and social image tagging, re-
spectively. This work is an attempt to solve image ranking and
tag ranking in a unified tag relevance learning framework. In
contrast to approaches for image ranking which are query-de-
pendent, e.g., [25] and [28], our algorithm is query-independent.
This advantage allows us to run the algorithm offline without
imposing extra waiting time on users. Further, by updating tag
frequency with the learned tag frequency, we seamlessly embed
visual information into current tag-based social image retrieval
paradigms. For automatic image tagging, our algorithm shares
similarities with the model-free approaches, e.g., [7], [8], and
[21], since they can be regarded as propagating tags between
neighbor images. Note, however, that our algorithm is more

general as it is applicable to both image retrieval and tagging.
Moreover, we provide a formal analysis which is missing in
previous studies.

III. LEARNING TAG RELEVANCE BY NEIGHBOR VOTING

In order to fulfill image retrieval, we seek a tag relevance
measurement such that images relevant with respect to a tag are
ranked ahead of images irrelevant with respect to the tag. Mean-
while, to fulfill image tagging, the measurement should rank
tags relevant with respect to an image ahead of tags irrelevant
with respect to the image. Recall the intuition that if different
persons label visually similar images using the same tags, these
tags are likely to reflect objective aspects of the visual content.
This intuition suggests that the relevance of a tag given an image
might be inferred from how visual neighbors of that image are
tagged: the more frequent the tag occurs in the neighbor set, the
more relevant it might be, as illustrated in Fig. 2. However, some
frequently occurring tags, such as “2007” and “2008”, are un-
likely to be relevant to the majority of images. Hence, a good
tag relevance measurement should take into account the distri-
bution of a tag in the neighbor set and in the entire collection,
simultaneously. Motivated by the informal analysis above, we
propose a neighbor voting algorithm for learning tag relevance,
as depicted in Fig. 2. Though the proposed algorithm is simple,
we deem it important to gain insight into the rationale for the al-
gorithm. The following two subsections serve for this purpose.
Concretely, we first define in Section III-A two criteria to de-
scribe the general objective of tag relevance learning. Then, in
Section III-B, we provide a formal analysis of user tagging and
content-based nearest neighbor search. We see how our algo-
rithm is naturally derived from the analysis. Finally, we describe
in detail the algorithm in Section III-C.

• Adds two improvements
to KNN-voting:

- Unique-user
constraint

- Tag prior frequency

X. Li, C. Snoek, M. Worring. Learning Social Tag Relevance by Neighbor Voting. IEEE TMM 2009



• kt is the number of images with t in the visual neighborhood of x
• nt is the frequency of tag t in S

• Like KNN, user tags on test image are not used. Not applicable to 
Tag Refinement

• Complexity O(d · |S| + k · log|S|) – same complexity as KNN
• Memory O(d · |S|) 
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to construct multiple vector quantizers by K-means clustering, and further use the
quantizers to compress the original feature vector into a few codes.

4. TagVote [Li et al. 2009b]. The TagVote algorithm estimates the relevance of a tag
t w.r.t. an image x by counting the occurrence frequency of t in social annotations of the
visual neighbors of x. Differently from KNN, TagVote exploits the user element in the
social framework and introduces a unique-user constraint on the neighbor set to make
the voting result more objective. Each user has at most one image in the neighbor
set. Moreover, TagVote also takes into account tag prior frequency to suppress over
frequent tags. In particular, the TagVote algorithm builds f

�

(x, t; ⇥) as

f
TagV ote

(x, t) := k
t

� k
n
t

|S| , (7)

where n
t

is the number of images labeled with t in S. Following [Li et al. 2009b], we
set k to be 1,000 for both KNN and TagVote. TagVote has the same order of complexity
as KNN.

5. TagProp [Guillaumin et al. 2009; Verbeek et al. 2010]. TagProp employs neighbor
voting plus distance metric learning. A probabilistic framework is proposed where the
probability of using images in the neighborhood is defined based on rank or distance-
based weights. TagProp builds f

�

(x, t; ⇥) as:

f
TagProp

(x, t) :=

kX

j

⇡
j

· I(x
j

, t), (8)

where ⇡
j

is a non-negative weight indicating the importance of the j-th neighbor x
j

,
and I(x

j

, t) returns 1 if x
j

is labeled with t, and 0 otherwise. Following [Verbeek et al.
2010], we use k = 1, 000 and the rank-based weights, which showed similar perfor-
mance to the distance-based weights. Differently from TagVote that uses tag prior
to penalize frequent tags, TagProp promotes rare tags and penalizes frequent ones
by training a logistic model per tag upon f

TagProp

(x, t). The use of the logistic model
makes TagProp a model-based method. In contrast to KNN and TagVote wherein vi-
sual neighbors are treated equally, TagProp employs distance metric learning to re-
weight the neighbors, yielding a learning complexity of O(l · m · k) where l is the num-
ber of gradient descent iterations it needs (typically less than 10). TagProp maintains
2m extra parameters for the logistic models, though their storage cost is ignorable
compared to the visual features. Therefore, running Eq. (8) has the same order of com-
plexity as KNN and TagVote.

6. TagCooccur [Sigurbjörnsson and van Zwol 2008]. While both SemanticField and
TagCooccur are tag-based, the main difference lies in how they compute the contri-
bution of a specific tag to the test tag’s relevance score. Different from SemanticField
which uses tag similarities, TagCooccur uses the test tag’s rank in the tag ranking list
created by sorting all tags in terms of their co-occurrence frequency with the tag in a
social framework. In addition, TagCooccur takes into account the stability of the tag,
measured by its frequency. The method is implemented as

f
tagcooccur

(x, t) = descriptive(t)

l

xX

i=1

vote(t
i

, t) · rank-promotion(t
i

, t) · stability(t
i

), (9)

where descriptive(t) is to damp the contribution of tags with a very high-frequency,
rank-promotion(t

i

, t) measures the rank-based contribution of t
i

to t, stability(t
i

) for
promoting tags for which the statistics are more stable, and vote(t

i

, t) is 1 if t is among
the top 25 ranked tags of t

i

, and 0 otherwise. TagCooccur has the same order of com-
plexity as SemanticField.
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parametric models. Examples of such techniques include
methods based on label diffusion over a similarity graph
of labeled and unlabeled images [16, 22], or learning dis-
criminative models in neighborhoods of test images [27].
A simpler adhoc nearest-neighbor tag transfer mechanism
was recently introduced [17], showing state-of-the-art per-
formance. There, nearest neighbors are determined by the
average of several distances computed from different visual
features. The authors also combine the base distances by
learning a binary classifier separating image pairs that have
several tags in common from images that do not share any
tags. However, this linear distance combination did not give
better results than an equally weighted combination.

3. Tag Relevance Prediction Models

Our goal is to predict the relevance of annotation tags
for images. Given these relevance predictions we can an-
notate images by ranking the tags for a given image, or
do keyword based retrieval by ranking images for a given
tag. Our proposed method is based on a weighted nearest
neighbor approach, inspired by recent successful methods
[5, 11, 13, 17], that propagate the annotations of training
images to new images. Our models are learnt in a discrimi-
native manner, rather than using held-out data [5], or using
neighbors in an adhoc manner [17]. We assume that some
visual similarity or distance measures between images are
given, abstracting away from their precise definition.

3.1. Weighted Nearest Neighbor Tag Prediction

To model image annotations, we use Bernoulli models
for each keyword. This choice is natural because keywords,
unlike natural text where word frequency is meaningful, are
either present or absent. The dependencies between key-
words in the training data are not explicitly modeled, but
are implicitly exploited in our model.

We use yiw 2 {�1,+1} to denote the absence/presence
of keyword w for image i, hence encoding the image anno-
tations. The tag presence prediction p(yiw = +1) for image
i is a weighted sum over the training images, indexed by j:

p(yiw = +1) =

X

j

⇡ijp(yiw = +1|j), (1)

p(yiw = +1|j) =

(
1� ✏ for yjw = +1,

✏ otherwise,
(2)

where ⇡ij denotes the weight of image j for predicting the
tags of image i. We require that ⇡ij � 0, and

P
j ⇡ij = 1.

We use ✏ to avoid zero prediction probabilities, and in prac-
tice we set ✏ = 10

�5. To estimate the parameters that
control the weights ⇡ij we maximize the log-likelihood of
the predictions of training annotations. Taking care to set
the weight of training images to themselves to zero, i.e .

⇡ii = 0, our objective is to maximize

L =

X

i,w

ciw ln p(yiw), (3)

where ciw is a cost that takes into account the imbalance
between keyword presence and absence. Indeed, in prac-
tice, there are many more tag absences than presences, and
absences are much noisier than presences. This is because
most tags in annotations are relevant, but often the annota-
tion does not include all relevant tags. We set ciw = 1/n

+ if
yiw = +1, where n

+ is the total number of positive labels,
and likewise ciw = 1/n

� when yiw = �1.

Rank-based weights. In the case of rank-based weights
over K neighbors we set ⇡ij = �k if j is the k-th nearest
neighbor of i. The data log-likelihood (3) is concave in the
parameters �k and can be estimated using an EM-algorithm,
or a projected-gradient algorithm. The derivative of Eq. (3)
with respect to �k equals

@L
@�k

=

X

i,w

ciwp(yiw|nik)

p(yiw)

, (4)

where nik denotes the index of the k-th neighbor of image
i. The number of parameters equals the neighborhood size
K. We refer to this variant as RK, for “rank-based”.

Distance-based weights. The other possibility is to de-
fine the weights directly as a function of the distance, rather
than the rank. This has the advantage that weights will de-
pend smoothly on the distance, which is crucial if the dis-
tance is to be adjusted during training. The weights of train-
ing images j for an image i are redefined as

⇡ij =

exp(�d✓(i, j))P
j0 exp(�d✓(i, j

0
))

, (5)

where d✓ is a distance metric with parameters ✓ that we
want to optimize. Note that the weights ⇡ij decay exponen-
tially with distance d✓ to image i. Choices for d✓ include
Mahalanobis distances dM parametrized by a semi-definite
matrix M, and dw(i, j) = w>dij where dij is a vector of
base distances between image i and j, and w contains the
positive coefficients of the linear distance combination. The
number of parameters equals the number of base distances
that are combined. In the rest of the paper we focus on this
particular case. When we use a single distance, referred to
as the SD variant, w is a scalar that controls the decay of
the weights with distance, and it is the only parameter of
the model. When multiple distances are used, the variant is
referred to as ML, for “metric learning”.

Again, rather than using an EM-algorithm we directly
maximize the log-likelihood using a projected gradient al-
gorithm under positivity constraints on the elements of w.

Probability of tag w on image I

parametric models. Examples of such techniques include
methods based on label diffusion over a similarity graph
of labeled and unlabeled images [16, 22], or learning dis-
criminative models in neighborhoods of test images [27].
A simpler adhoc nearest-neighbor tag transfer mechanism
was recently introduced [17], showing state-of-the-art per-
formance. There, nearest neighbors are determined by the
average of several distances computed from different visual
features. The authors also combine the base distances by
learning a binary classifier separating image pairs that have
several tags in common from images that do not share any
tags. However, this linear distance combination did not give
better results than an equally weighted combination.

3. Tag Relevance Prediction Models

Our goal is to predict the relevance of annotation tags
for images. Given these relevance predictions we can an-
notate images by ranking the tags for a given image, or
do keyword based retrieval by ranking images for a given
tag. Our proposed method is based on a weighted nearest
neighbor approach, inspired by recent successful methods
[5, 11, 13, 17], that propagate the annotations of training
images to new images. Our models are learnt in a discrimi-
native manner, rather than using held-out data [5], or using
neighbors in an adhoc manner [17]. We assume that some
visual similarity or distance measures between images are
given, abstracting away from their precise definition.

3.1. Weighted Nearest Neighbor Tag Prediction

To model image annotations, we use Bernoulli models
for each keyword. This choice is natural because keywords,
unlike natural text where word frequency is meaningful, are
either present or absent. The dependencies between key-
words in the training data are not explicitly modeled, but
are implicitly exploited in our model.

We use yiw 2 {�1,+1} to denote the absence/presence
of keyword w for image i, hence encoding the image anno-
tations. The tag presence prediction p(yiw = +1) for image
i is a weighted sum over the training images, indexed by j:

p(yiw = +1) =

X

j

⇡ijp(yiw = +1|j), (1)

p(yiw = +1|j) =

(
1� ✏ for yjw = +1,

✏ otherwise,
(2)

where ⇡ij denotes the weight of image j for predicting the
tags of image i. We require that ⇡ij � 0, and

P
j ⇡ij = 1.

We use ✏ to avoid zero prediction probabilities, and in prac-
tice we set ✏ = 10

�5. To estimate the parameters that
control the weights ⇡ij we maximize the log-likelihood of
the predictions of training annotations. Taking care to set
the weight of training images to themselves to zero, i.e .

⇡ii = 0, our objective is to maximize

L =

X

i,w

ciw ln p(yiw), (3)

where ciw is a cost that takes into account the imbalance
between keyword presence and absence. Indeed, in prac-
tice, there are many more tag absences than presences, and
absences are much noisier than presences. This is because
most tags in annotations are relevant, but often the annota-
tion does not include all relevant tags. We set ciw = 1/n

+ if
yiw = +1, where n

+ is the total number of positive labels,
and likewise ciw = 1/n

� when yiw = �1.

Rank-based weights. In the case of rank-based weights
over K neighbors we set ⇡ij = �k if j is the k-th nearest
neighbor of i. The data log-likelihood (3) is concave in the
parameters �k and can be estimated using an EM-algorithm,
or a projected-gradient algorithm. The derivative of Eq. (3)
with respect to �k equals
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@�k

=

X

i,w

ciwp(yiw|nik)

p(yiw)

, (4)

where nik denotes the index of the k-th neighbor of image
i. The number of parameters equals the neighborhood size
K. We refer to this variant as RK, for “rank-based”.

Distance-based weights. The other possibility is to de-
fine the weights directly as a function of the distance, rather
than the rank. This has the advantage that weights will de-
pend smoothly on the distance, which is crucial if the dis-
tance is to be adjusted during training. The weights of train-
ing images j for an image i are redefined as

⇡ij =

exp(�d✓(i, j))P
j0 exp(�d✓(i, j

0
))

, (5)

where d✓ is a distance metric with parameters ✓ that we
want to optimize. Note that the weights ⇡ij decay exponen-
tially with distance d✓ to image i. Choices for d✓ include
Mahalanobis distances dM parametrized by a semi-definite
matrix M, and dw(i, j) = w>dij where dij is a vector of
base distances between image i and j, and w contains the
positive coefficients of the linear distance combination. The
number of parameters equals the number of base distances
that are combined. In the rest of the paper we focus on this
particular case. When we use a single distance, referred to
as the SD variant, w is a scalar that controls the decay of
the weights with distance, and it is the only parameter of
the model. When multiple distances are used, the variant is
referred to as ML, for “metric learning”.

Again, rather than using an EM-algorithm we directly
maximize the log-likelihood using a projected gradient al-
gorithm under positivity constraints on the elements of w.

Probability of tag w on neighbor J

M. Guillaumin, T. Mensink, J. Verbeek, C. Schmid. TagProp: Discriminative Metric Learning in Nearest
Neighbor Models for Image Auto-Annotation. ICCV 2009
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to construct multiple vector quantizers by K-means clustering, and further use the
quantizers to compress the original feature vector into a few codes.

4. TagVote [Li et al. 2009b]. The TagVote algorithm estimates the relevance of a tag
t w.r.t. an image x by counting the occurrence frequency of t in social annotations of the
visual neighbors of x. Differently from KNN, TagVote exploits the user element in the
social framework and introduces a unique-user constraint on the neighbor set to make
the voting result more objective. Each user has at most one image in the neighbor
set. Moreover, TagVote also takes into account tag prior frequency to suppress over
frequent tags. In particular, the TagVote algorithm builds f

�

(x, t; ⇥) as

f
TagV ote

(x, t) := k
t

� k
n
t

|S| , (7)

where n
t

is the number of images labeled with t in S. Following [Li et al. 2009b], we
set k to be 1,000 for both KNN and TagVote. TagVote has the same order of complexity
as KNN.

5. TagProp [Guillaumin et al. 2009; Verbeek et al. 2010]. TagProp employs neighbor
voting plus distance metric learning. A probabilistic framework is proposed where the
probability of using images in the neighborhood is defined based on rank or distance-
based weights. TagProp builds f

�

(x, t; ⇥) as:

f
TagProp

(x, t) :=

kX

j

⇡
j

· I(x
j

, t), (8)

where ⇡
j

is a non-negative weight indicating the importance of the j-th neighbor x
j

,
and I(x

j

, t) returns 1 if x
j

is labeled with t, and 0 otherwise. Following [Verbeek et al.
2010], we use k = 1, 000 and the rank-based weights, which showed similar perfor-
mance to the distance-based weights. Differently from TagVote that uses tag prior
to penalize frequent tags, TagProp promotes rare tags and penalizes frequent ones
by training a logistic model per tag upon f

TagProp

(x, t). The use of the logistic model
makes TagProp a model-based method. In contrast to KNN and TagVote wherein vi-
sual neighbors are treated equally, TagProp employs distance metric learning to re-
weight the neighbors, yielding a learning complexity of O(l · m · k) where l is the num-
ber of gradient descent iterations it needs (typically less than 10). TagProp maintains
2m extra parameters for the logistic models, though their storage cost is ignorable
compared to the visual features. Therefore, running Eq. (8) has the same order of com-
plexity as KNN and TagVote.

6. TagCooccur [Sigurbjörnsson and van Zwol 2008]. While both SemanticField and
TagCooccur are tag-based, the main difference lies in how they compute the contri-
bution of a specific tag to the test tag’s relevance score. Different from SemanticField
which uses tag similarities, TagCooccur uses the test tag’s rank in the tag ranking list
created by sorting all tags in terms of their co-occurrence frequency with the tag in a
social framework. In addition, TagCooccur takes into account the stability of the tag,
measured by its frequency. The method is implemented as

f
tagcooccur

(x, t) = descriptive(t)

l

xX

i=1

vote(t
i

, t) · rank-promotion(t
i

, t) · stability(t
i

), (9)

where descriptive(t) is to damp the contribution of tags with a very high-frequency,
rank-promotion(t

i

, t) measures the rank-based contribution of t
i

to t, stability(t
i

) for
promoting tags for which the statistics are more stable, and vote(t

i

, t) is 1 if t is among
the top 25 ranked tags of t

i

, and 0 otherwise. TagCooccur has the same order of com-
plexity as SemanticField.
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parametric models. Examples of such techniques include
methods based on label diffusion over a similarity graph
of labeled and unlabeled images [16, 22], or learning dis-
criminative models in neighborhoods of test images [27].
A simpler adhoc nearest-neighbor tag transfer mechanism
was recently introduced [17], showing state-of-the-art per-
formance. There, nearest neighbors are determined by the
average of several distances computed from different visual
features. The authors also combine the base distances by
learning a binary classifier separating image pairs that have
several tags in common from images that do not share any
tags. However, this linear distance combination did not give
better results than an equally weighted combination.

3. Tag Relevance Prediction Models

Our goal is to predict the relevance of annotation tags
for images. Given these relevance predictions we can an-
notate images by ranking the tags for a given image, or
do keyword based retrieval by ranking images for a given
tag. Our proposed method is based on a weighted nearest
neighbor approach, inspired by recent successful methods
[5, 11, 13, 17], that propagate the annotations of training
images to new images. Our models are learnt in a discrimi-
native manner, rather than using held-out data [5], or using
neighbors in an adhoc manner [17]. We assume that some
visual similarity or distance measures between images are
given, abstracting away from their precise definition.

3.1. Weighted Nearest Neighbor Tag Prediction

To model image annotations, we use Bernoulli models
for each keyword. This choice is natural because keywords,
unlike natural text where word frequency is meaningful, are
either present or absent. The dependencies between key-
words in the training data are not explicitly modeled, but
are implicitly exploited in our model.

We use yiw 2 {�1,+1} to denote the absence/presence
of keyword w for image i, hence encoding the image anno-
tations. The tag presence prediction p(yiw = +1) for image
i is a weighted sum over the training images, indexed by j:

p(yiw = +1) =

X

j

⇡ijp(yiw = +1|j), (1)

p(yiw = +1|j) =

(
1� ✏ for yjw = +1,

✏ otherwise,
(2)

where ⇡ij denotes the weight of image j for predicting the
tags of image i. We require that ⇡ij � 0, and

P
j ⇡ij = 1.

We use ✏ to avoid zero prediction probabilities, and in prac-
tice we set ✏ = 10

�5. To estimate the parameters that
control the weights ⇡ij we maximize the log-likelihood of
the predictions of training annotations. Taking care to set
the weight of training images to themselves to zero, i.e .

⇡ii = 0, our objective is to maximize

L =

X

i,w

ciw ln p(yiw), (3)

where ciw is a cost that takes into account the imbalance
between keyword presence and absence. Indeed, in prac-
tice, there are many more tag absences than presences, and
absences are much noisier than presences. This is because
most tags in annotations are relevant, but often the annota-
tion does not include all relevant tags. We set ciw = 1/n

+ if
yiw = +1, where n

+ is the total number of positive labels,
and likewise ciw = 1/n

� when yiw = �1.

Rank-based weights. In the case of rank-based weights
over K neighbors we set ⇡ij = �k if j is the k-th nearest
neighbor of i. The data log-likelihood (3) is concave in the
parameters �k and can be estimated using an EM-algorithm,
or a projected-gradient algorithm. The derivative of Eq. (3)
with respect to �k equals

@L
@�k

=

X

i,w

ciwp(yiw|nik)

p(yiw)

, (4)

where nik denotes the index of the k-th neighbor of image
i. The number of parameters equals the neighborhood size
K. We refer to this variant as RK, for “rank-based”.

Distance-based weights. The other possibility is to de-
fine the weights directly as a function of the distance, rather
than the rank. This has the advantage that weights will de-
pend smoothly on the distance, which is crucial if the dis-
tance is to be adjusted during training. The weights of train-
ing images j for an image i are redefined as

⇡ij =

exp(�d✓(i, j))P
j0 exp(�d✓(i, j

0
))

, (5)

where d✓ is a distance metric with parameters ✓ that we
want to optimize. Note that the weights ⇡ij decay exponen-
tially with distance d✓ to image i. Choices for d✓ include
Mahalanobis distances dM parametrized by a semi-definite
matrix M, and dw(i, j) = w>dij where dij is a vector of
base distances between image i and j, and w contains the
positive coefficients of the linear distance combination. The
number of parameters equals the number of base distances
that are combined. In the rest of the paper we focus on this
particular case. When we use a single distance, referred to
as the SD variant, w is a scalar that controls the decay of
the weights with distance, and it is the only parameter of
the model. When multiple distances are used, the variant is
referred to as ML, for “metric learning”.

Again, rather than using an EM-algorithm we directly
maximize the log-likelihood using a projected gradient al-
gorithm under positivity constraints on the elements of w.

parametric models. Examples of such techniques include
methods based on label diffusion over a similarity graph
of labeled and unlabeled images [16, 22], or learning dis-
criminative models in neighborhoods of test images [27].
A simpler adhoc nearest-neighbor tag transfer mechanism
was recently introduced [17], showing state-of-the-art per-
formance. There, nearest neighbors are determined by the
average of several distances computed from different visual
features. The authors also combine the base distances by
learning a binary classifier separating image pairs that have
several tags in common from images that do not share any
tags. However, this linear distance combination did not give
better results than an equally weighted combination.

3. Tag Relevance Prediction Models

Our goal is to predict the relevance of annotation tags
for images. Given these relevance predictions we can an-
notate images by ranking the tags for a given image, or
do keyword based retrieval by ranking images for a given
tag. Our proposed method is based on a weighted nearest
neighbor approach, inspired by recent successful methods
[5, 11, 13, 17], that propagate the annotations of training
images to new images. Our models are learnt in a discrimi-
native manner, rather than using held-out data [5], or using
neighbors in an adhoc manner [17]. We assume that some
visual similarity or distance measures between images are
given, abstracting away from their precise definition.

3.1. Weighted Nearest Neighbor Tag Prediction

To model image annotations, we use Bernoulli models
for each keyword. This choice is natural because keywords,
unlike natural text where word frequency is meaningful, are
either present or absent. The dependencies between key-
words in the training data are not explicitly modeled, but
are implicitly exploited in our model.

We use yiw 2 {�1,+1} to denote the absence/presence
of keyword w for image i, hence encoding the image anno-
tations. The tag presence prediction p(yiw = +1) for image
i is a weighted sum over the training images, indexed by j:

p(yiw = +1) =

X

j

⇡ijp(yiw = +1|j), (1)

p(yiw = +1|j) =

(
1� ✏ for yjw = +1,

✏ otherwise,
(2)

where ⇡ij denotes the weight of image j for predicting the
tags of image i. We require that ⇡ij � 0, and

P
j ⇡ij = 1.

We use ✏ to avoid zero prediction probabilities, and in prac-
tice we set ✏ = 10

�5. To estimate the parameters that
control the weights ⇡ij we maximize the log-likelihood of
the predictions of training annotations. Taking care to set
the weight of training images to themselves to zero, i.e .

⇡ii = 0, our objective is to maximize

L =
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i,w

ciw ln p(yiw), (3)

where ciw is a cost that takes into account the imbalance
between keyword presence and absence. Indeed, in prac-
tice, there are many more tag absences than presences, and
absences are much noisier than presences. This is because
most tags in annotations are relevant, but often the annota-
tion does not include all relevant tags. We set ciw = 1/n

+ if
yiw = +1, where n

+ is the total number of positive labels,
and likewise ciw = 1/n

� when yiw = �1.

Rank-based weights. In the case of rank-based weights
over K neighbors we set ⇡ij = �k if j is the k-th nearest
neighbor of i. The data log-likelihood (3) is concave in the
parameters �k and can be estimated using an EM-algorithm,
or a projected-gradient algorithm. The derivative of Eq. (3)
with respect to �k equals
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where nik denotes the index of the k-th neighbor of image
i. The number of parameters equals the neighborhood size
K. We refer to this variant as RK, for “rank-based”.

Distance-based weights. The other possibility is to de-
fine the weights directly as a function of the distance, rather
than the rank. This has the advantage that weights will de-
pend smoothly on the distance, which is crucial if the dis-
tance is to be adjusted during training. The weights of train-
ing images j for an image i are redefined as

⇡ij =

exp(�d✓(i, j))P
j0 exp(�d✓(i, j

0
))

, (5)

where d✓ is a distance metric with parameters ✓ that we
want to optimize. Note that the weights ⇡ij decay exponen-
tially with distance d✓ to image i. Choices for d✓ include
Mahalanobis distances dM parametrized by a semi-definite
matrix M, and dw(i, j) = w>dij where dij is a vector of
base distances between image i and j, and w contains the
positive coefficients of the linear distance combination. The
number of parameters equals the number of base distances
that are combined. In the rest of the paper we focus on this
particular case. When we use a single distance, referred to
as the SD variant, w is a scalar that controls the decay of
the weights with distance, and it is the only parameter of
the model. When multiple distances are used, the variant is
referred to as ML, for “metric learning”.

Again, rather than using an EM-algorithm we directly
maximize the log-likelihood using a projected gradient al-
gorithm under positivity constraints on the elements of w.
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• A logistic regressor per tag upon fTagProp, is added to promote rare 
tags and penalize frequent ones.

• User tags on test image are not used. Not applicable to Tag 
Refinement

• Complexity O(l · m · k): l steps of gradient descent
• Memory O(d · |S|): same as KNN, extra 2m for logistic regression
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• Refines user tags by looking for co-occurrences in training set

• Tags are given a score based on an heuristic that takes into account ranks, 
stability and frequency of tags
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Figure 4: System overview of the tag recommendation process.

Vote. The voting strategy computes a score for each candi-
date tag c 2 C, where a vote for c is cast, whenever c 2 Cu.

vote(u, c) =

⇢
1 if c 2 Cu

0 otherwise
(3)

A list of recommended tags R is obtained by sorting the
candidate tags on the number of votes. A score is therefore
computed as:

score(c) :=
X

u2U

vote(u, c), (4)

Sum. The summing strategy also takes the union of all can-
didate tag lists (C), and sums over the co-occurrence values
of the tags, thus the score of a candidate tag c 2 C as cal-
culated as:

score(c) :=
X

u2U

(P (c|u) , if c 2 Cu) (5)

The function P (c|u) calculates the asymmetric co-occurrence
value, as defined in Equation 2. Note that the score of candi-
date tag c is obtained by only summing over the tags c 2 Cu.

We will use these two aggregation strategies as the base-
line for our evaluation as is presented in Section 6.

Promotion. In Section 3 we have made a number of obser-
vations with respect to tagging behaviour. In this section,
we translate these observations into a “promotion function”
to promote more descriptive tags for recommendation.

From the tag frequency distribution presented in Figure 1,
we learnt that both the head and the tail of the power law
would probably not contain good tags for recommendation.
Tags in the tail were judged to be unstable descriptors, due
to their infrequent nature. The head on the other hand
contained tags that would be too generic to be useful (2006,
2005, wedding, etc.).

• Stability-promotion. Considered that user-defined
tags with very low collection frequency are less reliable
than tags with higher collection frequency, we want to
promote those tags for which the statistics are more
stable. This is achieved with the following function:

stability(u) :=
ks

ks + abs(ks � log(|u|)) (6)

In principle this is a weighting function that weights
the impact of the candidate tags for a given user-
defined tag. |u| is the collection frequency of the tag
u and ks is a parameter in this function, which is de-
termined by training. The function abs(x) returns the
absolute value of x.

• Descriptiveness-promotion. Tags with very high
frequency are likely to be too general for individual
photos. We want to promote the descriptiveness by
damping the contribution of candidate tags with a very
high-frequency:

descriptive(c) :=
kd

kd + abs(kd � log(|c|)) (7)

This is another weighting function, now only applied to
re-value the weight of a candidate tag. kd is parameter
in this function, and is configured by training.

• Rank-promotion. The co-occurrence values of tags
provide good estimates of the relevance of a candi-
date tag for a user-defined tag. In principle, this is
already used by the aggregation strategy for summing,
but we observed that the co-occurrence values decline
very fast. The rank promotion does not look at the co-
occurrence value, but at the position r of the candidate
tag c 2 Cu for a given user-defined tag u:

rank(u, c) =
kr

kr + (r � 1)
(8)

331

WWW 2008 / Refereed Track:  Rich Media April 21-25, 2008. Beijing, China

B. Sigurbjörnsson, R. van Zwol. Flickr tag recommendation based on collective knowledge, WWW 2008



• Descriptive lowers the contribution of very high frequency tags
• Rank-promotion measures tags contribution w.r.t tag ranks
• Stability promotes tags for which statistics are more stable
• Vote is 1 if t is among the 25 top ranked tags of ti, 0 otherwise

• Depends on user tags of the test image, not applicable to Tag 
Assignment

• Complexity O(m · lx): same as SemanticField
• Memory O(m2)
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to construct multiple vector quantizers by K-means clustering, and further use the
quantizers to compress the original feature vector into a few codes.

4. TagVote [Li et al. 2009b]. The TagVote algorithm estimates the relevance of a tag
t w.r.t. an image x by counting the occurrence frequency of t in social annotations of the
visual neighbors of x. Differently from KNN, TagVote exploits the user element in the
social framework and introduces a unique-user constraint on the neighbor set to make
the voting result more objective. Each user has at most one image in the neighbor
set. Moreover, TagVote also takes into account tag prior frequency to suppress over
frequent tags. In particular, the TagVote algorithm builds f

�

(x, t; ⇥) as

f
TagV ote

(x, t) := k
t

� k
n
t

|S| , (7)

where n
t

is the number of images labeled with t in S. Following [Li et al. 2009b], we
set k to be 1,000 for both KNN and TagVote. TagVote has the same order of complexity
as KNN.

5. TagProp [Guillaumin et al. 2009; Verbeek et al. 2010]. TagProp employs neighbor
voting plus distance metric learning. A probabilistic framework is proposed where the
probability of using images in the neighborhood is defined based on rank or distance-
based weights. TagProp builds f

�

(x, t; ⇥) as:

f
TagProp

(x, t) :=

kX

j

⇡
j

· I(x
j

, t), (8)

where ⇡
j

is a non-negative weight indicating the importance of the j-th neighbor x
j

,
and I(x

j

, t) returns 1 if x
j

is labeled with t, and 0 otherwise. Following [Verbeek et al.
2010], we use k = 1, 000 and the rank-based weights, which showed similar perfor-
mance to the distance-based weights. Differently from TagVote that uses tag prior
to penalize frequent tags, TagProp promotes rare tags and penalizes frequent ones
by training a logistic model per tag upon f

TagProp

(x, t). The use of the logistic model
makes TagProp a model-based method. In contrast to KNN and TagVote wherein vi-
sual neighbors are treated equally, TagProp employs distance metric learning to re-
weight the neighbors, yielding a learning complexity of O(l · m · k) where l is the num-
ber of gradient descent iterations it needs (typically less than 10). TagProp maintains
2m extra parameters for the logistic models, though their storage cost is ignorable
compared to the visual features. Therefore, running Eq. (8) has the same order of com-
plexity as KNN and TagVote.

6. TagCooccur [Sigurbjörnsson and van Zwol 2008]. While both SemanticField and
TagCooccur are tag-based, the main difference lies in how they compute the contri-
bution of a specific tag to the test tag’s relevance score. Different from SemanticField
which uses tag similarities, TagCooccur uses the test tag’s rank in the tag ranking list
created by sorting all tags in terms of their co-occurrence frequency with the tag in a
social framework. In addition, TagCooccur takes into account the stability of the tag,
measured by its frequency. The method is implemented as

f
tagcooccur

(x, t) = descriptive(t)

l

xX

i=1

vote(t
i

, t) · rank-promotion(t
i

, t) · stability(t
i

), (9)

where descriptive(t) is to damp the contribution of tags with a very high-frequency,
rank-promotion(t

i

, t) measures the rank-based contribution of t
i

to t, stability(t
i

) for
promoting tags for which the statistics are more stable, and vote(t

i

, t) is 1 if t is among
the top 25 ranked tags of t

i

, and 0 otherwise. TagCooccur has the same order of com-
plexity as SemanticField.
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• A variant of TagCooccur that is improved by considering the image content
in addition to solely user tags

• The heuristic is updated by multipling TagCooccur score with a corrective
factor based on Tag Vote scores

• rc(t) is the rank of t when sorting ftagvote(x,t) in descending order. kc is a 
positive weighting parameter

• Complexity O(d · |S| + k · log|S|): same complexity as TagVote
• Memory O(d · |S|) 

Socializing the Semantic Gap X:19

7. TagCooccur+ [Li et al. 2009b]. TagCooccur+ is proposed to improve TagCooccur
by adding the visual content. This is achieved by multiplying f

tagcooccur

(x, t) with a
content-based term, i.e.,

f
tagcooccur+

(x, t) = f
tagcooccur

(x, t) · k
c

k
c

+ r
c

(t) � 1

, (10)

where r
c

(t) is the rank of t when sorting the vocabulary by f
TagV ote

(x, t) in descending
order, and k

c

is a positive weighting parameter, which is empirically set to 1. While
TagCooccur+ is grounded on TagCooccur and TagVote, the complexity of the former
is ignorable compared to the latter, so the complexity of TagCooccurs+ is the same as
KNN.

8. TagFeature [Chen et al. 2012]. The basic idea is to enrich image features by
adding an extra tag feature. It thus relies on the possible presence of several tags per
image in the training set. In particular, a tag vocabulary that consists of d0 most fre-
quent tags in S is constructed first. Then, for each tag a two-class linear SVM classifier
is trained using LIBLINEAR [Fan et al. 2008]. The positive training set consists of p
images labeled with the tag in S, and the same amount of negative training examples
are randomly sampled from images not labeled with the tag. The probabilistic output
of the classifier, obtained by the Platt’s scaling [Lin et al. 2007], corresponds to a spe-
cific dimension in the tag feature. By concatenating the tag and visual features, an
augmented feature of d + d0 dimension is obtained. For a test tag t, its tag relevance
function f

TagFeature

(x, t) is obtained by re-training an SVM classifier using the aug-
mented feature. The linear property of the classifier allows us to first sum up all the
support vectors into a single vector and consequently to classify a test image by the
inner product with this vector. That is,

f
TagFeature

(x, t) := b+ < x
t

, x >, (11)

where x
t

is the weighted sum of all support vectors and b the intercept. To build mean-
ingful classifiers, we use tags that have at least 100 positive examples. While d0 is
chosen to be 400 in [Chen et al. 2012], the two smaller training sets, namely Train10k
and Train100k, have 76 and 396 tags satisfying the above requirement. We empiri-
cally set p to 500, and do a random down-sampling if the amount of images for a tag
exceeds this number. For TagFeature, learning a linear classifier for each tag from p
positive and p negative examples requires O((d + d0)p) in computation and O((d + d0)p)

in memory [Fan et al. 2008]. Running Eq. (11) for all the m tags and n images needs
O(nm(d + d0)) in computation and O(m(d + d0)) in memory.

9. RelExample [Li and Snoek 2013]. Different from TagFeature [Chen et al. 2012]
that learns from tagged images, RelExample exploits positive and negative training
examples which are deemed to be more relevant with respect to the test tag t. In par-
ticular, relevant positive examples are selected from S by combining SemanticField
and TagVote in a late fusion manner. For negative training example acquisition, they
leverage Negative Bootstrap [Li et al. 2013], a negative sampling algorithm which it-
eratively selects negative examples deemed most relevant for improving classification.
A T -iteration Negative Bootstrap will produce T meta classifiers. The corresponding
tag relevance function is written as

f
RelExample

(x, t) :=

1

T

TX

l=1

(b
l

+

n

lX

j=1

↵
l,j

· y
l,j

· K(x, x
l,j

)), (12)

where ↵
l,j

is a positive coefficient of support vector x
l,j

, y
l,j

2 {�1, 1} is class label, and
n
l

the number of support vectors in the l-th classifier. For the sake of efficiency, the
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Model-Based Tag + Image

• Train per-tag classifier with tagged images as positive examples and 
random untagged images as negative examples.

• Since rare tags are only
associated with a limited
number of positive training 
images, they may degrade
SVMs performance

SVM - sunset

not tagged with sunset
randomly selected

tagged with sunset

Sunset?

0.9

Visual 
Features

[.4 .2 .5 .6 ...]

Visual 
Features

[.1 .4 .7 .2 ...]

[Chen et al. 2012]

L. Chen, D. Xu, I. Tsang, J. Luo. Tag-Based Image Retrieval Improved by Augmented Features and Group-
Based Refinement. IEEE TMM 2012
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• TagFeature idea is to enrich visual features with tag augmented features, 
derived from prelearned SVM classifiers of popular concepts.

Visual 
Features

[.4 .2 .5 .6 ...]

SVM - beach

SVM - cat

SVM - sunset

0.7

0.1

0.9

Augmented 
Features

[.7 .1 .9 ...]

tagged with sunsetnot tagged with sunset
randomly selected

sunset?

Final SVM
sunset 0.9



• Linear classifiers are used to reduce computational cost
• It allows to sum up all the support vectors into a single vector xt

• d visual features and d’ tag features, i.e. svm classifiers

• User tags on test image are not used. Not applicable to Tag 
Refinement.

• Complexity O((d + d’) nm), n images, m tags
• Memory O(m (d + d’))
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Socializing the Semantic Gap X:19

7. TagCooccur+ [Li et al. 2009b]. TagCooccur+ is proposed to improve TagCooccur
by adding the visual content. This is achieved by multiplying f

tagcooccur

(x, t) with a
content-based term, i.e.,

f
tagcooccur+

(x, t) = f
tagcooccur

(x, t) · k
c

k
c

+ r
c

(t) � 1

, (10)

where r
c

(t) is the rank of t when sorting the vocabulary by f
TagV ote

(x, t) in descending
order, and k

c

is a positive weighting parameter, which is empirically set to 1. While
TagCooccur+ is grounded on TagCooccur and TagVote, the complexity of the former
is ignorable compared to the latter, so the complexity of TagCooccurs+ is the same as
KNN.

8. TagFeature [Chen et al. 2012]. The basic idea is to enrich image features by
adding an extra tag feature. It thus relies on the possible presence of several tags per
image in the training set. In particular, a tag vocabulary that consists of d0 most fre-
quent tags in S is constructed first. Then, for each tag a two-class linear SVM classifier
is trained using LIBLINEAR [Fan et al. 2008]. The positive training set consists of p
images labeled with the tag in S, and the same amount of negative training examples
are randomly sampled from images not labeled with the tag. The probabilistic output
of the classifier, obtained by the Platt’s scaling [Lin et al. 2007], corresponds to a spe-
cific dimension in the tag feature. By concatenating the tag and visual features, an
augmented feature of d + d0 dimension is obtained. For a test tag t, its tag relevance
function f

TagFeature

(x, t) is obtained by re-training an SVM classifier using the aug-
mented feature. The linear property of the classifier allows us to first sum up all the
support vectors into a single vector and consequently to classify a test image by the
inner product with this vector. That is,

f
TagFeature

(x, t) := b+ < x
t

, x >, (11)

where x
t

is the weighted sum of all support vectors and b the intercept. To build mean-
ingful classifiers, we use tags that have at least 100 positive examples. While d0 is
chosen to be 400 in [Chen et al. 2012], the two smaller training sets, namely Train10k
and Train100k, have 76 and 396 tags satisfying the above requirement. We empiri-
cally set p to 500, and do a random down-sampling if the amount of images for a tag
exceeds this number. For TagFeature, learning a linear classifier for each tag from p
positive and p negative examples requires O((d + d0)p) in computation and O((d + d0)p)

in memory [Fan et al. 2008]. Running Eq. (11) for all the m tags and n images needs
O(nm(d + d0)) in computation and O(m(d + d0)) in memory.

9. RelExample [Li and Snoek 2013]. Different from TagFeature [Chen et al. 2012]
that learns from tagged images, RelExample exploits positive and negative training
examples which are deemed to be more relevant with respect to the test tag t. In par-
ticular, relevant positive examples are selected from S by combining SemanticField
and TagVote in a late fusion manner. For negative training example acquisition, they
leverage Negative Bootstrap [Li et al. 2013], a negative sampling algorithm which it-
eratively selects negative examples deemed most relevant for improving classification.
A T -iteration Negative Bootstrap will produce T meta classifiers. The corresponding
tag relevance function is written as

f
RelExample

(x, t) :=

1

T

TX

l=1

(b
l

+

n

lX

j=1

↵
l,j

· y
l,j

· K(x, x
l,j

)), (12)

where ↵
l,j

is a positive coefficient of support vector x
l,j

, y
l,j

2 {�1, 1} is class label, and
n
l

the number of support vectors in the l-th classifier. For the sake of efficiency, the
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• Negative examples which are visually similar to positive can be misclassified

• RelExample exploits positive and negative training examples which are 
deemed to be more relevant with respect to the test tag t

ing many classifiers built on small subsets of the data is a
promising approach [2]. We thus follow this ensemble learn-
ing approach. To make our discussion more formal, we use
ω to denote a tag of interest. Let x be an image. Its content-
based representation is a d-dimensional feature vector. We
refer to an image and its feature vector interchangeably, us-
ing x(i) to indicate the i-th dimension of the vector. Let
G(x) be a tag relevance estimator for ω. We express G(x)
as an ensemble of T meta classifiers:

G(x) =
1
T

T∑

t=1

gt(x), (1)

where gt(x) indicates the decision function of a meta classi-
fier. We instantiate the meta classifiers using SVMs, for its
well recognized performance on two-class learning:

gt(x) = bt +
nt∑

j=1

αt,j · yt,j · K(x, xt,j), (2)

where bt is the intercept, nt the number of support vectors,
αt,j the positive coefficient of support vector xt,j , yt,j ∈
{1,−1} a class label of xt,j with respect to ω, and K a kernel
function.
Obtaining optimal gt(x) requires proper positive and neg-

ative training data. The relevance of negative examples with
respect to ω depends on positive examples of the tag. In
that regard, we first describe how to select relevant positive
examples in Section 2.1, and then depict negative example
selection in Section 2.2. While the selected positives and
negatives lead to an effective ensemble of SVMs, the com-
putational complexity of G(x) is proportional to the size of
the ensemble. We describe in Section 2.3 acceleration tech-
niques which will make the complexity independent of the
ensemble size. The proposed system is illustrated in Fig. 2.

2.1 Selecting Relevant Positive Examples
We choose to combine two state-of-the-art methods: se-

mantic field [12] and neighbor voting [6]. As the two meth-
ods exploit textual and visual information respectively, they
are orthogonal to each other. Combining them makes sense.
Given a specific tag ω, the semantic field method deter-

mines the positiveness of an image in light of the averaged
semantic similarity between ω and the tags assigned to that
image [12]. The semantic similarity between two tags is
computed by combining the Flickr context similarity and
the WordNet Wu-Palmer similarity. The Flickr similarity
is based on the Normalized Google Distance, but with tag
statistics acquired from Flickr image collections instead of
Google indexed web pages. The WordNet similarity exploits
path length in WordNet hierarchy to infer tag relatedness.
The neighbor voting method determines the positiveness

of an image with respect to ω by exploiting tagging redun-
dancies among multiple users [6]. The method retrieves k
nearest neighbors from a large set of user-labeled images by
content-based search. The number of neighbors labeled with
ω is used as the positiveness score.
From the above discussion we see that the output scores

of the two methods are of different scales. Hence, we use
CombSUM with rank-based score normalization, a robust
choice for multimedia fusion. Given images labeled with ω,
we sort the images in descending order by their scores, and
preserve the top l ranked results as relevant positives.

sheep

...

Crowd-annotated images

Negative Bootstrap

Compressing

Ensembles of SVMs

Positive Example 

Selection

Tag relevance 

estimation relevance scores 
of sheep

0.87  0.70  0.15  

images labeled 
with sheep

Figure 2: The proposed classification system for im-
age tag relevance estimation. For each given tag, the
system automatically selects a set of relevant posi-
tive examples from crowd-annotated images. Sub-
sequently, relevant negative examples are selected
via Negative Bootstrap [7], yielding an ensemble of
SVMs. By compressing the ensemble to make the
test complexity independent of the ensemble size,
the system is both effective and efficient.

2.2 Selecting Relevant Negative Examples
While negative examples can be easily acquired by random

sampling, see [3], such random negatives are inadequate for
attacking challenging cases, like image (c) shown in Fig. 1.
To separate (a) and (c), one might want to manually add
positive examples of tags which resembles visual context of
‘sheep’, say ‘grass’ or ‘hill’. However, the relevance of a neg-
ative example depends on the underlying visual features and
classifiers, and is not necessarily consistent with what an ob-
server may expect. It is thus difficult to specify relevant neg-
atives by hand-crafted rules. In order to automatically select
relevant negatives, we extend the Negative Bootstrap algo-
rithm [7] to the tag relevance estimation problem. Different
from [7] that departs from a few expert-labeled examples,
we use purely crow-annotated examples.

Given the l positives selected in Section 2.1, Negative
Bootstrap finds relevant negatives in an iterative manner.
In the first iteration an initial classifier g1(x) is derived from
the positives and l random negatives. In the t-th iteration,
the algorithm randomly samples m examples to form a can-
didate set, and uses the ensemble of t−1 classifiers previously
obtained to classify each candidate element. The top l most
misclassified elements are selected and used together with
the positives to derive a new meta classifier gt(x). Negative
Bootstrap with T iterations produces an ensemble of T meta
classifiers, which will be the tag relevance estimator for ω.

2.3 Compressing Ensembles of SVMs
As noted earlier, despite the effectiveness of ensemble learn-

ing, the intensive computation associated with applying all
meta classifiers puts the practical use of per-tag modeling
into question. To overcome the difficulty, we study how to

• Positive examples are 
selected by taking the top-
ranked images by TagVote
and SemanticField

• Negative examples are 
selected by Negative 
Bootstrap [Li et al. 2013]

X. Li, C. Snoek. Classifying tag relevance with relevant positive and negative examples. ACMMM 2013
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• Negative Bootstrap [Li et al. 2013] trains a series of classifiers gt that
explicitly address mis-classified examples at previous step

Posi!ve examples

Nega!ve examples

Visual classifiers

Adap!ve Sampling

Virtual labeling

Classifier learning

Random sampling

Selec!on

Predic!on Classifier aggrega!on

tU

tU
~

Figure 3: The proposed social negative bootstrapping approach. Given a specific visual category w and a
positive set Bw+, we obtain a series of informative negative sets {B(t)

w−
} from a large set of virtually labeled

negative examples Sw− by multi-round adaptive sampling. In round t, we use Gt−1(x,w) to classify a candidate

set Ut, and select the most misclassified negatives to form B
(t)
w−

. To initialize the bootstrapping process, B(1)
w−

is
randomly sampled from Sw−. By iteratively exploiting the informative negatives, we obtain visual classifiers
with better discrimination ability, but without the cost of manually labeling any negatives.

sampling procedure, we iteratively select informative nega-
tives from Sw− in an adaptive manner.

3.2.3 Classifier Learning and Aggregation
In each round t, we learn a new classifier gt(x,w) from

Bw+ and B
(t)
w−

. As B
(t)
w−

is composed of negatives which
are most misclassified by previous classifiers, we suppose
that the new classifier is complementary to its ancestors.
Therefore, we choose classifier aggregation to obtain the fi-
nal classifier. Let Gt(x,w) be an aggregated classifier which
uniformly combines gt(x,w) and the previous t-1 classifiers:

Gt(x,w) =
t− 1
t

Gt−1(x,w) +
1
t
gt(x,w). (5)

To trigger the bootstrapping process, we train an initial
classifier g1(x,w) on Bw+ and B

(1)
w−

, which consists of exam-

ples randomly sampled from Sw−, with |B(1)
w−

| = |Bw+|.
We illustrate the entire framework in Fig. 3, with the algo-

rithm given in Table 1. By adaptively selecting informative
negative sets, social negative bootstrapping enables us to
derive visual classifiers with better discrimination ability.

4. EXPERIMENTAL SETUP
We compare the proposed approach with the following two

types of baselines, both of which rely on random sampling
to obtain negative training data: 1) “random sampling” [10,
11, 19, 25, 32], and 2) “random+aggregation” [17]. For a fair
comparison, whenever applicable, we will make our approach
and the baselines share the same input and parameters.

4.1 Data sets
Positive training set Bw+. We choose the PASCAL

VOC 2008 training set [7], collected from Flickr, with expert-
labeled ground truth for 20 visual categories. For each cat-
egory, we randomly sample 50 positive examples as Bw+.
Social-tagged image set S. We construct S as follows.

We create the visual category vocabulary V by taking the
intersection between the ImageNet vocabulary [6] and a so-
cial tagging vocabulary in which each tag is used by at least
100 distinct users in a set of 10 million Flickr images. The
size of V is 5,009. Next, we go through 3.5 million Flickr
images1 created in our previous work [12], and remove im-
1Data available at http://staff.science.uva.nl/~xirong

Table 1: The proposed social negative bootstrapping
algorithm.

INPUT: visual concept w, expert-labeled positive
examples Bw+, social-tagged examples S, and
the number of learning rounds T .
OUTPUT: visual classifier GT (x,w).

1. Creating negative example pool:
Sw− ← virtual labeling(S,w).

2. Creating an initial classifier:

(a) B(1)
w−
← random sampling(Sw−, |Bw+|).

(b) g1(x,w)← classifier learning(Bw+, B
(1)
w−

).
(c) G1(x,w) = g1(x,w).

3. For t = 2, . . . , T do
3.1 Adaptive sampling:

(a) Ut ← random sampling(Sw−, nu).
(b) Ũt ← prediction(Ut, Gt−1(x,w)).

(c) B(t)
w−
← selection(Ũt, |Bw+|).

3.2 Classifier learning:

gt(x,w)← classifier learning(Bw+, B
(t)
w−

).

3.3 Classifier aggregation:
Gt(x,w) = t−1

t
Gt−1(x,w) + 1

t
gt(x,w).

ages batch-tagged or having no tags from V . We end with
S consisting of 650K images.

Two test sets. To evaluate classifiers derived from the
same training set but by different approaches, we adopt the
following two test sets, which were created independently
by manually labeling different subsets of Flickr images. For
within-dataset visual categorization, we adopt the VOC2008
validation set [7]. To test the robustness of the proposed
approach in a cross-dataset setting, we choose the NUS-
OBJECT test set [4]. We present in Table 2 data statistics
of the training and test sets.

4.2 Implementation
Image representation. Since vector-quantized keypoint

descriptors are effective features for visual categorization,
we follow this convention. In particular, we adopt dense
sampling for keypoint localization and SURF [1] for keypoint
description, using a fast implementation of dense-SURF [24].
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Figure 3: The proposed social negative bootstrapping approach. Given a specific visual category w and a
positive set Bw+, we obtain a series of informative negative sets {B(t)

w−
} from a large set of virtually labeled

negative examples Sw− by multi-round adaptive sampling. In round t, we use Gt−1(x,w) to classify a candidate

set Ut, and select the most misclassified negatives to form B
(t)
w−

. To initialize the bootstrapping process, B(1)
w−

is
randomly sampled from Sw−. By iteratively exploiting the informative negatives, we obtain visual classifiers
with better discrimination ability, but without the cost of manually labeling any negatives.

sampling procedure, we iteratively select informative nega-
tives from Sw− in an adaptive manner.

3.2.3 Classifier Learning and Aggregation
In each round t, we learn a new classifier gt(x,w) from

Bw+ and B
(t)
w−

. As B
(t)
w−

is composed of negatives which
are most misclassified by previous classifiers, we suppose
that the new classifier is complementary to its ancestors.
Therefore, we choose classifier aggregation to obtain the fi-
nal classifier. Let Gt(x,w) be an aggregated classifier which
uniformly combines gt(x,w) and the previous t-1 classifiers:

Gt(x,w) =
t− 1
t

Gt−1(x,w) +
1
t
gt(x,w). (5)

To trigger the bootstrapping process, we train an initial
classifier g1(x,w) on Bw+ and B

(1)
w−

, which consists of exam-

ples randomly sampled from Sw−, with |B(1)
w−

| = |Bw+|.
We illustrate the entire framework in Fig. 3, with the algo-

rithm given in Table 1. By adaptively selecting informative
negative sets, social negative bootstrapping enables us to
derive visual classifiers with better discrimination ability.

4. EXPERIMENTAL SETUP
We compare the proposed approach with the following two

types of baselines, both of which rely on random sampling
to obtain negative training data: 1) “random sampling” [10,
11, 19, 25, 32], and 2) “random+aggregation” [17]. For a fair
comparison, whenever applicable, we will make our approach
and the baselines share the same input and parameters.

4.1 Data sets
Positive training set Bw+. We choose the PASCAL

VOC 2008 training set [7], collected from Flickr, with expert-
labeled ground truth for 20 visual categories. For each cat-
egory, we randomly sample 50 positive examples as Bw+.
Social-tagged image set S. We construct S as follows.

We create the visual category vocabulary V by taking the
intersection between the ImageNet vocabulary [6] and a so-
cial tagging vocabulary in which each tag is used by at least
100 distinct users in a set of 10 million Flickr images. The
size of V is 5,009. Next, we go through 3.5 million Flickr
images1 created in our previous work [12], and remove im-
1Data available at http://staff.science.uva.nl/~xirong

Table 1: The proposed social negative bootstrapping
algorithm.

INPUT: visual concept w, expert-labeled positive
examples Bw+, social-tagged examples S, and
the number of learning rounds T .
OUTPUT: visual classifier GT (x,w).

1. Creating negative example pool:
Sw− ← virtual labeling(S,w).

2. Creating an initial classifier:

(a) B(1)
w−
← random sampling(Sw−, |Bw+|).

(b) g1(x,w)← classifier learning(Bw+, B
(1)
w−

).
(c) G1(x,w) = g1(x,w).

3. For t = 2, . . . , T do
3.1 Adaptive sampling:

(a) Ut ← random sampling(Sw−, nu).
(b) Ũt ← prediction(Ut, Gt−1(x,w)).

(c) B(t)
w−
← selection(Ũt, |Bw+|).

3.2 Classifier learning:

gt(x,w)← classifier learning(Bw+, B
(t)
w−

).

3.3 Classifier aggregation:
Gt(x,w) = t−1

t
Gt−1(x,w) + 1

t
gt(x,w).

ages batch-tagged or having no tags from V . We end with
S consisting of 650K images.

Two test sets. To evaluate classifiers derived from the
same training set but by different approaches, we adopt the
following two test sets, which were created independently
by manually labeling different subsets of Flickr images. For
within-dataset visual categorization, we adopt the VOC2008
validation set [7]. To test the robustness of the proposed
approach in a cross-dataset setting, we choose the NUS-
OBJECT test set [4]. We present in Table 2 data statistics
of the training and test sets.

4.2 Implementation
Image representation. Since vector-quantized keypoint

descriptors are effective features for visual categorization,
we follow this convention. In particular, we adopt dense
sampling for keypoint localization and SURF [1] for keypoint
description, using a fast implementation of dense-SURF [24].
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Figure 3: The proposed social negative bootstrapping approach. Given a specific visual category w and a
positive set Bw+, we obtain a series of informative negative sets {B(t)

w−
} from a large set of virtually labeled

negative examples Sw− by multi-round adaptive sampling. In round t, we use Gt−1(x,w) to classify a candidate

set Ut, and select the most misclassified negatives to form B
(t)
w−

. To initialize the bootstrapping process, B(1)
w−

is
randomly sampled from Sw−. By iteratively exploiting the informative negatives, we obtain visual classifiers
with better discrimination ability, but without the cost of manually labeling any negatives.
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(1)
w−
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We illustrate the entire framework in Fig. 3, with the algo-
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derive visual classifiers with better discrimination ability.

4. EXPERIMENTAL SETUP
We compare the proposed approach with the following two

types of baselines, both of which rely on random sampling
to obtain negative training data: 1) “random sampling” [10,
11, 19, 25, 32], and 2) “random+aggregation” [17]. For a fair
comparison, whenever applicable, we will make our approach
and the baselines share the same input and parameters.

4.1 Data sets
Positive training set Bw+. We choose the PASCAL

VOC 2008 training set [7], collected from Flickr, with expert-
labeled ground truth for 20 visual categories. For each cat-
egory, we randomly sample 50 positive examples as Bw+.
Social-tagged image set S. We construct S as follows.

We create the visual category vocabulary V by taking the
intersection between the ImageNet vocabulary [6] and a so-
cial tagging vocabulary in which each tag is used by at least
100 distinct users in a set of 10 million Flickr images. The
size of V is 5,009. Next, we go through 3.5 million Flickr
images1 created in our previous work [12], and remove im-
1Data available at http://staff.science.uva.nl/~xirong

Table 1: The proposed social negative bootstrapping
algorithm.

INPUT: visual concept w, expert-labeled positive
examples Bw+, social-tagged examples S, and
the number of learning rounds T .
OUTPUT: visual classifier GT (x,w).

1. Creating negative example pool:
Sw− ← virtual labeling(S,w).

2. Creating an initial classifier:

(a) B(1)
w−
← random sampling(Sw−, |Bw+|).

(b) g1(x,w)← classifier learning(Bw+, B
(1)
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).
(c) G1(x,w) = g1(x,w).

3. For t = 2, . . . , T do
3.1 Adaptive sampling:

(a) Ut ← random sampling(Sw−, nu).
(b) Ũt ← prediction(Ut, Gt−1(x,w)).

(c) B(t)
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← selection(Ũt, |Bw+|).

3.2 Classifier learning:
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ages batch-tagged or having no tags from V . We end with
S consisting of 650K images.

Two test sets. To evaluate classifiers derived from the
same training set but by different approaches, we adopt the
following two test sets, which were created independently
by manually labeling different subsets of Flickr images. For
within-dataset visual categorization, we adopt the VOC2008
validation set [7]. To test the robustness of the proposed
approach in a cross-dataset setting, we choose the NUS-
OBJECT test set [4]. We present in Table 2 data statistics
of the training and test sets.

4.2 Implementation
Image representation. Since vector-quantized keypoint

descriptors are effective features for visual categorization,
we follow this convention. In particular, we adopt dense
sampling for keypoint localization and SURF [1] for keypoint
description, using a fast implementation of dense-SURF [24].



• T iterations for a corresponding number of trained classifiers

• User tags on test image are not used. Not applicable to Tag 
Refinement.

• Complexity O(Tdp2): training T SVM classifiers
• Memory O(dp + dq): d visual features, p pos and q neg examples
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Socializing the Semantic Gap X:19

7. TagCooccur+ [Li et al. 2009b]. TagCooccur+ is proposed to improve TagCooccur
by adding the visual content. This is achieved by multiplying f

tagcooccur

(x, t) with a
content-based term, i.e.,

f
tagcooccur+

(x, t) = f
tagcooccur

(x, t) · k
c

k
c

+ r
c

(t) � 1

, (10)

where r
c

(t) is the rank of t when sorting the vocabulary by f
TagV ote

(x, t) in descending
order, and k

c

is a positive weighting parameter, which is empirically set to 1. While
TagCooccur+ is grounded on TagCooccur and TagVote, the complexity of the former
is ignorable compared to the latter, so the complexity of TagCooccurs+ is the same as
KNN.

8. TagFeature [Chen et al. 2012]. The basic idea is to enrich image features by
adding an extra tag feature. It thus relies on the possible presence of several tags per
image in the training set. In particular, a tag vocabulary that consists of d0 most fre-
quent tags in S is constructed first. Then, for each tag a two-class linear SVM classifier
is trained using LIBLINEAR [Fan et al. 2008]. The positive training set consists of p
images labeled with the tag in S, and the same amount of negative training examples
are randomly sampled from images not labeled with the tag. The probabilistic output
of the classifier, obtained by the Platt’s scaling [Lin et al. 2007], corresponds to a spe-
cific dimension in the tag feature. By concatenating the tag and visual features, an
augmented feature of d + d0 dimension is obtained. For a test tag t, its tag relevance
function f

TagFeature

(x, t) is obtained by re-training an SVM classifier using the aug-
mented feature. The linear property of the classifier allows us to first sum up all the
support vectors into a single vector and consequently to classify a test image by the
inner product with this vector. That is,

f
TagFeature

(x, t) := b+ < x
t

, x >, (11)

where x
t

is the weighted sum of all support vectors and b the intercept. To build mean-
ingful classifiers, we use tags that have at least 100 positive examples. While d0 is
chosen to be 400 in [Chen et al. 2012], the two smaller training sets, namely Train10k
and Train100k, have 76 and 396 tags satisfying the above requirement. We empiri-
cally set p to 500, and do a random down-sampling if the amount of images for a tag
exceeds this number. For TagFeature, learning a linear classifier for each tag from p
positive and p negative examples requires O((d + d0)p) in computation and O((d + d0)p)

in memory [Fan et al. 2008]. Running Eq. (11) for all the m tags and n images needs
O(nm(d + d0)) in computation and O(m(d + d0)) in memory.

9. RelExample [Li and Snoek 2013]. Different from TagFeature [Chen et al. 2012]
that learns from tagged images, RelExample exploits positive and negative training
examples which are deemed to be more relevant with respect to the test tag t. In par-
ticular, relevant positive examples are selected from S by combining SemanticField
and TagVote in a late fusion manner. For negative training example acquisition, they
leverage Negative Bootstrap [Li et al. 2013], a negative sampling algorithm which it-
eratively selects negative examples deemed most relevant for improving classification.
A T -iteration Negative Bootstrap will produce T meta classifiers. The corresponding
tag relevance function is written as

f
RelExample

(x, t) :=

1

T

TX

l=1

(b
l

+

n

lX

j=1

↵
l,j

· y
l,j

· K(x, x
l,j

)), (12)

where ↵
l,j

is a positive coefficient of support vector x
l,j

, y
l,j

2 {�1, 1} is class label, and
n
l

the number of support vectors in the l-th classifier. For the sake of efficiency, the
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• Based on a few assumptions on tag characteristics:
- low-rank property: the semantic space spanned by tags can be 

approximated by a smaller subset of salient words derived from the 
original space

- tag correlation: semantic tags are correlated
- visual consistency: visually similar images have similar tags
- error sparsity for the image-tag matrix: user’s tagging is reasonably

accurate and one image is usually labelled with few tags

Figure 1: Framework of image tag refinement towards low-rank, content consistency, tag correlation and
error sparsity. The column-wise user-provided tag matrix D (Note that D is sub-sampled from a larger real
user-provided tag matrix for ease of display), where white grid represents the association of a tag with image
and black one represents non-association, is decomposed into a low-rank matrix A (the refined tag matrix and
here rank(A) = 13) and a sparse matrix E (tagging error in user-provided tags and sparse error is ∥E∥0 = 72 in
this illustration) by considering the properties of content consistency and tag correlation.

tags is thus highly desirable for tag based image retrieval
and other related applications.

In this paper, to address the aforementioned imprecise and
incomplete issues of user-provided image tags, we propose a
novel refinement approach aiming to improve the quality
of tags. The approach is motivated by the following four
observations of image tags from large volume social images.

• Low-rank. The existing work on text information
processing [7] has demonstrated that the semantic space
spanned by text keywords can be approximated by a
smaller subset of salient words derived from the origi-
nal space. As one kind of text information, image tags
are consequently subject to such low-rank property.

• Content consistency. From large-scale image dataset,
we can observe that visually similar images often re-
flect similar themes and thus are typically annotated
with similar tags. Content consistency describes the
relationships between content level and semantic level.
Being an important prior, this observation has been
widely explored in visual category learning [8, 9].

• Tag correlation. Semantic tags associated with im-
ages do not appear in isolation, instead often appear
correlatively and naturally interact with each other at
the semantic level. As another important prior, tag
correlation characterizes the relationships within se-
mantic level and is often the preliminary assumption
of multi-label and contextual learning algorithms [10,
11].

• Error sparsity. With the general knowledge that the
human-beings share most of the common concepts in
the semantic space, the tagging results for one image

are reasonably accurate to certain level. Moreover,
one image usually is labeled with only couple of tags.
Such observations lead to the characteristics of error
sparsity for image tag matrix.

Figure 1 shows the framework of our problem formulation
and solution. Given the user-provided image tag matrix
D, to comprehensively characterize the above four factors,
we cast the tag refinement task into a convex optimization
problem, which simultaneously minimizes the matrix rank
and priors as well as error sparsity. Concretely, the nuclear
norm, ℓ1 norm and trace operation are employed to model
the properties regarding tag low-rank, error sparsity, content
consistency and tag correlation, respectively. The results
are the low-rank matrix A which encodes the refined image
tags, and the sparse matrix E which represents the tagging
errors in user-provided tags. To obtain the results effectively,
we also propose an efficient convergence provable iterative
procedure to accomplish the optimization.

The novelties and main contributions of this paper are
summarized as follows.

• We propose a new tag refinement formulation in form
of convex optimization which comprehensively consid-
ers the tag characteristics from the points of view of
low-rank, error sparsity, content consistency and tag
correlation.

• Compared with existing works, the low-rank and er-
ror sparsity are firstly integrated into the optimization
procedure for image tag refinement. With the assis-
tance of constraints of content consistency and tag cor-
relation, the proposed approach is capable of correct-
ing imprecise tags and enriching the incomplete ones.

Zhu et al. Image Tag Refinement Towards Low-Rank, Content-Tag Prior Error Sparsity. ACMMM 2010
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• RobustPCA factorize the tag matrix D into a low-rank matrix A and a sparse 
error matrix E.

• Explicitly enforces content consistency and tag correlation with Laplacian
graph-based regularizers.

Figure 1: Framework of image tag refinement towards low-rank, content consistency, tag correlation and
error sparsity. The column-wise user-provided tag matrix D (Note that D is sub-sampled from a larger real
user-provided tag matrix for ease of display), where white grid represents the association of a tag with image
and black one represents non-association, is decomposed into a low-rank matrix A (the refined tag matrix and
here rank(A) = 13) and a sparse matrix E (tagging error in user-provided tags and sparse error is ∥E∥0 = 72 in
this illustration) by considering the properties of content consistency and tag correlation.

tags is thus highly desirable for tag based image retrieval
and other related applications.

In this paper, to address the aforementioned imprecise and
incomplete issues of user-provided image tags, we propose a
novel refinement approach aiming to improve the quality
of tags. The approach is motivated by the following four
observations of image tags from large volume social images.

• Low-rank. The existing work on text information
processing [7] has demonstrated that the semantic space
spanned by text keywords can be approximated by a
smaller subset of salient words derived from the origi-
nal space. As one kind of text information, image tags
are consequently subject to such low-rank property.

• Content consistency. From large-scale image dataset,
we can observe that visually similar images often re-
flect similar themes and thus are typically annotated
with similar tags. Content consistency describes the
relationships between content level and semantic level.
Being an important prior, this observation has been
widely explored in visual category learning [8, 9].

• Tag correlation. Semantic tags associated with im-
ages do not appear in isolation, instead often appear
correlatively and naturally interact with each other at
the semantic level. As another important prior, tag
correlation characterizes the relationships within se-
mantic level and is often the preliminary assumption
of multi-label and contextual learning algorithms [10,
11].

• Error sparsity. With the general knowledge that the
human-beings share most of the common concepts in
the semantic space, the tagging results for one image

are reasonably accurate to certain level. Moreover,
one image usually is labeled with only couple of tags.
Such observations lead to the characteristics of error
sparsity for image tag matrix.

Figure 1 shows the framework of our problem formulation
and solution. Given the user-provided image tag matrix
D, to comprehensively characterize the above four factors,
we cast the tag refinement task into a convex optimization
problem, which simultaneously minimizes the matrix rank
and priors as well as error sparsity. Concretely, the nuclear
norm, ℓ1 norm and trace operation are employed to model
the properties regarding tag low-rank, error sparsity, content
consistency and tag correlation, respectively. The results
are the low-rank matrix A which encodes the refined image
tags, and the sparse matrix E which represents the tagging
errors in user-provided tags. To obtain the results effectively,
we also propose an efficient convergence provable iterative
procedure to accomplish the optimization.

The novelties and main contributions of this paper are
summarized as follows.

• We propose a new tag refinement formulation in form
of convex optimization which comprehensively consid-
ers the tag characteristics from the points of view of
low-rank, error sparsity, content consistency and tag
correlation.

• Compared with existing works, the low-rank and er-
ror sparsity are firstly integrated into the optimization
procedure for image tag refinement. With the assis-
tance of constraints of content consistency and tag cor-
relation, the proposed approach is capable of correct-
ing imprecise tags and enriching the incomplete ones.



• The problem reduces to recover the noise-free matrix A, so each
column vector can be used to represent the corresponding images.

• Tc and Tt are regularizer based respectively on the similarity of 
images and tags.

• Complexity O(cm2n+c’n3): SVD computation
• Memory O(cn · m + c’ · (n2 + m2)): Full matrix D, tag and image 

similarity matrices.
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min

A,E
||A||⇤ + �1||E||1 + �2[Tc(A) + Tt(A)]

subject to D = A+ E

ROBUSTPCA
[Zhu et al. 2010] Transduction-Based Tag + Image
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• The method considers that, on top of visual appearance, images tagged by 
similar users can capture more semantic correlations

• Jointly models the ternary relations between users, tags and images
• It uses a tensor-based representation and Tucker decomposition to 

inference latent subspaces for the latent factors

tag(u, i, t) ✓ U ⇥ I ⇥ VT
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User-Aware Image Tag Refinement
via Ternary Semantic Analysis

Jitao Sang, Changsheng Xu, Senior Member, IEEE, and Jing Liu, Member, IEEE

Abstract—Large-scale user contributed images with tags are
easily available on photo sharing websites. However, the noisy
or incomplete correspondence between the images and tags pro-
hibits them from being leveraged for precise image retrieval and
effective management. To tackle the problem of tag refinement,
we propose a method of Ranking based Multi-correlation Tensor
Factorization (RMTF), to jointly model the ternary relations
among user, image, and tag, and further to precisely reconstruct
the user-aware image-tag associations as a result. Since the user
interest or background can be explored to eliminate the ambiguity
of image tags, the proposed RMTF is believed to be superior to
the traditional solutions, which only focus on the binary image-tag
relations. During the model estimation, we employ a ranking
based optimization scheme to interpret the tagging data, in which
the pair-wise qualitative difference between positive and nega-
tive examples is used, instead of the point-wise 0/1 confidence.
Specifically, the positive examples are directly decided by the ob-
served user-image-tag interrelations, while the negative ones are
collected with respect to the most semantically and contextually
irrelevant tags. Extensive experiments on a benchmark Flickr
dataset demonstrate the effectiveness of the proposed solution
for tag refinement. We also show attractive performances on two
potential applications as the by-products of the ternary relation
analysis.

Index Terms—Factor analysis, social media, tag refinement,
tensor factorization.

I. INTRODUCTION

W ITH the popularity of Web 2.0 technologies, there
are explosive photo sharing websites with large-scale

image collections available online, such as Flickr,1 Picasa,2
Zooomr,3 and Pinterest. 4 These Web 2.0 websites allow users
as owners, taggers, or commenters for their contributed images
to interact and collaborate with each other in a social media
dialogue. Its typical structure (Flickr for example) is illustrated
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1http://www.flickr.com
2http://picasa.google.com
3http://www.zooomr.com
4http://pinterest.com

Fig. 1. Integrated structure of social tagging in Flickr.

in Fig. 1, in which three types of interrelated entities are in-
volved, i.e., image, tag, and user. From this view, we can deem
the user contributed tagging data as the products of the ternary
interactions among images, tags, and users.
Obviously, given such a large-scale web dataset, noisy and

missing tags are inevitable, which limits the performance of so-
cial tag-based retrieval system [1], [2]. Therefore, the tag re-
finement to denoise and enrich tags for images is desired to
tackle this problem. Existing efforts on tag refinement [3]–[10]
exploited the semantic correlation between tags and visual sim-
ilarity of images to address the noisy and missing issues, while
the user interaction as one of important entities in the social tag-
ging data is neglected.
As above mentioned, users are the originator of the tagging

activity and they are involved with images and tags in many as-
pects.We believe that the incorporation of user information con-
tributes to a better understanding and description of the tagging
data. We take two simple examples to explain this observation.
As shown in Fig. 2(a), both images are tagged with “jaguar” by
the two users (indicated by user ID,5) but they have different vi-
sual content, i.e., a luxury car and an animal, respectively. Due
to the well-known “semantic gap”, traditional work on image
content understanding cannot solve the problem well. In this
case, users’ interest and background information can be lever-
aged to specify the image semantics. That is, a car fan will pos-
sibly use “jaguar” to tag a “car” image, while an animal spe-
cialist will use “jaguar” to tag a “wild cat”. Fig. 2(b) shows
three images from the FIFA 2010 final. We can see that dif-
ferent tags of “football” and “soccer” are annotated to the vi-
sually similar images. Considering the tagger information, we
can easily understand this phenomenon: users have different
5The user ID of the taggers can be acquired from the Flickr API: http://www.

flickr.com/services/api

1520-9210/$31.00 © 2012 IEEE
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• Only qualitative differences are important. The task is cast into a ranking 
problem to determine which tag is more relevant for a user to describe an 
image. 

• Thus the method adopt a three state logic:
- positive tags: tags assigned by the users, 
- negative tags: dissimilar tags that do not occur together with positive tags. 
- neutral tags: the other tags, removed from the learning process

Binary vs 
ternary logic
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• H is the heaviside function, T{U,I,T} are laplacian graph-based regularizers.

• Optimization is performed iteratively using stochastic gradient descent, one
latent matrix at a time.

• Complexity O(|P1| · (rT · m2 + rU ·rI ·rT)) – P1 is the ones in D, r{U,I,T} are latent
matrices dimensionalities.

• Memory O(n2 + m2 + u2) – the three regularizers matrices.

argmin
✓

X

t+2T+

X

t�2T�

H(ŷt� � ŷt+) + �1(||✓||2) + �2(TU (✓) + TI(✓) + TT (✓))

✓ = {U, I, T}



EVALUATION: EXPERIMENTAL RESULTS

• Q: We evaluate the eleven methods for different tasks and scenarios. 
What are their performances?

• Q: What is the computational cost of each of them?
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• SemanticField and TagCooccur have the best scalability
• The model-based methods require less memory and run faster in the test 

stage, but at the expense of SVM model learning in the training stage
• The two transduction-based methods have limited scalability, and can 

operate only on small sized S

Computational Complexity

M
em

ory Footprint

TagFeature
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TensorAnalysis
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RelExample

TagCooccur
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TagProp

KNN

TagRanking
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• We report a thorough evaluation of the methods on the proposed testbed

• Here we discuss only few main results. Please refer to our survey paper for 
the full picture.

Assignment Refinement Retrieval

KNN X X

TagVote X X

TagProp X X

TagFeature X X

RelExample X X

TagCooccur X X

TagCooccur+ X X

RobustPCA X X

TensorAnalysis X X

SemanticField X

TagFeature X
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Fig. 2. Per-tag comparison of methods for tag assignment on MIRFlickr, trained on Train1m. The
colors identify the features used: blue for BovW, red for CNN. The test tags have been sorted in descending
order by the performance of CNN + TagProp.

We observe that RelExample has a better MAP than TagFeature in every case. The
absence of a filtering component makes TagFeature more likely to overfit to train-
ing examples irrelevant to the test tags. For the other two model-based methods, the
overfit issue is alleviated by different strategies: RelExample employs a filtering com-
ponent to select more relevant training examples, while TagProp has less parameters
to tune.

A per-image comparison on NUS-WIDE is given in Fig. 3. The test images are put
into disjoint groups so that images within the same group have the same number of
ground truth tags. For each group, the area of the colored bars is proportional to the
number of images on which the corresponding methods score best. The first group, i.e.,
images containing only one ground-truth tag, has the most noticeable change as the
training set grows. There are 75,378 images in this group, and for 39% of the images,
their single label is ‘person’. When Train1m is used, RelExample beats KNN, TagVote,
and TagProp for this frequent label. This explains the leading position of RelExample
in the first group. The result also confirms our earlier discussion in Section 3.3 that
MiAP is likely to be biased by frequent tags.
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Fig. 3. Per-image comparison of methods for tag assignment on NUS-WIDE. Test images are
grouped in terms of their number of ground truth tags. The area of a colored bar is proportional to the
number of images that the corresponding method scores best.

ACM XXX, Vol. X, No. X, Article X, Publication date: October 2015.

• All methods benefit from using CNN Features

• RelExample has better performance than TagFeature due to its filtering
component

• TagProp has the best MAP. Its performance is similar to KNN, TagVote since
they all use the same basic nearest-neighbor label propagation

MIRFlickr test set, 
trained on Train1m.

CNN Features
BovW Features
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Fig. 2. Per-tag comparison of methods for tag assignment on MIRFlickr, trained on Train1m. The
colors identify the features used: blue for BovW, red for CNN. The test tags have been sorted in descending
order by the performance of CNN + TagProp.

We observe that RelExample has a better MAP than TagFeature in every case. The
absence of a filtering component makes TagFeature more likely to overfit to train-
ing examples irrelevant to the test tags. For the other two model-based methods, the
overfit issue is alleviated by different strategies: RelExample employs a filtering com-
ponent to select more relevant training examples, while TagProp has less parameters
to tune.

A per-image comparison on NUS-WIDE is given in Fig. 3. The test images are put
into disjoint groups so that images within the same group have the same number of
ground truth tags. For each group, the area of the colored bars is proportional to the
number of images on which the corresponding methods score best. The first group, i.e.,
images containing only one ground-truth tag, has the most noticeable change as the
training set grows. There are 75,378 images in this group, and for 39% of the images,
their single label is ‘person’. When Train1m is used, RelExample beats KNN, TagVote,
and TagProp for this frequent label. This explains the leading position of RelExample
in the first group. The result also confirms our earlier discussion in Section 3.3 that
MiAP is likely to be biased by frequent tags.
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Fig. 3. Per-image comparison of methods for tag assignment on NUS-WIDE. Test images are
grouped in terms of their number of ground truth tags. The area of a colored bar is proportional to the
number of images that the corresponding method scores best.
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• Test images are grouped in terms of their number of ground truth tags. The 
area of a colored bar is proportional to the number of images that the 
corresponding method scores best.

• When increasing the training set size, the most visible change is that of 
TagFeature and RelExample on images with one ground truth tag.
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Fig. 4. Per-tag comparison of methods for tag refinement on MIRFlickr, trained on Train100k. The
colors identify the features used: blue for BovW, red for CNN. The test tags have been sorted in descending
order by the performance of CNN + RobustPCA.

Train10k, TensorAnalysis yielded higher MiAP than RobustPCA, probably thanks to
its capability of modeling user correlations. It is outperformed by RobustPCA when
more training data is used.

As more training data is used, the performance of TagCooccur, TagCooccur+, and
RobustPCA on MIRFlickr consistently improves. Since these three methods rely on
data-driven tag affinity, image affinity, or tag and image affinity, a small set of 10k
images is generally inadequate to compute these affinities. The effect of increasing
the training set size is clearly visible if we compare scores corresponding to Train10k
and Train100k. The results on NUS-WIDE show some inconsistency. For TagCooccur,
MiAP improves from Train100k to Train1m, while MAP drops. This is presumably
due to the fact that in the experiments we used the parameters recommended in the
original paper, appropriately selected to optimize tag ranking. Hence, they might be
suboptimal for image ranking. BovW + RobustPCA scores a lower MAP than BovW
+ TagCooccur+. This is probably due to the fact that the low-rank matrix factoriza-
tion technique, while being able to jointly exploit tag and image information, is more
sensitive to the content-based representation.

A per-image comparison is given in Fig. 5. As for tag assignment, the test images
have been grouped according to the number of ground truth tags associated. The size
of the colored areas is proportional to the number of images where the corresponding
method scores best. For the majority of test image, the three tag refinement meth-
ods have higher average precision than UserTags. This means more relevant tags are
added, so the tags are refined. It should be noted that the success of tag refinement
depends much on the quality of the original tags assigned to the test images. Exam-
ples are shown in Table VII: in row 6, although the tag ‘earthquake’ is irrelevant to the
image content, it is ranked at the top by RobustPCA. To what extent a tag refinement
method shall count on the existing tags is tricky.

To summarize, the tag + image based methods outperform the tag based method
for tag refinement. RobustPCA is the best, and improves as more training data is
employed. Nonetheless, implementing RobustPCA is challenging for both computation
and memory footprint. In contrast, TagCooccur+ is more scalable and it can learn from
large-scale data.

ACM XXX, Vol. X, No. X, Article X, Publication date: October 2015.

MIRFlickr test set, 
trained on Train100k.

CNN Features
BovW Features

• All methods have performance superior to user tagging

• The tag + image based methods outperform the tag based TagCooccur

• RobustPCA provides the best performance
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Fig. 5. Per-image comparison of methods for tag refinement on NUS-WIDE. Test images are
grouped in terms of their number of ground truth tags. The area of a colored bar is proportional to the
number of images that the corresponding method scores best.

5.3. Tag retrieval
Table VIII shows the performance of different methods for tag retrieval. Recall that
when retrieving images for a specific test tag, we consider only images that are labeled
with this tag. Hence, MAP scores here are higher than their counterpart in Table VI.

We start our analysis by comparing the three baselines, namely UserTags, TagNum,
and TagPosition, which retrieve images simply by the original tags. As it can be no-
ticed, TagNum and TagPosition are more effective than UserTags, TagNum outper-
forms TagPosition on Flickr51, and the latter has better scores on NUS-WIDE. The
effectiveness of such metadata based features depend much on datasets, and are un-
reliable for tag retrieval.

All the methods considered have higher MAP than the three baselines. All the meth-
ods have better performance than the baselines on Flickr51 and performance increases
with the size of the training set. On NUS-WIDE, SemanticField, TagCooccur, and
TagRanking, are less effective than TagPosition. We attribute this result to the fact
that, for these methods, the tag relevance functions favor images with fewer tags. So
they closely follow similar performance and dataset dependency.

Concerning the influence of the media dimension, the tag + image based methods
(KNN, TagVote, TagProp, TagCooccur+, TagFeature, RobustPCA, RelExample) are in
general better than the tag based method (SemanticField and TagCooccur). Fig. 6
shows the per-tag retrieval performance on Flickr51. For 33 out of the 51 test tags,
RelExample exhibits average precision higher than 0.9. By examining the top retrieved
images, we observe that the results produced by tag + image based methods and tag
based methods are complementary to some extent. For example, consider ‘military’,
one of the test tags of NUS-WIDE. RelExample retrieves images with strong visual
patterns such as military vehicles, while SemanticField returns images of military
personnel. Since the visual content is ignored, the results of SemanticField tend to be
visually different, so making it possible to handle tags with visual ambiguity. This fact
can be observed in Fig. 7, which shows the top 10 ranked images of ‘jaguar’ by TagPo-
sition, SemanticField, BovW + RelExample, and CNN + RelExample. Although their
results are all correct, RelExample finds jaguar-brand cars only, while SemanticField
covers both cars and animals. However, for a complete evaluation of the capability of
managing ambiguous tags, fine-grained ground truth beyond what we currently have
is required.

ACM XXX, Vol. X, No. X, Article X, Publication date: October 2015.

• CNN+RobustPCA has the best performance in every group of images

• Almost the totality of images with more than 4 ground truth tags are better
refined by RobustPCA than the other methods

• TagCooccur+ refines tags better than TagCoccur
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Fig. 6. Per-tag comparison between TagPosition, SemanticField, TagVote, TagProp, and RelEx-
ample on Flickr51, with Train1m as the training set. The 51 test tags have been sorted in descending
order by the performance of RelExample.

Concerning the learning methods, TagVote consistently performs well as in the tag
assignment experiment. KNN is comparable to TagVote, due to the reason we have dis-
cussed in Section 5.1. Given the CNN feature, the two methods even outperform their
model-based variant TagProp. Similar to the tag refinement experiment, the effective-
ness of RobustPCA for tag retrieval is sensitive to the choice of visual features. While
BovW + RobustPCA is worse than the majority on Flickrt51, the performance of CNN
+ RobustPCA is more stable, and performs well. For TagFeature, its gain from using
larger training data is relatively limited due to the absence of denoising. In contrast,
RelExample, by jointly using SemanticField and TagVote in its denoising component,
is consistently better than TagFeature.

The performance of individual methods consistently improves as more training data
is used. As the size of the training set increases, the performance gap between the best
model-based method (RelExample) and the best instance-based method (TagVote) re-
duces. This suggests that large-scale training data diminishes the advantage of model-
based methods against the relatively simple instance-based methods.

In summary, even though the performance of the methods evaluated varies over
datasets, common patterns have been observed. First, the more social data for train-
ing are used the better performance is obtained. Since the tag relevance functions are

ACM XXX, Vol. X, No. X, Article X, Publication date: October 2015.

• As for Tag Assignment, 
TagVote and TagProp
provide the best 
performance

• For 33 out of 51 test 
tags, RelExample gives
average precision higher
than 0.9
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(a) TagPosition (b) SemanticField (c) BovW + RelExample (d) CNN + RelExample

Fig. 7. Top 10 ranked images of ‘jaguar’, by (a) TagPosition, (b) SemanticField, (c) BovW + RelEx-
ample, and (d) CNN + RelExample. Checkmarks (�) indicate relevant results. While both RelExample
and SemanticField outperform the TagPosition baseline, the results of SemanticField show more diversity
for this ambiguous tag. The difference between (c) and (d) suggests that the results of RelExample can be
diversified by varying the visual feature in use.

learned purely from social data without any extra manual labeling, and social data are
increasingly growing, this result promises that better tag relevance functions can be
learned. Second, given small-scale training data, tag + image based methods that con-
ducts model-based learning with denoised training examples turn out to be the most
effective solution, This however comes with a price of reducing the visual diversity
in the retrieval results. Moreover, the advantage of model-based learning vanishes as
more training data and the CNN feature are used, and TagVote performs the best.

5.4. Flickr versus ImageNet
To address the question of whether one shall resort to an existing resource such as
ImageNet for tag relevance learning, this section presents an empirical comparison
between our Flickr based training data and ImageNet. A number of methods do not
work with ImageNet or require modifications. For instance, tag + image + user infor-
mation based methods must be able to remove their dependency on user information,
as such information is unavailable in ImageNet. Tag co-occurrences are also strongly
limited, because an ImageNet example is annotated with a single label. Because of
these limitations, we evaluate only the two best performing methods, TagVote and
TagProp. TagProp can be directly used since it comes from classic image annotation,
while TagVote is slightly modified by removing the unique user constraint. The CNN
feature is used for its superior performance against the BovW feature.

To construct a customized subset of ImageNet that fits the three test sets, we take
ImageNet examples whose labels precisely match with the test tags. Notice that some
test tags, e.g., ‘portrait’ and ‘night’, have no match, while some other tags, e.g, ‘car’ and
‘dog’, have more than one matches. In particular, MIRFlickr has 2 missing tags, while

ACM XXX, Vol. X, No. X, Article X, Publication date: October 2015.

The top 10 ranked images for ‘jaguar’ 

TagPosition SemanticField BovW + 
RelExample

CNN + 
RelExample

Lower diversity



COMMON PATTERNS

134

• Some common patterns have emerged, indipendently from the task:

- All methods benefit from using CNN Features

- The more social data for training, the better performance is obtained

- With small-scale training sets, tag + image based methods that
conducts model-based learning with denoised training examples turn 
out to be the most effective solution
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• Some methods can’t be run or require modifications:
- No user information in ImageNet; Tag+Image+User must be able to 

remove their dependency on user
- Tag co-occurrences are limited in ImageNet because images are 

labelled with a single WordNet synset

• We ran an empirical evaluation between Train100k, Train1m and ImageNet

• We tested TagVote (without unique-user constraint) and TagProp

ImageNet already provides labeled examples for over 20k
categories. Is it necessary to learn from socially tagged data?
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Table IX. Flickr versus ImageNet. Notice that the numbers on Train100k and Train1M are different from Tables V and VIII
due to the use of a reduced set of test tags. Bold values indicate top performers on a specific test set per performance
metric.

Tag Assignment

MIRFlickr NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MiAP scores:

Train100k 0.377 0.383 0.392 0.389
Train1M 0.389 0.392 0.414 0.393

ImageNet200k 0.345 0.304 0.325 0.368

MAP scores:

Train100k 0.641 0.647 0.386 0.405
Train1M 0.664 0.668 0.429 0.420

ImageNet200k 0.532 0.532 0.363 0.362

Tag Retrieval

Flickr51 NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MAP scores:

Train100k 0.854 0.860 0.742 0.745
Train1M 0.874 0.871 0.753 0.745

ImageNet200k 0.873 0.873 0.762 0.762

NDCG20 scores:

Train100k 0.838 0.863 0.849 0.856
Train1M 0.894 0.851 0.891 0.853

ImageNet200k 0.920 0.898 0.843 0.847
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Fig. 8. Per-image comparison of TagVote/TagProp learned from different training datasets,
tested on NUS-WIDE. Test images are grouped in terms of the number of ground truth tags. Within each
group, the area of a colored bar is proportional to the number of images that (the method derived from) the
corresponding training dataset scores the best. ImageNet200k is less effective for assigning multiple labels
to an image.

the number of missing tags on Flickr51 and NUS-WIDE is 9 and 15. For a fair compar-
ison these missing tags are excluded from the evaluation. Putting the remaining test
tags together, we obtain a subset of ImageNet, containing 166 labels and over 200k
images, termed ImageNet200k. For a fair comparison, we considered only Train100k
and Train1m training sets of socially tagged images.

The left half of Table IX shows the performance of tag assignment. TagVote/TagProp
trained on the ImageNet data are less effective than their counterparts trained on the
Flickr data. For a better understanding of the result, we employ the same visualization
technique as used in Section 5.1, i.e., grouping the test images in terms of the number
of their ground truth tags, and subsequently checking the performance per group. As
shown in Fig. 8, while ImageNet200k performs better on the first group, i.e., images
with a single relevant tag, it is outperformed by Train100k and Train1M on the other
groups. For its single-label nature, ImageNet is less effective for assigning multiple
labels to an image.

For tag retrieval, as shown in the right half of Table IX, TagVote/TagProp learned
from ImageNet200k in general have higher MAP and NDCG scores than their coun-
terparts learned from the Flickr data. By comparing the performance difference per
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• Methods trained on socially tagged datasets show better performance for 
tag assignment.
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• TagVote and TagProp trained on ImageNet200k have better performance 
on images with a single relevant tag.

• On the other groups, Train100k and Train1M are a better choice.

• For its single-label nature, ImageNet is less effective for assigning
multiple labels to an image.

Socializing the Semantic Gap X:31

Table IX. Flickr versus ImageNet. Notice that the numbers on Train100k and Train1M are different from Tables V and VIII
due to the use of a reduced set of test tags. Bold values indicate top performers on a specific test set per performance
metric.

Tag Assignment

MIRFlickr NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MiAP scores:

Train100k 0.377 0.383 0.392 0.389
Train1M 0.389 0.392 0.414 0.393

ImageNet200k 0.345 0.304 0.325 0.368

MAP scores:

Train100k 0.641 0.647 0.386 0.405
Train1M 0.664 0.668 0.429 0.420

ImageNet200k 0.532 0.532 0.363 0.362

Tag Retrieval

Flickr51 NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MAP scores:

Train100k 0.854 0.860 0.742 0.745
Train1M 0.874 0.871 0.753 0.745

ImageNet200k 0.873 0.873 0.762 0.762

NDCG20 scores:

Train100k 0.838 0.863 0.849 0.856
Train1M 0.894 0.851 0.891 0.853

ImageNet200k 0.920 0.898 0.843 0.847
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Fig. 8. Per-image comparison of TagVote/TagProp learned from different training datasets,
tested on NUS-WIDE. Test images are grouped in terms of the number of ground truth tags. Within each
group, the area of a colored bar is proportional to the number of images that (the method derived from) the
corresponding training dataset scores the best. ImageNet200k is less effective for assigning multiple labels
to an image.

the number of missing tags on Flickr51 and NUS-WIDE is 9 and 15. For a fair compar-
ison these missing tags are excluded from the evaluation. Putting the remaining test
tags together, we obtain a subset of ImageNet, containing 166 labels and over 200k
images, termed ImageNet200k. For a fair comparison, we considered only Train100k
and Train1m training sets of socially tagged images.

The left half of Table IX shows the performance of tag assignment. TagVote/TagProp
trained on the ImageNet data are less effective than their counterparts trained on the
Flickr data. For a better understanding of the result, we employ the same visualization
technique as used in Section 5.1, i.e., grouping the test images in terms of the number
of their ground truth tags, and subsequently checking the performance per group. As
shown in Fig. 8, while ImageNet200k performs better on the first group, i.e., images
with a single relevant tag, it is outperformed by Train100k and Train1M on the other
groups. For its single-label nature, ImageNet is less effective for assigning multiple
labels to an image.

For tag retrieval, as shown in the right half of Table IX, TagVote/TagProp learned
from ImageNet200k in general have higher MAP and NDCG scores than their coun-
terparts learned from the Flickr data. By comparing the performance difference per

ACM XXX, Vol. X, No. X, Article X, Publication date: October 2015.



IMAGENET RESULTS

138

Socializing the Semantic Gap X:31

Table IX. Flickr versus ImageNet. Notice that the numbers on Train100k and Train1M are different from Tables V and VIII
due to the use of a reduced set of test tags. Bold values indicate top performers on a specific test set per performance
metric.

Tag Assignment

MIRFlickr NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MiAP scores:

Train100k 0.377 0.383 0.392 0.389
Train1M 0.389 0.392 0.414 0.393

ImageNet200k 0.345 0.304 0.325 0.368

MAP scores:

Train100k 0.641 0.647 0.386 0.405
Train1M 0.664 0.668 0.429 0.420

ImageNet200k 0.532 0.532 0.363 0.362

Tag Retrieval

Flickr51 NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MAP scores:

Train100k 0.854 0.860 0.742 0.745
Train1M 0.874 0.871 0.753 0.745

ImageNet200k 0.873 0.873 0.762 0.762

NDCG20 scores:

Train100k 0.838 0.863 0.849 0.856
Train1M 0.894 0.851 0.891 0.853

ImageNet200k 0.920 0.898 0.843 0.847
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Fig. 8. Per-image comparison of TagVote/TagProp learned from different training datasets,
tested on NUS-WIDE. Test images are grouped in terms of the number of ground truth tags. Within each
group, the area of a colored bar is proportional to the number of images that (the method derived from) the
corresponding training dataset scores the best. ImageNet200k is less effective for assigning multiple labels
to an image.

the number of missing tags on Flickr51 and NUS-WIDE is 9 and 15. For a fair compar-
ison these missing tags are excluded from the evaluation. Putting the remaining test
tags together, we obtain a subset of ImageNet, containing 166 labels and over 200k
images, termed ImageNet200k. For a fair comparison, we considered only Train100k
and Train1m training sets of socially tagged images.

The left half of Table IX shows the performance of tag assignment. TagVote/TagProp
trained on the ImageNet data are less effective than their counterparts trained on the
Flickr data. For a better understanding of the result, we employ the same visualization
technique as used in Section 5.1, i.e., grouping the test images in terms of the number
of their ground truth tags, and subsequently checking the performance per group. As
shown in Fig. 8, while ImageNet200k performs better on the first group, i.e., images
with a single relevant tag, it is outperformed by Train100k and Train1M on the other
groups. For its single-label nature, ImageNet is less effective for assigning multiple
labels to an image.

For tag retrieval, as shown in the right half of Table IX, TagVote/TagProp learned
from ImageNet200k in general have higher MAP and NDCG scores than their coun-
terparts learned from the Flickr data. By comparing the performance difference per

ACM XXX, Vol. X, No. X, Article X, Publication date: October 2015.

• For retrieval, in general the two socially tagged yield better performance 
than ImageNet200k. However, in some cases is not!

• Train100k and Train1m yields better performance on tags where ImageNet 
examples lack diversity (for instance ‘running’).

• ImageNet200k performance gain is largely due to a few tags where social 
tagging is very noisy.
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ImageNet already provides labeled examples for over 20k
categories. Is it necessary to learn from socially tagged data?

• Yes!

• For tag assignment social media examples are a preferred resource
of training data.

• For tag retrieval ImageNet may provide better performance, yet the 
performance gain is largely due to a few tags where social tagging
is very noisy.



CONCLUSIONS
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• We went through eleven key methods of various media and learning.

• Take home messages:

- The more social data for training, the better performance is obtained

- Substituting BovW for CNN features boosts all methods performance.

- TagVote and TagProp provide the best overall performance for 
Assignment and Retrieval.

- RobustPCA is the choice for Refinement.

- Given a small sized training set, the model-based RelExample may be 
a better performance.



SOFTWARE

• Jingwei, a framework for evaluating image tag assignment, tag
refinement and tag-based image retrieval:
• https://github.com/li-xirong/jingwei

• Hands on:
• Run TagVote on Train10k + MIRFlickr
• Learning new tag models on the fly

141



PRINCIPLES OF DESIGN
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• Usability	
• Python	APIs
• cross-platform:	linux,	window,	mac

• Readability
• Majority	of	the	code	is	written	in	Python

• Flexibility
• Extend	easily	to	new	datasets	and	new	visual	features



CODE ARCHITECTURE OF JINGWEI
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pickled
result
matrix

test tags

test images
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ORGANIZATION OF THE TUTORIAL

9:00 – 10:00 Part 1: Introduction 
Part 2: Taxonomy

10:00 – 10:30 Part 3: Experimental protocol
Part 4: Evaluation

10:30 – 11:00 Coffee break

11:00 – 12:30 Part 4: Evaluation cont’d

12:30 – 13:00 Part 5: Conclusion and future directions
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• Summary
• Future directions
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PART 5
CONCLUSION AND FUTURE DIRECTIONS



READING MATERIAL

Socializing the Semantic Gap: A Comparative Survey on Image 
Tag Assignment, Refinement and Retrieval, 
ACM Computing Surveys, 49(1):14, June 2016.
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SUMMARY: TAXONOMY
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Media	
Learning

Instance Model Transductive

Tag 2 1 -

Tag	+	Image 13 15 12

Tag	+	Image	+	User
5 7 3

Taxonomy structures 60 papers along Media and Learning dimensions



SUMMARY: KEY METHODS
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Media	\ Learning Instance Based Model Based Transductive Based

Tag SemanticField
[Zhu	et	al.	2012]	

TagCooccur
[Sigurbjörnsson and	van	Zwol 2008]	

Tag	+	Image TagRanking
[Liu	et	al.	2009]	

KNN	
[Makadia et	al.	2010]	

TagProp
[Guillaumin et	al.	2009]	

TagFeature
[Chen	et	al.	2012]	

RelExample
[Li	and Snoek	2013]	

RobustPCA
[Zhu	et	al.	2010]	

Tag	+	Image	+	User TagVote
TagCooccur+	
[Li	et	al.	2009b]	

TensorAnalysis
[Sang	et	al.	2012a]	



SUMMARY: OPEN-SOURCE TESTBED

152

Data servers
[1] http://www.micc.unifi.it/tagsurvey
[2] http://www.mmc.ruc.edu.cn/research/tagsurvey/data.html

Jingwei, a framework for evaluating image tag assignment, tag
refinement and tag-based image retrieval:
[3] https://github.com/li-xirong/jingwei



SUMMARY: TAKE HOME MESSAGES
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- The more social data for training, the better performance is
obtained

- Substituting BovW for CNN features boosts all methods
performance.

- TagVote and TagProp provide the best overall performance for 
Assignment and Retrieval.

- RobustPCA is the choice for Refinement.

- Given a small sized training set, the model-based RelExample may
be a better performance.



FUTURE: MUCH REMAINS TO BE DONE
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- Novel deep-learning features likely to boost the performance of the 
tag + image methods further

- Learning strategy capable of jointly exploiting tag, image, and user 
information in a much more scalable manner than currently feasible.

- The importance of the filter component, which refines socially 
tagged training examples in advance to learning, is underestimated. 

- Image retrieval by multi-tag query is another important yet largely 
unexplored problem.



CNN THAT BLENDS VISUAL INFORMAITON
FROM THE IMAGE AND ITS NEIGHBORS
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QUALITATIVE RESULTS
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POPULAR AND UNPOPULAR LATENT SENSES

- Introduce latent senses to capture nuances in popularity
- What makes an image unpopular is also informative

- Popularity and unpopularity learned independently at train time
- Single popularity score calculated at test time

157

Cappallo et al. ICMR 2015

Popular	latent	senses Unpopular	latent	senses



1M MICRO-BLOG IMAGES

- New, challenging dataset of 1 million images from social media
- Twitter posts containing images from TREC 2013 Microblog track
- Retweet and Favorite counts for popularity prediction research
- Many graphical, non-photographic images

158
http://staff.fnwi.uva.nl/s.h.cappallo/data.html



PROBLEM: EVENT DETECTION IN VIDEO

Mazloom et al. TMM 2016
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TagBook		=	{woman,	outdoor,	metal-crafts-project,	welding	machine,	man,	kitchen,…,	wall,	gym,	rock-climbing}

.	.	.

.	.	.

.	.	.

woman,	outdoor,	metal-crafts-project,	welding	machine

man,	kitchen,	metallic,	cleaning,	oven,	spray,	glasses,	

man,	snowboard,	snow,	board-trick,	

man,	climb-on,	wall,	gym,	rock-climbing	

Video	data Tags

Source	set:	Social-tagged	web	videos

TAGBOOK: DERIVED FROM SOCIAL-TAGGED VIDEO

Mazloom et al. TMM 2016



TAGBOOK: NEW VIDEO REPRESENTATION

Mazloom et al. TMM 2016



BEYOND TAGS: EMOJI

- Visual grammar of interaction

- Language independent

- Age accessible

- Widely supported

- Semantically diverse

- Easy form factor for smart phones and watches

162

Cappallo et al. MM 2015



IMAGE2EMOJI
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Cappallo et al. MM 2015



Fast	Zero-Shot	Image	Tagging
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Zhang et al. CVPR 2016



Automatic Image	Annotation via	Label	Transfer	
in	the	Semantic Space	
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Expert labels
or

User tags

KT

KV

(KV A)R

KCCA NN

Figure 2: Overview of our approach. Image and textual features are projected onto a common semantic space in which nearest-neighbor voting is used to perform
label transfer.

Throughout the paper, we use the term labels when we refer
to generic textual information. We explicitly use the terminol-
ogy expert labels and user tags when we refer only to the expert
provided labels or the tags provided by users in social network,
respectively. We now proceed in detailing the visual and textual
representation, how KCCA is used to build the semantic space,
and finally we describe our label transfer procedures.

3.1. Visual Features
We use a deep convolutional neural network pre-trained on

ImageNet [47] with the VGG-Net architecture presented in [27]
(using 16 layers)1. We use the activations of the last fully con-
nected layer as image features. Such representation proved to
be good for several visual recognition and classification tasks
[49, 48].

Given an image Ii, we first warp it to 224⇥224 in order to fit
the network architecture and subtract the training images mean.
We use this normalized image to extract the activations of the
first fully connected layer. Let �V (Ii) be the extracted feature of
Ii. We use the ArcCosine kernel:

KV
n (�V (Ii), �V (I j)) =

1
⇡
||�V (Ii)||n||�V (I j)||nJn(✓) (1)

where Jn is defined according to the selected order of the kernel.
Following [61], we set n = 2 which gives us:

J2(✓) = 3 sin ✓ cos ✓ + (⇡ � ✓)(1 + 2 cos2 ✓) (2)

where ✓ is the angle between the inputs �V (Ii), �V (I j). This
kernel provides a representation that is better suited to neu-
ral networks activations and gives better results. We also tried
other kernels such as linear and radial basis function, obtaining
a slightly inferior performance (⇠1%).

3.2. Textual Features
Depending on how labels are generated, i.e. expert labels or

user-generated tags, we should use di↵erent approaches. While
expert labels can be trusted, user-generated tags are noisy and
require a more robust representation.

1In our preliminary experiments we found that this configuration gives the
best results on all our datasets, although other networks gave similar results.

3.2.1. Expert Labels
For expert labels, we use simple binary indicator vectors as

textual features. Let D be the vocabulary size, i.e. the num-
ber of labels used for annotation. We map each label set of a
particular image Ii to a D-dimensional feature vector �T (Ii) =
[wi

1, · · · ,wi
D], where wk is 0 or 1 if that image has been an-

notated with the corresponding k-th label lk. This results in a
highly sparse representation. Then we use a linear kernel which
corresponds to counting the number of labels in common be-
tween two images:

KT (�T (Ii), �T (I j)) =
DX

k=1

wi
kwj

k. (3)

The basic idea is that we are considering the co-occurrences
of labels in order to measure the similarity between two im-
ages. Nonetheless, this representation models each label in-
dependently from the others. It has been shown in previous
works that exploiting semantic relations by weighting each la-
bel di↵erently can improve performance [13, 62]. Therefore,
we explore two textual kernels that consider semantic relations
between labels: an ontology-based textual kernel with bag-of-
words [63] and one that exploits the more recent continuous
word vector representation [64]. For the bag-of-words seman-
tic kernel, the idea is to weight each label in a linear kernel by
using a similarity matrix S 2 RD⇥D as:

KT (�T (Ii), �T (I j)) = �T (Ii)S�T (I j)|. (4)

We set the elements of S as the Lin similarity [65] between each
label, using WordNet. This measure has been used successfully
in several works to suggest similar labels (see [14]). Regarding
the continuous word vector kernel, Mikolov et al. [64] recently
showed that it is possible to learn a word representation from a
large scale corpus in an unsupervised way. The learned word
vector features were proved to model semantics in form of reg-
ularities in several applications [53, 59]. Given the learned rep-
resentation of a label wk as ⇣(wk) 2 RP, we represent the set of
labels of an image Ii using average pooling

�T (Ii) =
1
N

DX

k

wi
k · ⇣(lik). (5)

4
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Dataset Model mAP

AlexNet 75.7 61.9 66.9 66.5 29.3 56.1 73.5 68.0 47.1 40.9 57.4 60.0 74.0 63.2 86.2 38.8 57.9 45.5 75.7 51.1 59.8Imagenet GoogLeNet 91.3 84.0 88.4 87.2 42.4 79.6 87.3 85.0 59.1 66.5 69.5 83.3 86.6 82.9 88.4 57.5 75.8 64.6 89.5 73.8 77.1
AlexNet 84.0 72.2 70.2 77.0 29.5 60.8 79.3 69.5 49.2 40.5 54.0 57.1 79.2 64.6 90.2 43.0 47.5 44.1 85.0 50.7 62.4Flickr GoogLeNet 91.5 83.7 84.1 88.5 41.7 78.0 86.8 84.0 54.7 55.5 63.3 78.5. 86.0 77.4 91.1 51.3 60.8 52.7 91.9 60.9 73.2
AlexNet 82.96 70.32 73.28 76.29 32.21 61.84 79.81 72.91 51.56 43.82 60.77 63.32 78.63 67.72 90.26 45.45 53.15 49.14 84.8 55.8 64.7Combined GoogLeNet 94.09 85.03 89.71 88.47 49.35 81.47 88.1 85.2 60.51 68.37 71.65 85.81 88.87 85.22 88.69 60.45 77.26 66.61 90.71 74.49 79.0

Table 2. Pascal VOC 2007 dataset: Average precision (AP) per class and mean average precision (mAP) of classifiers trained on features
extracted with networks trained on the Imagenet and the Flickr dataset (using K=1, 000 words). Higher values are better.

Indoor

Oxford FlowersStanford 40 Actions

MIT SUN

Imagenet (no jittering)
Imagenet (jittering)
Flickr

cl
as

sifi
ca

tio
n 

ac
cu

ra
cy

 →

size of Flickr training set (in millions) →
Figure 5. Average classification accuracy (averaged over ten runs)
of logistic regressors trained on features produced by weakly su-
pervised AlexNets trained on Flickr image-caption datasets of dif-
ferent sizes on six different datasets (in red). For reference, we also
show the classification accuracy of classifiers trained on features
from convolutional networks trained on ImageNet without jitter-
ing (in black) and with jittering (in blue). Dashed lines indicate
the standard deviation across runs. Higher values are better.

production networks, as well as for a combination of both
networks. Table 2 presents the average precision on the Pas-
cal VOC 2007 dataset. Our weakly supervised models were
trained on a dictionary of K = 1, 000 words (we obtained
similar results for models trained on 10, 000 and 100, 000

words; see the supplementary material). The results in the
tables show that using the AlexNet architecture, weakly su-
pervised networks learn visual features of similar quality as
fully supervised networks. This is quite remarkable because
the networks learned these features without any strong su-
pervision.

Admittedly, weakly supervised networks perform poorly
on the flowers dataset: Imagenet-trained networks produce
better features for that dataset, presumably, because the Im-
agenet dataset itself focuses strongly on fine-grained classi-
fication. Interestingly, fully supervised networks do learn
better features than weakly supervised networks when a

Dataset Model Indoor SUN Action Flower Sports ImNet

AlexNet 53.82 41.40 51.27 80.28 86.07 53.63Imagenet GoogLeNet 64.00 48.76 67.10 79.05 95.91 69.89
AlexNet 53.19 42.67 51.69 69.72 86.79 34.93Flickr GoogLeNet 55.56 44.43 52.84 65.80 87.40 33.62
AlexNet 58.76 47.27 56.35 83.28 87.50 –Combined GoogLeNet 67.87 55.04 69.19 83.74 95.79 –

Table 3. Classification accuracies on held-out test data of L2-
regularized logistic regressors obtained on six datasets (MIT In-
door, MIT SUN, Stanford 40 Actions, Oxford Flowers, Sports, and
ImageNet) based on feature representations obtained from convo-
lutional networks trained on the Imagenet and the Flickr dataset
(using K = 1, 000 words and a single crop). Errors are averaged
over 10 runs. Higher values are better.

GoogLeNet architecture is used: this result is in line with
the results from 4.1, which suggest that GoogLeNet has too
little capacity to learn optimal models on the Flickr data.
The substantial performance improvements we observe in
experiments in which features from both networks are com-
bined suggest that the features learned by both models com-
plement each other. We note that achieving state-of-the-art
results [5, 34, 39, 60] on these datasets requires the devel-
opment of tailored pipelines, e.g., using many image trans-
formations and model ensembles, which is out of the scope
of this paper.

We also measured the transfer-learning performance as a
function of the Flickr training set size. The results of these
experiments with the AlexNet architecture and K = 1, 000

are presented in Figure 5 for four of the datasets (Indoor,
MIT SUN, Stanford 40 Actions, and Oxford Flowers); and
in the righthand side of Figure 2 for the Pascal VOC dataset.
The results are in line with those in 4.1: they show that tens
of millions of images are required to learn good feature-
production networks on weakly supervised data.

4.3. Experiment 3: Assessing Word Embeddings

The weights in the last layer of our networks can be
viewed as an embedding of the words. This word embed-
ding is, however, different from those learned by language
models such as word2vec [31] that learn embeddings based
on word co-occurrence: it is constructed without ever ob-
serving two words co-occurring (recall that during training,
we use a single, randomly selected word as target for an im-
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cuisine, dish, produce,
coconut, food, dim sum food,

dessert, xiaolongbao

supervision
Training sample
containing image
and noisy labels

noisy label set

cleaned label set
cuisine, dish,

food, dim sum food,
xiaolongbao

CNN as
feature
extractor

label
cleaning
network

multi-label
classifier

visual
features

Figure 2. High-level overview of our approach. Noisy input la-
bels are cleaned and then used as targets for the final classifier.
The label cleaning network and the multi-label classifier are jointly
trained and share visual features from a deep convnet. The clean-
ing network is supervised by the small set of clean annotations (not
shown) while the final classifier utilizes both the clean data and the
much larger noisy data.

In this paper, we explore how to effectively and effi-
ciently leverage a small amount of clean annotations in con-
junction with large amounts of noisy annotated data, in par-
ticular to train convolutional neural networks. One common
approach is to pre-train a network with the noisy data and
then fine-tune it with the clean dataset to obtain better per-
formance. We argue that this approach does not fully lever-
age the information contained in the clean annotations. We
propose an alternative approach: instead of using the small
clean dataset to learn visual representations directly, we use
it to learn a mapping between noisy and clean annotations.
We argue that this mapping not only learns the patterns of
noise, but it also captures the structure in the label space.
The learned mapping between noisy and clean annotations
allows to clean the noisy dataset and fine-tune the network
using both the clean and the full dataset with reduced noise.
The proposed approach comprises a multi-task network that
jointly learns to clean noisy annotations and to accurately
classify images, Figure 2.

In particular, we consider an image classification prob-
lem with the goal of annotating images with all concepts
present in the image. When considering label noise, two
aspects are worth special attention. First, many multi-
label classification approaches assume that classes are in-
dependent. However, the label space is typically highly
structured as illustrated by the examples in Figure 1. We
therefore model the label-cleaning network as condition-
ally dependent on all noisy input labels. Second, many
classes can have multiple semantic modes. For example,
the class coconut may be assigned to an image containing a
drink, a fruit or even a tree. To differentiate between these
modes, the input image itself needs to be taken into account.
Our model therefore captures the dependence of annotation
noise on the input image by having the learned cleaning net-
work conditionally dependent on image features.

We evaluate the approach on the recently-released large-
scale Open Images Dataset [16]. The results demonstrate

that the proposed approach significantly improves perfor-
mance over traditional fine-tuning methods. Moreover, we
show that direct fine-tuning sometimes hurts performance
when only limited rated data is available. In contrast, our
method improves performance across the full range of label
noise levels, and is most effective for classes having 20%
to 80% false positive annotations in the training set. The
method performs well across a range of categories, show-
ing consistent improvement on classes in all eight high-level
categories of Open Images (vehicles, products, art, person,
sport, food, animal, plant).

This paper makes the following contributions. First, we
introduce a semi-supervised learning framework for multi-
label image classification that facilitates small sets of clean
annotations in conjunction with massive sets of noisy an-
notations. Second, we provide a first benchmark on the re-
cently released Open Images Dataset. Third, we demon-
strate that the proposed learning approach is more effective
in leveraging small labeled data than traditional fine-tuning.

2. Related Work
This paper introduces an algorithm to leverage a large

corpus of noisily labeled training data in conjunction with a
small set of clean labels to train a multi-label image classifi-
cation model. Therefore, we restrict this discussion to learn-
ing from noisy annotations in image classification. For a
comprehensive overview of label noise taxonomy and noise
robust algorithms we refer to [11].

Approaches to learn from noisy labeled data can gen-
erally be categorized into two groups: Approaches in the
first group aim to directly learn from noisy labels and focus
mainly on noise-robust algorithms, e.g., [3, 15, 21], and la-
bel cleansing methods to remove or correct mislabeled data,
e.g., [4]. Frequently, these methods face the challenge of
distinguishing difficult from mislabeled training samples.
Second, semi-supervised learning (SSL) approaches tackle
these shortcomings by combining the noisy labels with a
small set of clean labels [33]. SSL approaches use la-
bel propagration such as constrained bootstrapping [7] or
graph-based approaches [10]. Our work follows the semi-
supervised paradigm, however focusing on learning a map-
ping between noisy and clean labels and then exploiting the
mapping for training deep neural networks.

Within the field of training deep neural networks there
are three streams of research related to our work. First, var-
ious methods have been proposed to explicitly model la-
bel noise with neural networks. Natarajan et al. [23] and
Sukhbaatar et al. [27] both model noise that is conditionally
independent from the input image. This assumption does
not take into account the input image and is thus not able to
distinguish effectively between different visual modes and
related noise. The closest work in this stream of research
is from Xiao et al. [32] that proposes an image-conditioned

2
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Fig. 2. The flowchart of our multi-modal multi-scale deep learning model for large-scale image annotation. In this model, four components are included:
visual feature learning, textual feature learning, multi-class classification, and label quantity prediction.

(RNN) [28]–[30] has been combined with CNN for large-scale
image annotation [24], [26], [27], where the label quantity
prediction subproblem can be implicitly solved using RNN.
Specifically, CNN encodes raw pixels of images into visual
feature, while RNN decodes the visual feature into a sequential
label prediction path for image annotation.

Inspired by the above closely related works, we propose a
multi-modal multi-scale deep learning model to address the
two main issues in large-scale image annotation, as shown in
Fig. 2. Specifically, to learn stronger features from multifar-
ious images, we combine the visual features extracted by a
multi-scale deep learning subnetwork with the textual features
extracted from social tags along with images by a simple
multi-layer perception subnetwork. In this paper, following the
ideas of [31]–[34], the multi-scale deep learning subnetwork is
defined based on ResNet-101 [5] (see Fig. 2): the multi-scale
features are first extracted from different levels of layers, and
a fusion block is further developed to combine the multi-scale
features with the original ones. In this way, the visual infor-
mation can be transferred from low-level features to high-level
features iteratively. Since we have extracted very powerful
features by multi-modal multi-scale deep learning, we simplify
the second issue and decompose large-scale image annotation
into multi-class classification and label quantity prediction.
Although the label quantity prediction subproblem can be
implicitly solved by adopting RNN for image annotation, we
choose to explicitly solve this subproblem directly using our
deep learning model (see Fig. 2). This enables us to pay
more attention to deep feature learning. In the end, the results
of multi-class classification and predicted label quantity are
combined to determine the final annotations. Note that our
model is different form the traditional top-k models [10]–[14]
that our model can automatically determine the number of
class labels for each image (see Fig. 1).

The flowchart of our multi-modal multi-scale deep learning
model is shown in Fig. 2, where four components are included:
visual feature learning, textual feature learning, multi-class

classification, and label quantity prediction. To evaluate the
performance of our model, we conduct extensive experiments
on two benchmark datasets: NUS-WIDE [35] and MSCOCO
[36]. The experimental results demonstrate the superior perfor-
mance of our model as compared to the state-of-the-art models
(including CNN-RNN [24], [26], [27]). In addition, the main
components of our model (see Fig. 2) are also shown to be
effective in large-scale image annotation.

our main contributions can be summarized as follows:
• We have proposed a multi-scale ResNet model for vi-

sual feature learning, which is shown to outperform the
original ResNet model in large-scale image annotation.

• We have effectively exploited the social tags for large-
scale image annotation by defining a simple multi-layer
perception model for textual feature learning.

• We have explicitly solved the label quantity prediction
subproblem using the features exacted by our model,
which has been rarely considered. This enables us to pay
more attention to deep feature learning.

The remainder of this paper is organized as follows. Section
II provides related works on large-scale image annotation.
Section III gives the details of the proposed model for large-
scale image annotation. Experimental results are presented in
Section IV. Finally, the conclusions are drawn in Section V.

II. RELATED WORK

A. Multi-Scale CNN Models

Feature extraction is crucial for different applications in
image content analysis. A remarkable model is expected to
encode the raw pixels of images into powerful visual features.
In the past few years, CNN models have been widely applied
to single-label image classification [5]–[9] due to their out-
standing performance. However, only the highest-level features
with global information are used for image classification,
without considering other low-level features with local infor-
mation. In other words, multi-scale features are not employed.
Recent researches begin to focus on how to make full use
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