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PART 1
INTRODUCTION

• Problem statement
• Course organization
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ABOUT THIS TUTORIAL

- This tutorial focuses on challenges and solutions for content-
based image retrieval in the context of online image sharing and 
tagging. 

- We present a unified review on three closely linked problems, i.e., 
tag assignment, tag refinement, and tag-based image retrieval. 

- We introduce a taxonomy to structure the growing literature, 
understand the ingredients of the main works, clarify their 
connections and difference, and recognize their merits and 
limitations. 

- We present an open-source testbed, with training sets of varying 
sizes and three test datasets, to evaluate methods of varied 
learning complexity. 
11 representative works have been implemented and evaluated. 

http://www.micc.unifi.it/tagsurvey/
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INTRODUCTION

- People want to share photos, and the process that goes from 
image capture to uploading to internet has become so smooth 
that even the least sophisticated user can do it.

- According to several estimations, every day hundreds of millions 
of photos are shared:
- 50 millions photos are uploaded on Flickr
- 80 millions on Instagram
- 350 millions on Facebook

- All these services allow users to tag photos. 
Tagging, commenting and rating (or liking) is now a common 
practice.
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EXAMPLES
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EXAMPLES
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EXAMPLES
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USER-GENERATED META-DATA

- The success of online social platforms and the availability of huge 
quantities of user-generated information motivates social image 
analysis, annotation and retrieval as important research topics for 
the multimedia community. 

- Multimedia content and descriptions, location and comments in 
various forms (ranking, votes, likes) and associated metadata, 
social connections … are valuable resources for improving the 
results of tasks such as semantic indexing and retrieval. 
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TAGGING BEHAVIOR

- Tag distribution in Flickr:
- x-axis: the 3.7 million unique tags, ordered by descending tag frequency 
- y-axis: the tag frequency. 

- The head of the distribution contains too generic tags to be useful (the top 5 most frequent: 
2006, 2005, wedding, party, and 2004).

- The tail contains the infrequent tags with incidentally occurring terms such as misspellings 
and complex phrases. 
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From: [Sigurbjörnsson and van Zwol
2008]



TAGGING BEHAVIOR

- distribution of the number of tags per photo in Flickr:
- x-axis: 52 million photos
- y-axis: number of tags per photo. 

- A few photos are exceptionally tagged
- 64% of photos have 1, 2 or 3 tags only. 

11
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CATEGORIES OF TAGS

- The distribution of Flickr tags over the most common WordNet categories: 
selecting the highest ranked category, 52% of the tags is correctly classified, 
and 48% of the tags is left unclassified, of a 3.7M collection.
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Figure 1: Distribution of the Tag Frequency in
Flickr.

by a power law [19, 1], and the probability of a tag having
tag frequency x is proportional to x

�1.15. With respect to
the tag recommendation task, the head of the power law
contains tags that would be too generic to be useful as a
tag suggestion. For example the top 5 most frequent occur-
ring tags are: 2006, 2005, wedding, party, and 2004. The
very tail of the power law contains the infrequent tags that
typically can be categorised as incidentally occurring words,
such as mis-spellings, and complex phrases. For example:
ambrose tompkins, ambient vector, and more than 15.7 mil-
lion other tags that occur only once in this Flickr snapshot.
Due to their infrequent nature, we expect that these highly
specific tags will only be useful recommendations in excep-
tional cases.
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Figure 2: Distribution of the number of tags per
photo in Flickr.

Figure 2 shows the distribution of the number of tags per
photo also follows a power law distribution. The x-axis rep-
resents the 52 million photos, ordered by the number of tags
per photo (descending). The y-axis refers to the number
of tags assigned to the corresponding photo. The proba-
bility of having x tags per photo is proportional to x

�0.33.
Again, in context of the tag recommendation task, the head
of the power law contains photos that are already exception-
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Figure 3: Most frequent WordNet categories for
Flickr tags.

ally exhaustively annotated, as there are photos that have
more than 50 tags defined. Obviously, it will be hard to
provide useful recommendations in such a case. The tail of
the power law consists of more than 15 million photos with
only a single tag annotated and 17 million photos having
only 2 or 3 tags. Together this already covers 64% of the
photos. Typically, these are the cases where we expect tag
recommendation to be useful to extend the annotation of
the photo.

To analyse the behaviour of the tag recommendation sys-
tems for photos with di↵erent levels of exhaustiveness of the
original annotation, we have defined four classes, as shown
in Table 1. The classes di↵erentiate from sparsely annotated
to exhaustively annotated photos, and take the distribution
of the number of tags per photo into account as is shown in
the last column of the table. In Section 6, we will use this
categorisation to analyse the performance for the di↵erent
annotation classes.

Tags per photo Photos
Class I 1 ⇡ 15,500,000
Class II 2 – 3 ⇡ 17,500,000
Class III 4 – 6 ⇡ 12,000,000
Class IV > 6 ⇡ 7,000,000

Table 1: The definition of photo-tag classes and the
number of photos in each class.

3.3 Tag Categorisation
To answer the question “What are users tagging?”, we

have mapped Flickr tags onto the WordNet broad cate-
gories [10]. In a number of cases, multiple WordNet cat-
egory entries are defined for a term. In that case, the tag is
bound to the category with the highest ranking. Consider
for example the tag London. According to WordNet, London
belongs to two categories: noun.location, which refers to
the city London, and noun.person, referring to the novelist
Jack London. In this case the location category is ranked
higher than the person. Hence, we consider the tag London
to refer to the location.

Figure 3 shows the distribution of Flickr tags over the
most common WordNet categories. Following this approach,
we can classify 52% of the tags in the collection, leaving 48%

329

WWW 2008 / Refereed Track:  Rich Media April 21-25, 2008. Beijing, China

From: [Sigurbjörnsson and van Zwol
2008]



PROBLEMS

- Tags are few, imprecise, ambiguous and overly personalized [Golder
and Huberman 2006; Sen et al. 2006; Sigurbjörnsson and van Zwol 2008; Kennedy et al. 2006].

- Tags might be irrelevant to the visual content.
- In a social network, users continuously add images and create 

new terms given the freedom of tagging.
- Web-scale quantity of media.
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Query	tag:	airplane

airplane
twin
engine
los	angeles
...

daytime
beach
airplane
ocean
...



TASK: TAG ASSIGNMENT

- Given an unlabeled image, tag assignment strives to assign a 
number of tags related to the image content
- How many tags ? Fixed or variable number ?
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TASK: TAG REFINEMENT

- Given an image associated with some initial tags, tag refinement 
aims to remove irrelevant tags from the initial tag list and enrich it 
with novel, yet relevant, tags.
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TASK: TAG RETRIEVAL

- Given a tag and a collection of images labeled with the tag (and 
possibly other tags), the goal of tag retrieval is to retrieve images 
relevant with respect to the tag of interest.
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Query:	bride



ORGANIZATION OF THE TUTORIAL

- The tutorial is divided in 4 slots:

- Morning:
- Introduction and overview of methods

- Description of experimental setup and of the implemented methods

- Evening:
- Practical session using open source implementations of selected 

methods

- Final comments and related works; recap of hands-on session

17



IMAGE TAG ASSIGNMENT, REFINEMENT AND RETRIEVAL

Xirong Li
Renmin University of China

Tiberio Uricchio
University of Florence

Lamberto Ballan
University of Florence &
Stanford University

Marco Bertini
University of Florence

Cees Snoek
University of Amsterdam & 
Qualcomm Research
Netherlands

Alberto Del Bimbo
University of Florence

ACM Multimedia 2015 Tutorial

October 26, 2015

1



PART 2
TAXONOMY

• Foundations
• tag relevance

• A two-dimensional taxonomy
• Media for tag relevance
• Learning for tag relevance
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FOUNDATIONS

- The basic elements to be considered when developing methods 
for tag assignment, refinement and retrieval are:

- An image x
- A tag t
- A user u

- A user u can share an image x, assigning tag t to it
- A set of users U contributes a set of n socially tagged images X, 

with Xt the set of images tagged with t. All the tags used to 
describe X form a vocabulary V composed by m tags.

- Depending on the social network we can assume the availability 
of a set of user information ! (e.g. user contacts, geo-localization, 
etc.)
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TAG RELEVANCE

- Tag assignment, refinement and retrieval share a common 
essential component: a way to measure the relevance between a 
tag and a given image

- This function considers the image x, tag t and user information !:

fɸ(x, t; !)

- Sorting V in descending order by fɸ(x, t; !) implements tag 
assignment and refinement

- Sorting Xt in descending order in terms of fɸ(x, t; !) implements 
retrieval

- Note: this	formalization	does	not	necessarily	imply	that	the	same	
implementation	of	tag	relevance	is	applied	for	all	the	three	tasks.	
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UNIFIED FRAMEWORK

- S is a set of training media obtained from social networks, i.e. with unreliable user-generated 
annotations. It can be optionally filtered to remove unwanted tags or images, obtaining Š.
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TAXONOMY

- Works addressing the three tasks can be organized considering:

what essential information is exploited by fɸ(x, t; !), i.e. the 
media

how such information is exploited by fɸ(x, t; !), i.e. the learning
type
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MEDIA FOR TAG RELEVANCE

- Depending on the modalities exploited we can divide the 
methods between those that use:

- Tags – e.g. considering ranking of tags as a proxy of user’s 
priorities

- Tags and images – e.g. considering the set of tags assigned to an 
image

- Tags, images and user information – e.g. considering the 
behaviors of different users tagging similar images
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TAG BASED

- These methods consider the original ranking of tags 
provided by users [Sun et al. 2011],  tag co-occurrence 
[Sigurbjönsson and van Zwol 2008; Zhu et al. 2012] or topic modelling 
[Xu et al. 2009] to find semantically similar tags.

- These methods consider that the test image has 
already been labelled by the user so they can not be 
employed for tag suggestion.
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TAG BASED

- We will review in detail:
- TagCooccur [Sigurbjörnsson and van Zwol 2008] that uses tag 

co-occurrence to create a list of candidate tags, aggregating 
them with through voting, and then weights the votes with a 
promotion function that accounts for characteristics like 
descriptiveness and statistical stability of tags.

- SemanticField [Zhu et al. 2012]: measures tag relevance in terms 
of an averaged semantic similarity between the tag and the other 
tags assigned to the image
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TAG + IMAGE BASED

- These methods are the vast majority of those that we have 
analyzed in the review, and of those that have been re-
implemented.

- The main idea of these works is to exploit visual consistency, i.e. 
the fact that visually similar images should have similar tags.

- Unlike previous methods they can be applied to tag suggestion.

- Three main approaches:
- Use visual similarity between test image and database (e.g. [Li et al. 2009b; 2010; 

Verbeek et al. 2010; Ma et al. 2010; Wu et al. 2011; Feng et al. 2012])

- Use similarity between images with same tags[Liu et al. 2009; Richter et al. 2012; Liu et al. 
2011b; Kuo et al. 2012; Gao et al. 2013]

- Learn classifiers from social images + tags[Wang et al. 2009a; Chen et al. 2012; Li and Snoek
2013; Yang et al. 2014]
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TAG + IMAGE BASED

- The previously mentioned methods exploit image modality to 
compute the visual similarity, then use the tag modality in a 
subsequent step.

- A few methods use both modalities at the same time, creating a 
common latent-space, e.g. with Canonical Correlation 
Analysis[Pereira et al. 2014], building a unified graph composed by the 
fusion of a visual similarity graph with a image-tag connection 
graph[Ma et al. 2010], or using tag and image similarities as 
constraints to reconstruct a image-tag association matrix[Wu et al. 
2013; Xu et al. 2014; Zhu et al. 2010].
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TAG + IMAGE BASED

- These methods can be considered mainstream, and on the 
following will be reviewed in detail:

- TagRanking [Liu et al. 2009]
- KNN [Makadia et al. 2010]
- TagProp [Guillaumin et al. 2009; Verbeek et al. 2010]
- TagFeature [Chen et al. 2012]
- RelExample [Li and Snoek 2013]
- RobustPCA [Zhu et al. 2010] 
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TAG + IMAGE + USER INFORMATION

- Personal tagging behavior can be used in the form of tag 
statistics computed from images a user has uploaded in the 
past[Sawant et al. 2010; Li et al. 2011b], or learning a specific user 
embedding[Liu et al. 2014] .

- Another approach has been to combine tagging behavior of 
different users, e.g. to use more varied learning examples of 
different users[Li et al. 2009b] or keeping more robust tags that are 
used by different users for similar images[Kennedy et al. 2009].

- To discover latent relations between images, tags and user 
information several approaches use tensor analysis [Sang et al. 2012a, 
Qian et al. 2015].

13



TAG + IMAGE + USER INFORMATION

- Among the different types of metadata generated by users that 
have been exploited so fare we have:

- Photo time stamps [Kim and	Xing 2013,	McParlane et	al.	2013a]

- Geo-localization[McParlane et	 al.	2013b]

- User interaction (e.g. comments)[Sawant et	al.	2010 ] and group 
memberships[Wang et	al.	2009b;	McAuley and	Leskovec 2012;	Johnson	et	al.	2015]
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TAG + IMAGE + USER INFORMATION

- The methods reviewed in detail in the following are:

- TagVote [Li et al. 2009b] + TagCooccur+ [Li et al. 2009b]: that use 
a unique-user constraint to create the visual neighborhood used 
in the voting algorithm, so to have a more objective voting and 
reduce the effect of batch tagging

- TensorAnalysis [Sang et al. 2012a]: that explicitly models the 
relation between users, tags and images
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LEARNING FOR TAG RELEVANCE

- We can divide the learning methods in transductive and inductive. 
The former do not make a distinction between learning and test 
dataset, the latter may be further divided in methods that produce 
an explicit model and those that are instance based.

- We therefore divide the methods in instance-based, model-based 
and transduction-based.

- Typically inductive methods have better computational scalability 
than transductive ones.
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INSTANCE BASED

- This class of methods does not perform explicit generalization 
but, instead, compares new test images with training instances.
There are no parameters and the complexity grows with the 
number of instances.

- In a neighbor voting approach[Li et al. 2009b, Li et al. 2010, Kennedy et al. 2009] it 
is estimated the relevance of tag t w.r.t. image x by counting the 
occurrence of t in the image’s visual neighborhood.

- Weighted voting, e.g. using visual similarity, provides limited 
increases in performance.

- Improving the quality of the visual neighborhood improves the 
performance[Ballan et al. 2014]
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INSTANCE BASED

- Of the implemented methods those following this approach are:

- KNN [Makadia et al. 2010]
- TagVote [Li et al. 2009b]
- TagCooccur+ [Li et al. 2009b] 
- TagRanking [Liu et al. 2009]: that all build a

visual neighborhood, to compute tag relevance

- Also the methods based on tags only (TagCooccur
[Sigurbjörnsson and van Zwol 2008]  and SemanticField [Zhu et 
al. 2012]) evaluate tag co-occurrence and similarity without 
building a model.
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MODEL BASED

- This class of methods learns its parameters from a training set.
A model can be tag-specific or holistic, i.e. for all tags.

- Methods of the first type are those of [Chen et al. 2012], that use 
linear SVMs trained on features augmented by pre-trained 
classifiers of popular tags, and [Li and Snoek 2013] that uses 
intersection kernel SVMs trained on relevant positive and 
negative examples and [Zhou et al. 2015] that treats tagged 
images as positive training examples and untagged images as 
candidate negative training examples. 

- Examples of the second type use topic modelling[Wang et al. 2014], 
where relevance is computed using a topic vector of the image 
and a topic vector of the tag.
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MODEL BASED

- The methods of this class is going to be analyzed in depth are:

- TagProp [Guillaumin et al. 2009; Verbeek et al. 2010]: that uses 
distance metric learning and a logistic model per tag to penalize 
frequent tags and promote rare ones.

- TagFeature [Chen et al. 2012]: that builds a two-class linear SVM 
for each tag from web images, extending pre-trained SVMs.

- RelExample [Li and Snoek 2013]: that proposes a system that se-
lects positive and negative examples, deemed most relevant with 
respect to the given tag from crowd-annotated images, to train an 
ensemble of discriminative classifiers.
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TRANSDUCTION BASED

- This class of methods consists in procedures that evaluate tag 
relevance for a given image-tag pair of a set of images by 
minimizing some specific cost function.

- There’s no separation between training and testing: a matrix D
that associates all the images and tags of the dataset is the input 
of the method, while the output is anew matrix D* whose 
elements are considered relevance scores.

- The majority of these methods is based on matrix factorization[Zhu 
et al. 2010, Sang et al. 2012a, Xu et al. 2014, Kalayeh et al. 2014].

- Graph-based label propagation is also used[Richter et al. 2012, Kuo et al. 
2012], where image-tag pairs are represented as a graph in which 
each node corresponds to a specific image and the edges are 
weighted according to a multi-modal similarity measure.
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TRANSDUCTION BASED

- The methods of this class is going to be analyzed in depth are:

- TensorAnalysis [Sang et al. 2012a]: that extend the D matrix to a 
tensor that comprises  users.

- RobustPCA [Zhu et al. 2010]: that factorizes D by 
a low rank decomposition taking into account
image and tag affinities.
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PROS AND CONS

- Instance-based methods: 
- Pro: flexible and adaptable to manage new images and tags. 
- Con: require to manage S, a task that may become complex with increasing 

amount of data.

- Model-based methods:
- Pro: training data is represented compactly, leading to swift computations, 

especially when using linear classifiers.
- Con: need to retrain to cope with new imagery of a tag or when expanding 

the vocabulary V.

- Transduction-based methods: 
- Pro: exploit better inter-tag and inter-image relationships, through matrix 

factorization.
- Con: difficult to manage large datasets, because of memory or 

computational complexity.
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UNIFIED FRAMEWORK

- S is a set of training media obtained from social networks, i.e. with unreliable user-generated 
annotations. It can be optionally filtered to remove unwanted tags or images, obtaining Š.
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AUXILIARY COMPONENTS: FILTER

- A common practice is to  eliminate overly personalized tags (e.g. 
hadtopostsomething), e.g. excluding tags that are not part of 
WordNet or Wikipedia

- Often tags that do not appear enough times in the collection are 
eliminated.

- Reduction of vocabulary V size is also important for several 
methods that use image-tag association matrix, like the 
transductive methods(e.g. [Zhu et al. 2010; Sang et al. 2012a; Wu et al. 2013])

- Since batch tagging tends to reduce the quality of tags, these 
types of images can be excluded[Li et al. 2012]
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AUXILIARY COMPONENTS: PRECOMPUTE

- It is practical to precompute information from S, and use this 
information along with the refined media Š in the learning.

- The most common precomputation is tag occurrence and co-
occurrence.

Occurrence can be used to penalize excessively frequent tags[Li et 
al. 2009b].

Co-occurrence is used to capture semantic similarity of tags 
directly from users’ behavior

A common method(e.g. in [Liu et al. 2009, Zhu et al. 2010, Zhu et al. 2012]) to obtain 
semantic similarity is to use Flickr context distance[Jiang et al. 2009], 
i.e. Normalized Google Distance computed on Flickr image 
collections.
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PART 3
A NEW EXPERIMENTAL PROTOCOL

• Limitations in current evaluation
• Training and test data
• Evaluation setup 
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LIMITATIONS IN CURRENT EVALUATION

- Results are not directly comparable
- homemade datasets
- selected subsets of a benchmark set
- varied implementation

- preprocessing, parameters, features, …

- Results are not easily reproducible
- For many methods, no source code or executable is provided.

- Single-set evaluation
- Split a dataset into training/testing, at risk of overfitting
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PROPOSED PROTOCOL

- Results are comparable
- use full-size test datasets
- same implemenation whenever applicable

- Results are reproducible
- open-source

- Cross-set evaluation
- Training and test datasets are constructed independently
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SOCIALLY-TAGGED TRAINING DATA

- Data gathering procedure[Li et al. 2012]

- using WordNet nouns as querie to uniformly sample Flickr images uploaded
between 2006 and 2010

- remove batch-tagged images (simple yet effective trick to improve data quality)

- Training sets of varied size
- Train1M  (a random subset of the collected Flickr images)
- Train100k (a random subset of Train1m)
- Train10k (a random subset of Train1m)

5

ImageNet already provides labeled examples for over 20k
categories. Is it necessary to learn from socially tagged data?



SOCIAL TAGS VERUS IMAGENET ANNOTATIONS

- ImageNet annotations
- computer vision oriented, focusing on fine-grained visual objects
- single label per image

- Social tags
- follow context, trends and events in the real world
- describe both the situation and the entity presented in the visual content
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2007$01$26

poppy*
poppy*
tulip*
tulip
red

summer*
poppy*
orange*
nature*
flower

2007$04$22

winter*
tree*
baum*
frost

2007$12$27

poppy*
rot*
red*
sky*
cloud*
field

2008$02$17

...

A Flickr user’s album

Credits: http://www.flickr.com/people/regina_austria



IMAGENET EXAMPLES ARE BIASED

- By web image search engines
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D. Vreeswijk, K. van de Sande, C. Snoek, A.
Smeulders, All Vehicles are Cars: Subclass
Preferences in Container Concepts, ICMR2012

Figure from [Vreeswijk et al. 2012]



TEST DATA

- Three test datasets
- contributed by distinct research groups
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Test dataset Contributors
MIRFlickr[Huiskes 2010] LIACS Medialab,VLeidenVUniversity

NUSXWIDE[ChuaV2009] LMS, NationalVUniversityVofVSigapore

Flickr51[WangV2010] MicrosoftVResearchVAsia



MIRFLICKR

- Image collection
- 25,000 high-quality photographic images from Flickr

- Labeling criteria
- Potential labels: visibile to some extent
- Relevant labels: saliently present

- Test tag set
- 14 relevant labels: baby bird car cloud dog flower girl man night 

people portrait river sea tree

- Applicability
- Tag assignment
- Tag refinement

9

M. Huiskes, B. Thomee, M Lew, New trends and
ideas in visual concept detection: the MIR Flickr
retrieval evaluation initiative, MIR2010

http://press.liacs.nl/mirflickr/



NUS-WIDE
- Image collection

- 260K images randomly crawled from Flickr

- Labeling criteria
- An active learning strategy to reduce the amount of manual labeling

- Test tag set
- 81 tags containing objects (car, dog), people (police, military), scene 

(airport, beach), and events (swimming, wedding).

- Applicability
- tag assignment
- tag refinement
- tag retrieval

10

T.XS. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y.XT. Zheng.
NUSXWIDE: A RealXWorld Web Image Database
from{National University of Singapore, CIVR 2009

http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm



FLICKR51
- Image collection

- 80k images collected from Flickr using a predefined set of tags as
queries

- Labeling criteria
- Given a tag, manually check the relevance of images labelled with the tag
- Three relevance levels: very relevant, relevant, and irrelevant

- Test tag set
- 51 tags, and some are ambiguous, e.g, apple, jaguar

- Applicability
- Tag retrieval
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VISUAL FEATURES

- Traditional bag of visual words[van de Sande 2010]

- SIFT points quantized by a codebook of size 1,024
- Plus a compact 64-d color feature vector[Li 2007]

- DeepNet feature
- A 4,096-d FC7 vector after ReLU activation, extracted by the pre-trained 16-

layer VGGNet[Simonyan 2015]
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EVALUATION

Three tasks as introduced in Part 1
- Tag assignment
- Tag refinement
- Tag retrieval
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EVALUATING TAG ASSIGNMENT

- A good method for tag assignment shall
- rank relevant tags before irrelevant tags for a given image
- rank relevant images before irrelevant images for a given tag

- Two criteria
- Image-centric: Mean image Average Precision (MiAP)

- Tag-centric: Mean Average Precision (MAP)
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MiAP is biased towards frequent tags
MAP is affected by rare tags



EVALUATING TAG REFINEMENT

- Similar to tag assignment
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EVALUATING TAG RETRIEVAL

- A good method for tag retrieval shall
- rank relevant images before irrelevant images for a given tag

- Two criteria
- Mean Average Precision (MAP) to measure the overall ranks

- Normalized Discounted Cumulative Gain (NDCG) to measure the top ranks

16



SUMMARY
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Data servers

[1] http://www.micc.unifi.it/tagsurvey
[2] http://www.mmc.ruc.edu.cn/research/tagsurvey/data.html



LIMITATIONS IN OUR PROTOCOL

- Tag informativeness in tag assignment

18

dog 
pet

dog
beach 

versus

X. Qian, X.-S. Hua, Y. Tang, T. Mei, Social
Image Tagging With Diverse Semantics, IEEE
Transactions on Cybernetics 2014

How to assess informativeness?



LIMITATIONS IN OUR PROTOCOL

- Image diversity in tag retrieval

19

Figure from [Wang et al. 2010]

How to measure diversity? M. Wang, X.-S. Hua, H.-J. Zhang, Towards a relevant
and diverse search of social images, IEEE Transactions
on Multimedia 2010



LIMITATIONS IN OUR PROTOCOL

- Semantic ambiguity
- E.g., search for jaguar in Flickr51

20

SemanticField RelExamples

Need fine-grained annotation

X. Li, S. Liao, W. Lan, X. Du, G. Yang,
Zero-shot image tagging by
hierarchical semantic embedding,
SIGIR 2015
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PART 4
ELEVEN KEY METHODS

• Goal: see several key methods of various Media and Learning

• Q: What are their key ingredients ?

• Q: How much do they cost computationally ?

tiberio.uricchio@unifi.it
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KEY METHODS

• Covering all published methods is obviously impractical.

• We have to leave out methods that:
- Do not show significant improvements or novelties w.r.t. the seminal papers

in the field.
- Methods that are difficult to replicate with the same mathematical

preciseness as intended by their developers.

• We drive our choice by the intention to cover methods that aim
for each of the three tasks, exploiting varied modalities by distinct
learning mechanisms.

• 11 representative methods.

3



KEY METHODS

• Each method is required to output tag relevance of each test 
image and each test tag.

4

f(x1, t1) f(x1, t2) . . . f(x1, tm)
f(x2, t1) f(x2, t2) . . . f(x2, tm)

...
...

. . .
...

f(xn, t1) f(xn, t2) . . . f(xn, tm)

m	tags

n images
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Media	\ Learning Instance Based Model Based Transductive Based

Tag SemanticField
[Zhu	et	al.	2012]	

TagCooccur
[Sigurbjörnssonand	van	Zwol2008]	

Tag	+	Image TagRanking
[Liu	et	al.	2009]	

KNN	
[Makadia et	al.	2010]	

TagProp
[Guillaumin et	al.	2009]	

TagFeature
[Chen	et	al.	2012]	

RelExample
[Li	and Snoek	2013]	

RobustPCA
[Zhu	et	al.	2010]	

Tag	+	Image	+	User TagVote
TagCooccur+	
[Li	et	al.	2009b]	

TensorAnalysis
[Sang	et	al.	2012a]	
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• Tags of similar semantics usually co-occur in user images.
• SemanticField measures an averaged similarity between a tag

and the user tags already assigned to the image.
• Two similarity measures between words:

- Flickr context similarity
- Wu-Palmer similarity on WordNet

SEMANTICFIELD

7

[Zhu et al. 2012] Instance-Based Tag

red
sun

beach
birthday
canon

sunset
is it similar?
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FLICKR CONTEXT SIMILARITY

title tags

description

comments

(a) (b)

FCS (bridge, river) = 0.65

Figure 2: (a) Rich context information associated
with a Flickr image. (b) The total number of images
returned using keyword-based search in Flickr image
context.

co-occurrence statistics in visual data rather than the text
corpora used in [27, 20, 19, 8, 5].

Given two words, we compute their relatedness based on
the number of Flickr images associated with them. With
the number of hits returned by Flickr, we apply NGD de-
rived from Kolmogorov complexity theory to estimate word
distance [5]:

NGD(x, y) =
max{log h(x), log h(y)}− log h(x, y)

log N − min{log h(x), log h(y)} , (1)

where h(x) denotes the number of images associated with
word x in their context, and h(x, y) denotes the number of
images associated with both words x and y; N is the total
number of images on Flickr, which is roughly estimated as
3.5 billion by the time we did the experiments. The NGD
is then converted to Flickr context similarity (FCS) using a
Gaussian kernel, defined as

FCS(x, y) = e−NGD(x,y)/ρ, (2)

where the parameter ρ is empirically set as the average pair-
wise NGD among a randomly pooled set of words. Similar
way of setting ρ has been shown to be effective for kernel
based classification tasks [38]. An example of calculating
FCS is shown in Figure 2 (b).

The major advantage of using full context information
instead of tags alone is the better coverage of words. Fig-
ure 3 shows the frequency of 374 LSCOM concepts in vari-
ous sources including Google web search, Flickr image con-
text/tags, and the LSCOM manual annotations on TRECVID
2005 development set (43,873 shots). Obviously Google web
search has the best coverage: the most rare concept (Dredge
Powershovel Dragline) still appears in 2,120 web pages. Also,
it can be clearly seen that the concept coverage of Flickr con-
text is much better than that of Flickr tags. Only 2 concepts
have zero frequency in context (Non-US National Flags and
Dredge Powershovel Dragline), while in the tags, 53 con-
cepts were not found. Although the coverage of Flickr con-
text is not as good as Google web search, as will be shown
in the experiments, it has the merit of reflecting the visual
co-occurrence of words.

It is worthwhile to point out that the web-based sources
are indeed noisy. For example, the precision of Flickr tags
was found to be around 50% in [15]. The noise issue also
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Figure 3: The frequency of 374 LSCOM semantic
concepts in various sources. Note that the Y-axis is
plotted in log scale.

exists in many web pages indexed by Google. A web page
may contain multiple paragraphs of texts discussing differ-
ent topics, resulting in misleading estimation of word co-
occurrence. However, as was noted in [5], such noise can be
partially made up by the huge data base size. This can be
explained intuitively by the fact that two unrelated words
may occasionally co-occur because of the noise, but prob-
ably not always. In other words, when the data base size
increases, the number of co-occurrence of two related words
will mostly increase at a much faster rate than that between
two unrelated words. While we believe that techniques such
as tag disambiguation [32] and image content based verifica-
tion (Flickr distance [33]) are promising for alleviating the
issue of noise, practically FCS is a much easier and cheaper
way to measure the visual co-occurrence of all the words in
human vocabulary.

4. SEMANTIC CONTEXT TRANSFER
This section describes our semantic context transfer al-

gorithm. We start by defining a few notations. Let C =
{c1, c2, · · · , cm} denote a semantic lexicon of m concepts
and {Xtrn,Ytrn} be a training data set, where Ytrn is the
ground-truth label of Xtrn. Based on the training set, a
classifier/detector is developed for each concept ci using any
supervised learning algorithm, such as SVMs. Another piece
of useful information that can be learnt from the training set
is inter-concept relationship, which can be easily computed
based on the correlation of ground-truth labels. Formally,
these are expressed as

{Xtrn,Ytrn} → {Wtrn,D}, (3)

where D denotes a concept detection function for the m
concepts and Wtrn ∈ Rm×m indicates the pairwise concept
affinity. A large value wij in Wtrn means two concepts ci and
cj frequently co-occur (e.g., car and road). The detection
function is then applied to a target data set Xtgt containing
n test samples and produce detection score:

Ftgt = D(Xtgt), (4)

where Ftgt = {f(ci)}i=1,··· ,m ∈ Rm×n.
In the search process, given a textual query q, external

knowledge source such as WordNet ontology or Flickr con-
text is used to measure query-detector similarity. This re-
sults in a vector wq = {s(q, ci)}i=1,··· ,m, which weighs the
importance of the m detectors to the query q. The term
s(q, ci), representing the similarity of ci to q, is computed
by accumulating the similarity of ci to each query word in q.

8

[Jiang et al. 2009]

title tags

description

comments

(a) (b)

FCS (bridge, river) = 0.65

Figure 2: (a) Rich context information associated
with a Flickr image. (b) The total number of images
returned using keyword-based search in Flickr image
context.

co-occurrence statistics in visual data rather than the text
corpora used in [27, 20, 19, 8, 5].

Given two words, we compute their relatedness based on
the number of Flickr images associated with them. With
the number of hits returned by Flickr, we apply NGD de-
rived from Kolmogorov complexity theory to estimate word
distance [5]:

NGD(x, y) =
max{log h(x), log h(y)}− log h(x, y)

log N − min{log h(x), log h(y)} , (1)

where h(x) denotes the number of images associated with
word x in their context, and h(x, y) denotes the number of
images associated with both words x and y; N is the total
number of images on Flickr, which is roughly estimated as
3.5 billion by the time we did the experiments. The NGD
is then converted to Flickr context similarity (FCS) using a
Gaussian kernel, defined as

FCS(x, y) = e−NGD(x,y)/ρ, (2)

where the parameter ρ is empirically set as the average pair-
wise NGD among a randomly pooled set of words. Similar
way of setting ρ has been shown to be effective for kernel
based classification tasks [38]. An example of calculating
FCS is shown in Figure 2 (b).

The major advantage of using full context information
instead of tags alone is the better coverage of words. Fig-
ure 3 shows the frequency of 374 LSCOM concepts in vari-
ous sources including Google web search, Flickr image con-
text/tags, and the LSCOM manual annotations on TRECVID
2005 development set (43,873 shots). Obviously Google web
search has the best coverage: the most rare concept (Dredge
Powershovel Dragline) still appears in 2,120 web pages. Also,
it can be clearly seen that the concept coverage of Flickr con-
text is much better than that of Flickr tags. Only 2 concepts
have zero frequency in context (Non-US National Flags and
Dredge Powershovel Dragline), while in the tags, 53 con-
cepts were not found. Although the coverage of Flickr con-
text is not as good as Google web search, as will be shown
in the experiments, it has the merit of reflecting the visual
co-occurrence of words.

It is worthwhile to point out that the web-based sources
are indeed noisy. For example, the precision of Flickr tags
was found to be around 50% in [15]. The noise issue also
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Figure 3: The frequency of 374 LSCOM semantic
concepts in various sources. Note that the Y-axis is
plotted in log scale.

exists in many web pages indexed by Google. A web page
may contain multiple paragraphs of texts discussing differ-
ent topics, resulting in misleading estimation of word co-
occurrence. However, as was noted in [5], such noise can be
partially made up by the huge data base size. This can be
explained intuitively by the fact that two unrelated words
may occasionally co-occur because of the noise, but prob-
ably not always. In other words, when the data base size
increases, the number of co-occurrence of two related words
will mostly increase at a much faster rate than that between
two unrelated words. While we believe that techniques such
as tag disambiguation [32] and image content based verifica-
tion (Flickr distance [33]) are promising for alleviating the
issue of noise, practically FCS is a much easier and cheaper
way to measure the visual co-occurrence of all the words in
human vocabulary.

4. SEMANTIC CONTEXT TRANSFER
This section describes our semantic context transfer al-

gorithm. We start by defining a few notations. Let C =
{c1, c2, · · · , cm} denote a semantic lexicon of m concepts
and {Xtrn,Ytrn} be a training data set, where Ytrn is the
ground-truth label of Xtrn. Based on the training set, a
classifier/detector is developed for each concept ci using any
supervised learning algorithm, such as SVMs. Another piece
of useful information that can be learnt from the training set
is inter-concept relationship, which can be easily computed
based on the correlation of ground-truth labels. Formally,
these are expressed as

{Xtrn,Ytrn} → {Wtrn,D}, (3)

where D denotes a concept detection function for the m
concepts and Wtrn ∈ Rm×m indicates the pairwise concept
affinity. A large value wij in Wtrn means two concepts ci and
cj frequently co-occur (e.g., car and road). The detection
function is then applied to a target data set Xtgt containing
n test samples and produce detection score:

Ftgt = D(Xtgt), (4)

where Ftgt = {f(ci)}i=1,··· ,m ∈ Rm×n.
In the search process, given a textual query q, external

knowledge source such as WordNet ontology or Flickr con-
text is used to measure query-detector similarity. This re-
sults in a vector wq = {s(q, ci)}i=1,··· ,m, which weighs the
importance of the m detectors to the query q. The term
s(q, ci), representing the similarity of ci to q, is computed
by accumulating the similarity of ci to each query word in q.

• Based on the Normalized Google 
Distance.

• Measures the co-occurence of two
tags with respect to the two single tag
occurrencies.

• No semantics is involved, works for 
any tag.

FCS(x, y) = e

�NGD(x,y)/�

h(x)

h(y)

h(x,y)



WU-PALMER SIMILARITY
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[Wu and Palmer 1994]

Sim(w1, w2) = max

h
2 ⇤ depth(LCS(w1, w2))

length(w1, w2) + 2 ⇤ depth(LCS(w1, w2))

i
• It is a measure between

concepts in an ontology
restricted to taxonomic links.

• Considers the depth of x, y 
and their least common 
subsumer (LCS).

• Typically used with WordNet.



• Sim is the similarity between t and the other image tags.

• Needs some user tags. Not applicable to Tag Assignment.

• Complexity O(m · lx) the number of image tags lx times m tags
• Memory O(m2) quadratic in terms of vocabulary m tags

SEMANTICFIELD

10

[Zhu et al. 2012] Instance-Based Tag
Socializing the Semantic Gap X:17

image:

f
SemField

(x, t) :=

1

l
x

l

xX

i=1

sim(t, t
i

), (4)

where {t
1

, . . . , t
l

x

} is a list of l
x

social tags assigned to the image x, and sim(t, t
i

) de-
notes a semantic similarity between two tags. SemanticField explicitly assumes that
several tags are associated to visual data and their coexistence is accounted in the
evaluation of tag relevance. Following [Zhu et al. 2012], the similarity is computed by
combining the Flickr context similarity and the WordNet Wu-Palmer similarity [Wu
and Palmer 1994]. The WordNet based similarity exploits path length in the Word-
Net hierarchy to infer tag relatedness. We make a small revision of [Zhu et al. 2012],
i.e. combining the two similarities by averaging instead of multiplication, because the
former strategy produces slightly better results. SemanticField requires no training
except for computing tag-wise similarity, which can be computed offline and is thus
omitted. Having all tag-wise similarities in memory, applying Eq. (4) requires l

x

ta-
ble lookups per tag. Hence, the computational complexity is O(m · l

x

), and O(m2

) for
memory.

2. TagRanking [Liu et al. 2009]. The tag ranking algorithm consists of two steps.
Given an image x and its tags, the first step produces an initial tag relevance score
for each of the tags, obtained by (Gaussian) kernel density estimation on a set of n̄ =

1, 000 images labeled with each tag, separately. Secondly, a random walk is performed
on a tag graph where the edges are weighted by a tag-wise similarity. We use the
same similarity as in SemanticField. Notice that when applied for tag retrieval, the
algorithm uses the rank of t instead of its score, i.e.,

f
TagRanking

(x, t) = �rank(t) +

1

l
x

, (5)

where rank(t) returns the rank of t produced by the tag ranking algorithm. The term
1

l

x

is a tie-breaker when two images have the same tag rank. Hence, for a given tag t,
TagRanking cannot distinguish relevant images from irrelevant images if t is the sole
tag assigned to them. It explicitly exploits the coexistence of several tags per image.
TagRanking has no learning stage. To derive tag ranks for Eq. 5, the main computation
is the kernel density estimation on n̄ socially-tagged examples for each tag, followed
by an L iteration random walk on the tag graph of m nodes. All this results in a com-
putation cost of O(m · d · n̄ + L · m2

) per test image. Because the two steps are executed
sequentially, the corresponding memory cost is O(max(dn̄, m2

)).
3. KNN [Makadia et al. 2010]. This algorithm estimates the relevance of a given

tag with respect to an image by first retrieving k nearest neighbors from S based on
a visual distance d, and then counting the tag occurrence in associated tags of the
neighborhood. In particular, KNN builds f

�

(x, t; ⇥) as:

f
KNN

(x, t) := k
t

, (6)

where k
t

is the number of images with t in the visual neighborhood of x. The instance-
based KNN requires no training. The main computation of f

KNN

is to find k nearest
neighbors from S, which has a complexity of O(d · |S| + k · log |S|) per test image, and
a memory footprint of O(d · |S|) to store all the d-dimensional feature vectors. It is
worth noting that these complexities are drawn from a straightforward implemen-
tation of k-nn search, and can be substantially reduced by employing more efficient
search techniques, c.f. [Jégou et al. 2011]. Accelerating KNN by the product quanti-
zation technique [Jégou et al. 2011] imposes an extra training step, where one has

ACM XXX, Vol. X, No. X, Article X, Publication date: October 2015.
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[Zhu	et	al.	2012]	
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[Liu	et	al.	2009]	
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TagFeature
[Chen	et	al.	2012]	
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[Li	and Snoek	2013]	
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[Zhu	et	al.	2010]	

Tag	+	Image	+	User TagVote
TagCooccur+	
[Li	et	al.	2009b]	

TensorAnalysis
[Sang	et	al.	2012a]	



• TagRanking assigns a rank to each user tag, based on their
relevance to the image content.

• Tag probabilities are first estimated in the KDE phase. 
• Then a random walk is performed on a tag graph, built from visual

exemplar similarity and tags semantic similarity. 

TAGRANKING

12

[Liu et al. 2009] Instance-Based Tag + Image

flower tree bird sky
(1) bird (0.36)
(2) flower (0.28)
(3) sky (0.21)
(4) tree (0.15)

bird tree

flower sky

S(bird)

S(flower) S(sky)

S(tree)

Exemplar Similarity

Concurrence Similarity

Figure 4: The illustrative scheme of the tag ranking approach. A probabilistic method is first adopted to
estimate tag relevance score. Then a random walk-based refinement is performed along the tag graph to
further boost tag ranking performance.

ranking, we first adopt a probabilistic approach to estimate
the initial relevance score of each tag for one image indi-
vidually, and then refine the relevance scores by implement-
ing a random walk process over a tag graph in order to
mine the correlation of the tags. In the construction of tag
graphs, we have combined an exemplar-based approach and
a concurrence-based approach to estimate the relationship
among tags. The whole process is automatic and do not
need any manually labeled training data. Experimental re-
sults demonstrate that the proposed scheme is able to rank
Flickr image tags according to their relevance levels.

The rest of this paper is organized as follows. We describe
the tag ranking scheme in Section 2 and provide empirical
justifications in Section 3. In Section 4, we introduce the
three application scenarios and the associated experimen-
tal results. Then we introduce related work in Section 5.
Finally, we conclude the paper in Section 6.

2. TAG RANKING
In this section, we will introduce our tag ranking method.

We firstly give an overview of our tag ranking approach, and
then introduce the probabilistic relevance score estimation
and random walk-based refinement in detail.

2.1 Overview
As illustrated in Fig. 4, the tag ranking scheme mainly

consists of two steps: initial probabilistic tag relevance esti-
mation and random walk refinement. Given an image and
its associated tags, we first estimate the relevance score of
each tag individually through a probabilistic approach. We
will simultaneously consider the probability of the tag given
the image and the descriptive ability of the tag in the rele-
vance score estimation, and we show that it can be accom-
plished by using the Kernel Density Estimation (KDE) [15].
Although the scores obtained in this way reflect the tag rele-
vance, the relationships among tags have not been taken into
account. Thus we further perform a random walk-based re-
finement to boost tag ranking performance by exploring the
relationship of tags. Finally, the tags of the image can be
ranked according to their refined relevance scores. In the
next two sub-sections, we will detail the probabilistic rele-
vance score estimation method and the random walk-based
refinement process, respectively.

2.2 Probabilistic Tag Relevance Estimation
First, we estimate the relevance scores of the tags from

the probabilistic point of view. Given a tag t, its relevance
score to an image x is defined as

s(t, x) = p(t|x)/p(t) (1)

Now we will explain the rationality of Eq. 1. In fact, the
most straightforward way is to directly regard p(t|x) as the
relevance score, since it indicates the probability of tag t
given image x. However, the tag may not be so descriptive
when it appears too frequently in the dataset. For example,
for the tag “image”, the probability p(t|x) will be always
1, but obviously this tag is non-informative. Therefore, we
normalize p(t|x) by p(t), i.e., the prior probability of the tag,
to penalize frequently-appearing tags. This principle has
actually been widely investigated in information retrieval,
e.g., in the design of tf -idf features [16].

Based on Bayes’ rule, we can easily derive that

s(t, x) =
p(x|t)p(t)
p(x)p(t)

=
p(x|t)
p(x)

(2)

where p(x) and p(x|t) are the prior probability density func-
tion and the probability density function of images condi-
tioned on the tag t, respectively. Since the target is to rank
the tags for the individual image and p(x) is identical for
these tags, we can simply redefine Eq. 2 as

s(t, x)
.
= p(x|t) (3)

We adopt the classical Kernel Density Estimation (KDE)
method to estimate the probability density function p(x|t).
Denote by Xi the set of images that contain tag ti, the KDE
approach measures p(x|ti) as

s(ti, x) = p(x|ti) =
1

|Xi|

∑

xk∈Xi

Kσ(x − xk) (4)

where |Xi| is the cardinality of Xi and Kσ is the Gaussian
kernel function with the radius parameter σ, i.e.,

Kσ(x − xk) = exp(−
||x − xk||

2

σ2
) (5)

The relevance score computed in Eq. 4 actually has a very
intuitive explanation. For each image x, the neighbors Xi

Gaussian Kernel
Density Estimation Random walk on Tag graphp(t|x)



TAGRANKING

13

[Liu et al. 2009] Instance-Based Tag + Image

• Suitable only for Tag Retrieval: it doesn’t add or remove user tags. 

• lx is a tie-breaker when two images have the same tag rank.

• Complexity O(m · d · n + L · m2) – KDE on n images + L iter 
random walk

• Memory O(max(d · n, m2)) – max of the two steps

Socializing the Semantic Gap X:17
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x

} is a list of l
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i

) de-
notes a semantic similarity between two tags. SemanticField explicitly assumes that
several tags are associated to visual data and their coexistence is accounted in the
evaluation of tag relevance. Following [Zhu et al. 2012], the similarity is computed by
combining the Flickr context similarity and the WordNet Wu-Palmer similarity [Wu
and Palmer 1994]. The WordNet based similarity exploits path length in the Word-
Net hierarchy to infer tag relatedness. We make a small revision of [Zhu et al. 2012],
i.e. combining the two similarities by averaging instead of multiplication, because the
former strategy produces slightly better results. SemanticField requires no training
except for computing tag-wise similarity, which can be computed offline and is thus
omitted. Having all tag-wise similarities in memory, applying Eq. (4) requires l

x

ta-
ble lookups per tag. Hence, the computational complexity is O(m · l

x

), and O(m2

) for
memory.

2. TagRanking [Liu et al. 2009]. The tag ranking algorithm consists of two steps.
Given an image x and its tags, the first step produces an initial tag relevance score
for each of the tags, obtained by (Gaussian) kernel density estimation on a set of n̄ =

1, 000 images labeled with each tag, separately. Secondly, a random walk is performed
on a tag graph where the edges are weighted by a tag-wise similarity. We use the
same similarity as in SemanticField. Notice that when applied for tag retrieval, the
algorithm uses the rank of t instead of its score, i.e.,

f
TagRanking

(x, t) = �rank(t) +

1

l
x

, (5)

where rank(t) returns the rank of t produced by the tag ranking algorithm. The term
1

l

x

is a tie-breaker when two images have the same tag rank. Hence, for a given tag t,
TagRanking cannot distinguish relevant images from irrelevant images if t is the sole
tag assigned to them. It explicitly exploits the coexistence of several tags per image.
TagRanking has no learning stage. To derive tag ranks for Eq. 5, the main computation
is the kernel density estimation on n̄ socially-tagged examples for each tag, followed
by an L iteration random walk on the tag graph of m nodes. All this results in a com-
putation cost of O(m · d · n̄ + L · m2

) per test image. Because the two steps are executed
sequentially, the corresponding memory cost is O(max(dn̄, m2

)).
3. KNN [Makadia et al. 2010]. This algorithm estimates the relevance of a given

tag with respect to an image by first retrieving k nearest neighbors from S based on
a visual distance d, and then counting the tag occurrence in associated tags of the
neighborhood. In particular, KNN builds f

�

(x, t; ⇥) as:

f
KNN

(x, t) := k
t

, (6)

where k
t

is the number of images with t in the visual neighborhood of x. The instance-
based KNN requires no training. The main computation of f

KNN

is to find k nearest
neighbors from S, which has a complexity of O(d · |S| + k · log |S|) per test image, and
a memory footprint of O(d · |S|) to store all the d-dimensional feature vectors. It is
worth noting that these complexities are drawn from a straightforward implemen-
tation of k-nn search, and can be substantially reduced by employing more efficient
search techniques, c.f. [Jégou et al. 2011]. Accelerating KNN by the product quanti-
zation technique [Jégou et al. 2011] imposes an extra training step, where one has
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• kt is the number of images with t in the visual neighborhood of x.

• User tags on test image are not used. Not applicable to Tag 
Refinement.

• Complexity O(d · |S| + k · log|S|) – proportional to d feature
dimensionality and k nearest neighbors.

• Memory O(d · |S|) – d-dimensional features.

KNN
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Socializing the Semantic Gap X:17

image:

f
SemField

(x, t) :=

1

l
x

l

xX

i=1

sim(t, t
i

), (4)

where {t
1

, . . . , t
l

x

} is a list of l
x

social tags assigned to the image x, and sim(t, t
i

) de-
notes a semantic similarity between two tags. SemanticField explicitly assumes that
several tags are associated to visual data and their coexistence is accounted in the
evaluation of tag relevance. Following [Zhu et al. 2012], the similarity is computed by
combining the Flickr context similarity and the WordNet Wu-Palmer similarity [Wu
and Palmer 1994]. The WordNet based similarity exploits path length in the Word-
Net hierarchy to infer tag relatedness. We make a small revision of [Zhu et al. 2012],
i.e. combining the two similarities by averaging instead of multiplication, because the
former strategy produces slightly better results. SemanticField requires no training
except for computing tag-wise similarity, which can be computed offline and is thus
omitted. Having all tag-wise similarities in memory, applying Eq. (4) requires l

x

ta-
ble lookups per tag. Hence, the computational complexity is O(m · l

x

), and O(m2

) for
memory.

2. TagRanking [Liu et al. 2009]. The tag ranking algorithm consists of two steps.
Given an image x and its tags, the first step produces an initial tag relevance score
for each of the tags, obtained by (Gaussian) kernel density estimation on a set of n̄ =

1, 000 images labeled with each tag, separately. Secondly, a random walk is performed
on a tag graph where the edges are weighted by a tag-wise similarity. We use the
same similarity as in SemanticField. Notice that when applied for tag retrieval, the
algorithm uses the rank of t instead of its score, i.e.,

f
TagRanking

(x, t) = �rank(t) +

1

l
x

, (5)

where rank(t) returns the rank of t produced by the tag ranking algorithm. The term
1

l

x

is a tie-breaker when two images have the same tag rank. Hence, for a given tag t,
TagRanking cannot distinguish relevant images from irrelevant images if t is the sole
tag assigned to them. It explicitly exploits the coexistence of several tags per image.
TagRanking has no learning stage. To derive tag ranks for Eq. 5, the main computation
is the kernel density estimation on n̄ socially-tagged examples for each tag, followed
by an L iteration random walk on the tag graph of m nodes. All this results in a com-
putation cost of O(m · d · n̄ + L · m2

) per test image. Because the two steps are executed
sequentially, the corresponding memory cost is O(max(dn̄, m2

)).
3. KNN [Makadia et al. 2010]. This algorithm estimates the relevance of a given

tag with respect to an image by first retrieving k nearest neighbors from S based on
a visual distance d, and then counting the tag occurrence in associated tags of the
neighborhood. In particular, KNN builds f

�

(x, t; ⇥) as:

f
KNN

(x, t) := k
t

, (6)

where k
t

is the number of images with t in the visual neighborhood of x. The instance-
based KNN requires no training. The main computation of f

KNN

is to find k nearest
neighbors from S, which has a complexity of O(d · |S| + k · log |S|) per test image, and
a memory footprint of O(d · |S|) to store all the d-dimensional feature vectors. It is
worth noting that these complexities are drawn from a straightforward implemen-
tation of k-nn search, and can be substantially reduced by employing more efficient
search techniques, c.f. [Jégou et al. 2011]. Accelerating KNN by the product quanti-
zation technique [Jégou et al. 2011] imposes an extra training step, where one has
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Fig. 2. Learning tag relevance by neighbor voting. The tag relevance value of each tag is estimated by accumulating the neighbor votes it receives from visually
similar images of the seed image. In this example, since four neighbor images are labeled with bridge, the tag relevance value of bridge with respect to the seed
image is 4. Hence, we update the tag frequency of bridge from 1 to 4.

Query expansion methods augment the original query by
automatically adding relevant terms [30]–[32]. In [31], for
instance, the authors use synonyms from a dictionary, whereas
in [30], the authors select strongly related terms from text
snippets returned by web search engines. Another example is
[32], where the authors use clustering methods to find corre-
lated tags. Though adding more query terms may retrieve more
relevant results, how to choose appropriate expansion terms
requires further research [37].

In summary, the reranking and query expansion methods try
to rank images relevant with respect to a query ahead of ir-
relevant images. However, the methods leave the fundamental
problem of subjective user tagging unaddressed.

Though we have witnessed great efforts devoted into im-
proving both image tagging and image retrieval, the efforts are
almost disconnected. Recent research, e.g., [38]–[41], inves-
tigates the potential of leveraging automatic tagging results
for image and video retrieval. To the best of our knowledge,
however, up until now, the solutions to the two problems are
still separated, including our previous works [11], [22] which
deal with social image retrieval and social image tagging, re-
spectively. This work is an attempt to solve image ranking and
tag ranking in a unified tag relevance learning framework. In
contrast to approaches for image ranking which are query-de-
pendent, e.g., [25] and [28], our algorithm is query-independent.
This advantage allows us to run the algorithm offline without
imposing extra waiting time on users. Further, by updating tag
frequency with the learned tag frequency, we seamlessly embed
visual information into current tag-based social image retrieval
paradigms. For automatic image tagging, our algorithm shares
similarities with the model-free approaches, e.g., [7], [8], and
[21], since they can be regarded as propagating tags between
neighbor images. Note, however, that our algorithm is more

general as it is applicable to both image retrieval and tagging.
Moreover, we provide a formal analysis which is missing in
previous studies.

III. LEARNING TAG RELEVANCE BY NEIGHBOR VOTING

In order to fulfill image retrieval, we seek a tag relevance
measurement such that images relevant with respect to a tag are
ranked ahead of images irrelevant with respect to the tag. Mean-
while, to fulfill image tagging, the measurement should rank
tags relevant with respect to an image ahead of tags irrelevant
with respect to the image. Recall the intuition that if different
persons label visually similar images using the same tags, these
tags are likely to reflect objective aspects of the visual content.
This intuition suggests that the relevance of a tag given an image
might be inferred from how visual neighbors of that image are
tagged: the more frequent the tag occurs in the neighbor set, the
more relevant it might be, as illustrated in Fig. 2. However, some
frequently occurring tags, such as “2007” and “2008”, are un-
likely to be relevant to the majority of images. Hence, a good
tag relevance measurement should take into account the distri-
bution of a tag in the neighbor set and in the entire collection,
simultaneously. Motivated by the informal analysis above, we
propose a neighbor voting algorithm for learning tag relevance,
as depicted in Fig. 2. Though the proposed algorithm is simple,
we deem it important to gain insight into the rationale for the al-
gorithm. The following two subsections serve for this purpose.
Concretely, we first define in Section III-A two criteria to de-
scribe the general objective of tag relevance learning. Then, in
Section III-B, we provide a formal analysis of user tagging and
content-based nearest neighbor search. We see how our algo-
rithm is naturally derived from the analysis. Finally, we describe
in detail the algorithm in Section III-C.

• Adds two
improvements w.r.t
KNN:

- Unique-user
constraint

- Tag prior
frequency



• kt is the number of images with t in the visual neighborhood of x.
• nt is the frequency of tag t in S.

• Like KNN, user tags on test image are not used. Not applicable to 
Tag Refinement.

• Complexity O(d · |S| + k · log|S|) – same complexity as KNN
• Memory O(d · |S|) 
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to construct multiple vector quantizers by K-means clustering, and further use the
quantizers to compress the original feature vector into a few codes.

4. TagVote [Li et al. 2009b]. The TagVote algorithm estimates the relevance of a tag
t w.r.t. an image x by counting the occurrence frequency of t in social annotations of the
visual neighbors of x. Differently from KNN, TagVote exploits the user element in the
social framework and introduces a unique-user constraint on the neighbor set to make
the voting result more objective. Each user has at most one image in the neighbor
set. Moreover, TagVote also takes into account tag prior frequency to suppress over
frequent tags. In particular, the TagVote algorithm builds f

�

(x, t; ⇥) as

f
TagV ote

(x, t) := k
t

� k
n
t

|S| , (7)

where n
t

is the number of images labeled with t in S. Following [Li et al. 2009b], we
set k to be 1,000 for both KNN and TagVote. TagVote has the same order of complexity
as KNN.

5. TagProp [Guillaumin et al. 2009; Verbeek et al. 2010]. TagProp employs neighbor
voting plus distance metric learning. A probabilistic framework is proposed where the
probability of using images in the neighborhood is defined based on rank or distance-
based weights. TagProp builds f

�

(x, t; ⇥) as:

f
TagProp

(x, t) :=

kX

j

⇡
j

· I(x
j

, t), (8)

where ⇡
j

is a non-negative weight indicating the importance of the j-th neighbor x
j

,
and I(x

j

, t) returns 1 if x
j

is labeled with t, and 0 otherwise. Following [Verbeek et al.
2010], we use k = 1, 000 and the rank-based weights, which showed similar perfor-
mance to the distance-based weights. Differently from TagVote that uses tag prior
to penalize frequent tags, TagProp promotes rare tags and penalizes frequent ones
by training a logistic model per tag upon f

TagProp

(x, t). The use of the logistic model
makes TagProp a model-based method. In contrast to KNN and TagVote wherein vi-
sual neighbors are treated equally, TagProp employs distance metric learning to re-
weight the neighbors, yielding a learning complexity of O(l · m · k) where l is the num-
ber of gradient descent iterations it needs (typically less than 10). TagProp maintains
2m extra parameters for the logistic models, though their storage cost is ignorable
compared to the visual features. Therefore, running Eq. (8) has the same order of com-
plexity as KNN and TagVote.

6. TagCooccur [Sigurbjörnsson and van Zwol 2008]. While both SemanticField and
TagCooccur are tag-based, the main difference lies in how they compute the contri-
bution of a specific tag to the test tag’s relevance score. Different from SemanticField
which uses tag similarities, TagCooccur uses the test tag’s rank in the tag ranking list
created by sorting all tags in terms of their co-occurrence frequency with the tag in a
social framework. In addition, TagCooccur takes into account the stability of the tag,
measured by its frequency. The method is implemented as

f
tagcooccur

(x, t) = descriptive(t)

l

xX

i=1

vote(t
i

, t) · rank-promotion(t
i

, t) · stability(t
i

), (9)

where descriptive(t) is to damp the contribution of tags with a very high-frequency,
rank-promotion(t

i

, t) measures the rank-based contribution of t
i

to t, stability(t
i

) for
promoting tags for which the statistics are more stable, and vote(t

i

, t) is 1 if t is among
the top 25 ranked tags of t

i

, and 0 otherwise. TagCooccur has the same order of com-
plexity as SemanticField.
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parametric models. Examples of such techniques include
methods based on label diffusion over a similarity graph
of labeled and unlabeled images [16, 22], or learning dis-
criminative models in neighborhoods of test images [27].
A simpler adhoc nearest-neighbor tag transfer mechanism
was recently introduced [17], showing state-of-the-art per-
formance. There, nearest neighbors are determined by the
average of several distances computed from different visual
features. The authors also combine the base distances by
learning a binary classifier separating image pairs that have
several tags in common from images that do not share any
tags. However, this linear distance combination did not give
better results than an equally weighted combination.

3. Tag Relevance Prediction Models

Our goal is to predict the relevance of annotation tags
for images. Given these relevance predictions we can an-
notate images by ranking the tags for a given image, or
do keyword based retrieval by ranking images for a given
tag. Our proposed method is based on a weighted nearest
neighbor approach, inspired by recent successful methods
[5, 11, 13, 17], that propagate the annotations of training
images to new images. Our models are learnt in a discrimi-
native manner, rather than using held-out data [5], or using
neighbors in an adhoc manner [17]. We assume that some
visual similarity or distance measures between images are
given, abstracting away from their precise definition.

3.1. Weighted Nearest Neighbor Tag Prediction

To model image annotations, we use Bernoulli models
for each keyword. This choice is natural because keywords,
unlike natural text where word frequency is meaningful, are
either present or absent. The dependencies between key-
words in the training data are not explicitly modeled, but
are implicitly exploited in our model.

We use yiw 2 {�1,+1} to denote the absence/presence
of keyword w for image i, hence encoding the image anno-
tations. The tag presence prediction p(yiw = +1) for image
i is a weighted sum over the training images, indexed by j:

p(yiw = +1) =

X

j

⇡ijp(yiw = +1|j), (1)

p(yiw = +1|j) =

(
1� ✏ for yjw = +1,

✏ otherwise,
(2)

where ⇡ij denotes the weight of image j for predicting the
tags of image i. We require that ⇡ij � 0, and

P
j ⇡ij = 1.

We use ✏ to avoid zero prediction probabilities, and in prac-
tice we set ✏ = 10

�5. To estimate the parameters that
control the weights ⇡ij we maximize the log-likelihood of
the predictions of training annotations. Taking care to set
the weight of training images to themselves to zero, i.e .

⇡ii = 0, our objective is to maximize

L =

X

i,w

ciw ln p(yiw), (3)

where ciw is a cost that takes into account the imbalance
between keyword presence and absence. Indeed, in prac-
tice, there are many more tag absences than presences, and
absences are much noisier than presences. This is because
most tags in annotations are relevant, but often the annota-
tion does not include all relevant tags. We set ciw = 1/n

+ if
yiw = +1, where n

+ is the total number of positive labels,
and likewise ciw = 1/n

� when yiw = �1.

Rank-based weights. In the case of rank-based weights
over K neighbors we set ⇡ij = �k if j is the k-th nearest
neighbor of i. The data log-likelihood (3) is concave in the
parameters �k and can be estimated using an EM-algorithm,
or a projected-gradient algorithm. The derivative of Eq. (3)
with respect to �k equals

@L
@�k

=

X

i,w

ciwp(yiw|nik)

p(yiw)

, (4)

where nik denotes the index of the k-th neighbor of image
i. The number of parameters equals the neighborhood size
K. We refer to this variant as RK, for “rank-based”.

Distance-based weights. The other possibility is to de-
fine the weights directly as a function of the distance, rather
than the rank. This has the advantage that weights will de-
pend smoothly on the distance, which is crucial if the dis-
tance is to be adjusted during training. The weights of train-
ing images j for an image i are redefined as

⇡ij =

exp(�d✓(i, j))P
j0 exp(�d✓(i, j

0
))

, (5)

where d✓ is a distance metric with parameters ✓ that we
want to optimize. Note that the weights ⇡ij decay exponen-
tially with distance d✓ to image i. Choices for d✓ include
Mahalanobis distances dM parametrized by a semi-definite
matrix M, and dw(i, j) = w>dij where dij is a vector of
base distances between image i and j, and w contains the
positive coefficients of the linear distance combination. The
number of parameters equals the number of base distances
that are combined. In the rest of the paper we focus on this
particular case. When we use a single distance, referred to
as the SD variant, w is a scalar that controls the decay of
the weights with distance, and it is the only parameter of
the model. When multiple distances are used, the variant is
referred to as ML, for “metric learning”.

Again, rather than using an EM-algorithm we directly
maximize the log-likelihood using a projected gradient al-
gorithm under positivity constraints on the elements of w.

Probability of tag w on image I

parametric models. Examples of such techniques include
methods based on label diffusion over a similarity graph
of labeled and unlabeled images [16, 22], or learning dis-
criminative models in neighborhoods of test images [27].
A simpler adhoc nearest-neighbor tag transfer mechanism
was recently introduced [17], showing state-of-the-art per-
formance. There, nearest neighbors are determined by the
average of several distances computed from different visual
features. The authors also combine the base distances by
learning a binary classifier separating image pairs that have
several tags in common from images that do not share any
tags. However, this linear distance combination did not give
better results than an equally weighted combination.

3. Tag Relevance Prediction Models

Our goal is to predict the relevance of annotation tags
for images. Given these relevance predictions we can an-
notate images by ranking the tags for a given image, or
do keyword based retrieval by ranking images for a given
tag. Our proposed method is based on a weighted nearest
neighbor approach, inspired by recent successful methods
[5, 11, 13, 17], that propagate the annotations of training
images to new images. Our models are learnt in a discrimi-
native manner, rather than using held-out data [5], or using
neighbors in an adhoc manner [17]. We assume that some
visual similarity or distance measures between images are
given, abstracting away from their precise definition.

3.1. Weighted Nearest Neighbor Tag Prediction

To model image annotations, we use Bernoulli models
for each keyword. This choice is natural because keywords,
unlike natural text where word frequency is meaningful, are
either present or absent. The dependencies between key-
words in the training data are not explicitly modeled, but
are implicitly exploited in our model.

We use yiw 2 {�1,+1} to denote the absence/presence
of keyword w for image i, hence encoding the image anno-
tations. The tag presence prediction p(yiw = +1) for image
i is a weighted sum over the training images, indexed by j:

p(yiw = +1) =

X

j

⇡ijp(yiw = +1|j), (1)

p(yiw = +1|j) =

(
1� ✏ for yjw = +1,

✏ otherwise,
(2)

where ⇡ij denotes the weight of image j for predicting the
tags of image i. We require that ⇡ij � 0, and

P
j ⇡ij = 1.

We use ✏ to avoid zero prediction probabilities, and in prac-
tice we set ✏ = 10

�5. To estimate the parameters that
control the weights ⇡ij we maximize the log-likelihood of
the predictions of training annotations. Taking care to set
the weight of training images to themselves to zero, i.e .

⇡ii = 0, our objective is to maximize

L =

X

i,w

ciw ln p(yiw), (3)

where ciw is a cost that takes into account the imbalance
between keyword presence and absence. Indeed, in prac-
tice, there are many more tag absences than presences, and
absences are much noisier than presences. This is because
most tags in annotations are relevant, but often the annota-
tion does not include all relevant tags. We set ciw = 1/n

+ if
yiw = +1, where n

+ is the total number of positive labels,
and likewise ciw = 1/n

� when yiw = �1.

Rank-based weights. In the case of rank-based weights
over K neighbors we set ⇡ij = �k if j is the k-th nearest
neighbor of i. The data log-likelihood (3) is concave in the
parameters �k and can be estimated using an EM-algorithm,
or a projected-gradient algorithm. The derivative of Eq. (3)
with respect to �k equals

@L
@�k

=

X

i,w

ciwp(yiw|nik)

p(yiw)

, (4)

where nik denotes the index of the k-th neighbor of image
i. The number of parameters equals the neighborhood size
K. We refer to this variant as RK, for “rank-based”.

Distance-based weights. The other possibility is to de-
fine the weights directly as a function of the distance, rather
than the rank. This has the advantage that weights will de-
pend smoothly on the distance, which is crucial if the dis-
tance is to be adjusted during training. The weights of train-
ing images j for an image i are redefined as

⇡ij =

exp(�d✓(i, j))P
j0 exp(�d✓(i, j

0
))

, (5)

where d✓ is a distance metric with parameters ✓ that we
want to optimize. Note that the weights ⇡ij decay exponen-
tially with distance d✓ to image i. Choices for d✓ include
Mahalanobis distances dM parametrized by a semi-definite
matrix M, and dw(i, j) = w>dij where dij is a vector of
base distances between image i and j, and w contains the
positive coefficients of the linear distance combination. The
number of parameters equals the number of base distances
that are combined. In the rest of the paper we focus on this
particular case. When we use a single distance, referred to
as the SD variant, w is a scalar that controls the decay of
the weights with distance, and it is the only parameter of
the model. When multiple distances are used, the variant is
referred to as ML, for “metric learning”.

Again, rather than using an EM-algorithm we directly
maximize the log-likelihood using a projected gradient al-
gorithm under positivity constraints on the elements of w.

Probability of tag w on neighbor J
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to construct multiple vector quantizers by K-means clustering, and further use the
quantizers to compress the original feature vector into a few codes.

4. TagVote [Li et al. 2009b]. The TagVote algorithm estimates the relevance of a tag
t w.r.t. an image x by counting the occurrence frequency of t in social annotations of the
visual neighbors of x. Differently from KNN, TagVote exploits the user element in the
social framework and introduces a unique-user constraint on the neighbor set to make
the voting result more objective. Each user has at most one image in the neighbor
set. Moreover, TagVote also takes into account tag prior frequency to suppress over
frequent tags. In particular, the TagVote algorithm builds f

�

(x, t; ⇥) as

f
TagV ote

(x, t) := k
t

� k
n
t

|S| , (7)

where n
t

is the number of images labeled with t in S. Following [Li et al. 2009b], we
set k to be 1,000 for both KNN and TagVote. TagVote has the same order of complexity
as KNN.

5. TagProp [Guillaumin et al. 2009; Verbeek et al. 2010]. TagProp employs neighbor
voting plus distance metric learning. A probabilistic framework is proposed where the
probability of using images in the neighborhood is defined based on rank or distance-
based weights. TagProp builds f

�

(x, t; ⇥) as:

f
TagProp

(x, t) :=

kX

j

⇡
j

· I(x
j

, t), (8)

where ⇡
j

is a non-negative weight indicating the importance of the j-th neighbor x
j

,
and I(x

j

, t) returns 1 if x
j

is labeled with t, and 0 otherwise. Following [Verbeek et al.
2010], we use k = 1, 000 and the rank-based weights, which showed similar perfor-
mance to the distance-based weights. Differently from TagVote that uses tag prior
to penalize frequent tags, TagProp promotes rare tags and penalizes frequent ones
by training a logistic model per tag upon f

TagProp

(x, t). The use of the logistic model
makes TagProp a model-based method. In contrast to KNN and TagVote wherein vi-
sual neighbors are treated equally, TagProp employs distance metric learning to re-
weight the neighbors, yielding a learning complexity of O(l · m · k) where l is the num-
ber of gradient descent iterations it needs (typically less than 10). TagProp maintains
2m extra parameters for the logistic models, though their storage cost is ignorable
compared to the visual features. Therefore, running Eq. (8) has the same order of com-
plexity as KNN and TagVote.

6. TagCooccur [Sigurbjörnsson and van Zwol 2008]. While both SemanticField and
TagCooccur are tag-based, the main difference lies in how they compute the contri-
bution of a specific tag to the test tag’s relevance score. Different from SemanticField
which uses tag similarities, TagCooccur uses the test tag’s rank in the tag ranking list
created by sorting all tags in terms of their co-occurrence frequency with the tag in a
social framework. In addition, TagCooccur takes into account the stability of the tag,
measured by its frequency. The method is implemented as

f
tagcooccur

(x, t) = descriptive(t)

l

xX

i=1

vote(t
i

, t) · rank-promotion(t
i

, t) · stability(t
i

), (9)

where descriptive(t) is to damp the contribution of tags with a very high-frequency,
rank-promotion(t

i

, t) measures the rank-based contribution of t
i

to t, stability(t
i

) for
promoting tags for which the statistics are more stable, and vote(t

i

, t) is 1 if t is among
the top 25 ranked tags of t

i

, and 0 otherwise. TagCooccur has the same order of com-
plexity as SemanticField.
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parametric models. Examples of such techniques include
methods based on label diffusion over a similarity graph
of labeled and unlabeled images [16, 22], or learning dis-
criminative models in neighborhoods of test images [27].
A simpler adhoc nearest-neighbor tag transfer mechanism
was recently introduced [17], showing state-of-the-art per-
formance. There, nearest neighbors are determined by the
average of several distances computed from different visual
features. The authors also combine the base distances by
learning a binary classifier separating image pairs that have
several tags in common from images that do not share any
tags. However, this linear distance combination did not give
better results than an equally weighted combination.

3. Tag Relevance Prediction Models

Our goal is to predict the relevance of annotation tags
for images. Given these relevance predictions we can an-
notate images by ranking the tags for a given image, or
do keyword based retrieval by ranking images for a given
tag. Our proposed method is based on a weighted nearest
neighbor approach, inspired by recent successful methods
[5, 11, 13, 17], that propagate the annotations of training
images to new images. Our models are learnt in a discrimi-
native manner, rather than using held-out data [5], or using
neighbors in an adhoc manner [17]. We assume that some
visual similarity or distance measures between images are
given, abstracting away from their precise definition.

3.1. Weighted Nearest Neighbor Tag Prediction

To model image annotations, we use Bernoulli models
for each keyword. This choice is natural because keywords,
unlike natural text where word frequency is meaningful, are
either present or absent. The dependencies between key-
words in the training data are not explicitly modeled, but
are implicitly exploited in our model.

We use yiw 2 {�1,+1} to denote the absence/presence
of keyword w for image i, hence encoding the image anno-
tations. The tag presence prediction p(yiw = +1) for image
i is a weighted sum over the training images, indexed by j:

p(yiw = +1) =

X

j

⇡ijp(yiw = +1|j), (1)

p(yiw = +1|j) =

(
1� ✏ for yjw = +1,

✏ otherwise,
(2)

where ⇡ij denotes the weight of image j for predicting the
tags of image i. We require that ⇡ij � 0, and

P
j ⇡ij = 1.

We use ✏ to avoid zero prediction probabilities, and in prac-
tice we set ✏ = 10

�5. To estimate the parameters that
control the weights ⇡ij we maximize the log-likelihood of
the predictions of training annotations. Taking care to set
the weight of training images to themselves to zero, i.e .

⇡ii = 0, our objective is to maximize

L =

X

i,w

ciw ln p(yiw), (3)

where ciw is a cost that takes into account the imbalance
between keyword presence and absence. Indeed, in prac-
tice, there are many more tag absences than presences, and
absences are much noisier than presences. This is because
most tags in annotations are relevant, but often the annota-
tion does not include all relevant tags. We set ciw = 1/n

+ if
yiw = +1, where n

+ is the total number of positive labels,
and likewise ciw = 1/n

� when yiw = �1.

Rank-based weights. In the case of rank-based weights
over K neighbors we set ⇡ij = �k if j is the k-th nearest
neighbor of i. The data log-likelihood (3) is concave in the
parameters �k and can be estimated using an EM-algorithm,
or a projected-gradient algorithm. The derivative of Eq. (3)
with respect to �k equals

@L
@�k

=

X

i,w

ciwp(yiw|nik)

p(yiw)

, (4)

where nik denotes the index of the k-th neighbor of image
i. The number of parameters equals the neighborhood size
K. We refer to this variant as RK, for “rank-based”.

Distance-based weights. The other possibility is to de-
fine the weights directly as a function of the distance, rather
than the rank. This has the advantage that weights will de-
pend smoothly on the distance, which is crucial if the dis-
tance is to be adjusted during training. The weights of train-
ing images j for an image i are redefined as

⇡ij =

exp(�d✓(i, j))P
j0 exp(�d✓(i, j

0
))

, (5)

where d✓ is a distance metric with parameters ✓ that we
want to optimize. Note that the weights ⇡ij decay exponen-
tially with distance d✓ to image i. Choices for d✓ include
Mahalanobis distances dM parametrized by a semi-definite
matrix M, and dw(i, j) = w>dij where dij is a vector of
base distances between image i and j, and w contains the
positive coefficients of the linear distance combination. The
number of parameters equals the number of base distances
that are combined. In the rest of the paper we focus on this
particular case. When we use a single distance, referred to
as the SD variant, w is a scalar that controls the decay of
the weights with distance, and it is the only parameter of
the model. When multiple distances are used, the variant is
referred to as ML, for “metric learning”.

Again, rather than using an EM-algorithm we directly
maximize the log-likelihood using a projected gradient al-
gorithm under positivity constraints on the elements of w.
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i. The number of parameters equals the neighborhood size
K. We refer to this variant as RK, for “rank-based”.

Distance-based weights. The other possibility is to de-
fine the weights directly as a function of the distance, rather
than the rank. This has the advantage that weights will de-
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want to optimize. Note that the weights ⇡ij decay exponen-
tially with distance d✓ to image i. Choices for d✓ include
Mahalanobis distances dM parametrized by a semi-definite
matrix M, and dw(i, j) = w>dij where dij is a vector of
base distances between image i and j, and w contains the
positive coefficients of the linear distance combination. The
number of parameters equals the number of base distances
that are combined. In the rest of the paper we focus on this
particular case. When we use a single distance, referred to
as the SD variant, w is a scalar that controls the decay of
the weights with distance, and it is the only parameter of
the model. When multiple distances are used, the variant is
referred to as ML, for “metric learning”.

Again, rather than using an EM-algorithm we directly
maximize the log-likelihood using a projected gradient al-
gorithm under positivity constraints on the elements of w.
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• A logistic regressor per tag upon fTagProp, is added to promote rare 
tags and penalize frequent ones.

• User tags on test image are not used. Not applicable to Tag 
Refinement.

• Complexity O(l · m · k) – l steps of gradient descent
• Memory O(d · |S|) – same as KNN, extra 2m for logistic regression

TAGPROP
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[Guillaumin et al. 2009] Model-Based Tag + Image

f

TagProp

(x, t) := �

⇣
at ·

� kX

j

⇡j · I(xj , t)
�
+ bt

⌘
�(z) =

1

1 + e�z
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Media	\ Learning Instance Based Model Based Transductive Based

Tag SemanticField
[Zhu	et	al.	2012]	

TagCooccur
[Sigurbjörnssonand	van	Zwol2008]	

Tag	+	Image TagRanking
[Liu	et	al.	2009]	

KNN	
[Makadia et	al.	2010]	

TagProp
[Guillaumin et	al.	2009]	

TagFeature
[Chen	et	al.	2012]	

RelExample
[Li	and Snoek	2013]	

RobustPCA
[Zhu	et	al.	2010]	

Tag	+	Image	+	User TagVote
TagCooccur+	
[Li	et	al.	2009b]	

TensorAnalysis
[Sang	et	al.	2012a]	
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[Sigurbjörnsson and van Zwol 2008] Instance-Based Tag

• Refines user tags by looking for co-occurrences in training set.

• Tags are given a score based on an heuristic that takes into account ranks, 
stability and frequency of tags.
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Figure 4: System overview of the tag recommendation process.

Vote. The voting strategy computes a score for each candi-
date tag c 2 C, where a vote for c is cast, whenever c 2 Cu.

vote(u, c) =

⇢
1 if c 2 Cu

0 otherwise
(3)

A list of recommended tags R is obtained by sorting the
candidate tags on the number of votes. A score is therefore
computed as:

score(c) :=
X

u2U

vote(u, c), (4)

Sum. The summing strategy also takes the union of all can-
didate tag lists (C), and sums over the co-occurrence values
of the tags, thus the score of a candidate tag c 2 C as cal-
culated as:

score(c) :=
X

u2U

(P (c|u) , if c 2 Cu) (5)

The function P (c|u) calculates the asymmetric co-occurrence
value, as defined in Equation 2. Note that the score of candi-
date tag c is obtained by only summing over the tags c 2 Cu.

We will use these two aggregation strategies as the base-
line for our evaluation as is presented in Section 6.

Promotion. In Section 3 we have made a number of obser-
vations with respect to tagging behaviour. In this section,
we translate these observations into a “promotion function”
to promote more descriptive tags for recommendation.

From the tag frequency distribution presented in Figure 1,
we learnt that both the head and the tail of the power law
would probably not contain good tags for recommendation.
Tags in the tail were judged to be unstable descriptors, due
to their infrequent nature. The head on the other hand
contained tags that would be too generic to be useful (2006,
2005, wedding, etc.).

• Stability-promotion. Considered that user-defined
tags with very low collection frequency are less reliable
than tags with higher collection frequency, we want to
promote those tags for which the statistics are more
stable. This is achieved with the following function:

stability(u) :=
ks

ks + abs(ks � log(|u|)) (6)

In principle this is a weighting function that weights
the impact of the candidate tags for a given user-
defined tag. |u| is the collection frequency of the tag
u and ks is a parameter in this function, which is de-
termined by training. The function abs(x) returns the
absolute value of x.

• Descriptiveness-promotion. Tags with very high
frequency are likely to be too general for individual
photos. We want to promote the descriptiveness by
damping the contribution of candidate tags with a very
high-frequency:

descriptive(c) :=
kd

kd + abs(kd � log(|c|)) (7)

This is another weighting function, now only applied to
re-value the weight of a candidate tag. kd is parameter
in this function, and is configured by training.

• Rank-promotion. The co-occurrence values of tags
provide good estimates of the relevance of a candi-
date tag for a user-defined tag. In principle, this is
already used by the aggregation strategy for summing,
but we observed that the co-occurrence values decline
very fast. The rank promotion does not look at the co-
occurrence value, but at the position r of the candidate
tag c 2 Cu for a given user-defined tag u:

rank(u, c) =
kr

kr + (r � 1)
(8)
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• Descriptive lowers the contribution of very high frequency tags.
• Rank-promotion measures tags contribution w.r.t tag ranks.
• Stability promotes tags for which statistics are more stable.
• Vote is 1 if t is among the 25 top ranked tags of ti, 0 otherwise.

• Depends on user tags of the test image, not applicable to Tag 
Assignment. 

• Complexity O(m · lx) – same as SemanticField
• Memory O(m2)
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TAGCOOCCUR
[Sigurbjörnsson and van Zwol 2008] Instance-Based Tag

X:18 X. Li et al.

to construct multiple vector quantizers by K-means clustering, and further use the
quantizers to compress the original feature vector into a few codes.

4. TagVote [Li et al. 2009b]. The TagVote algorithm estimates the relevance of a tag
t w.r.t. an image x by counting the occurrence frequency of t in social annotations of the
visual neighbors of x. Differently from KNN, TagVote exploits the user element in the
social framework and introduces a unique-user constraint on the neighbor set to make
the voting result more objective. Each user has at most one image in the neighbor
set. Moreover, TagVote also takes into account tag prior frequency to suppress over
frequent tags. In particular, the TagVote algorithm builds f

�

(x, t; ⇥) as

f
TagV ote

(x, t) := k
t

� k
n
t

|S| , (7)

where n
t

is the number of images labeled with t in S. Following [Li et al. 2009b], we
set k to be 1,000 for both KNN and TagVote. TagVote has the same order of complexity
as KNN.

5. TagProp [Guillaumin et al. 2009; Verbeek et al. 2010]. TagProp employs neighbor
voting plus distance metric learning. A probabilistic framework is proposed where the
probability of using images in the neighborhood is defined based on rank or distance-
based weights. TagProp builds f

�

(x, t; ⇥) as:

f
TagProp

(x, t) :=

kX

j

⇡
j

· I(x
j

, t), (8)

where ⇡
j

is a non-negative weight indicating the importance of the j-th neighbor x
j

,
and I(x

j

, t) returns 1 if x
j

is labeled with t, and 0 otherwise. Following [Verbeek et al.
2010], we use k = 1, 000 and the rank-based weights, which showed similar perfor-
mance to the distance-based weights. Differently from TagVote that uses tag prior
to penalize frequent tags, TagProp promotes rare tags and penalizes frequent ones
by training a logistic model per tag upon f

TagProp

(x, t). The use of the logistic model
makes TagProp a model-based method. In contrast to KNN and TagVote wherein vi-
sual neighbors are treated equally, TagProp employs distance metric learning to re-
weight the neighbors, yielding a learning complexity of O(l · m · k) where l is the num-
ber of gradient descent iterations it needs (typically less than 10). TagProp maintains
2m extra parameters for the logistic models, though their storage cost is ignorable
compared to the visual features. Therefore, running Eq. (8) has the same order of com-
plexity as KNN and TagVote.

6. TagCooccur [Sigurbjörnsson and van Zwol 2008]. While both SemanticField and
TagCooccur are tag-based, the main difference lies in how they compute the contri-
bution of a specific tag to the test tag’s relevance score. Different from SemanticField
which uses tag similarities, TagCooccur uses the test tag’s rank in the tag ranking list
created by sorting all tags in terms of their co-occurrence frequency with the tag in a
social framework. In addition, TagCooccur takes into account the stability of the tag,
measured by its frequency. The method is implemented as

f
tagcooccur

(x, t) = descriptive(t)

l

xX

i=1

vote(t
i

, t) · rank-promotion(t
i

, t) · stability(t
i

), (9)

where descriptive(t) is to damp the contribution of tags with a very high-frequency,
rank-promotion(t

i

, t) measures the rank-based contribution of t
i

to t, stability(t
i

) for
promoting tags for which the statistics are more stable, and vote(t

i

, t) is 1 if t is among
the top 25 ranked tags of t

i

, and 0 otherwise. TagCooccur has the same order of com-
plexity as SemanticField.
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TAGCOOCCUR+
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[Li et al. 2009b] Instance-Based Tag + Image

• A variant of TagCooccur that is improved by considering the image content
in addition to solely user tags.

• The heuristic is updated by multipling TagCooccur score with a corrective
factor based on Tag Vote scores.

• rc is the rank of t when sorting ftagvote(x,t) in descending order. kc is a 
positive weighting parameter.

• Complexity O(d · |S| + k · log|S|) – same complexity as TagVote
• Memory O(d · |S|) 

Socializing the Semantic Gap X:19

7. TagCooccur+ [Li et al. 2009b]. TagCooccur+ is proposed to improve TagCooccur
by adding the visual content. This is achieved by multiplying f

tagcooccur

(x, t) with a
content-based term, i.e.,

f
tagcooccur+

(x, t) = f
tagcooccur

(x, t) · k
c

k
c

+ r
c

(t) � 1

, (10)

where r
c

(t) is the rank of t when sorting the vocabulary by f
TagV ote

(x, t) in descending
order, and k

c

is a positive weighting parameter, which is empirically set to 1. While
TagCooccur+ is grounded on TagCooccur and TagVote, the complexity of the former
is ignorable compared to the latter, so the complexity of TagCooccurs+ is the same as
KNN.

8. TagFeature [Chen et al. 2012]. The basic idea is to enrich image features by
adding an extra tag feature. It thus relies on the possible presence of several tags per
image in the training set. In particular, a tag vocabulary that consists of d0 most fre-
quent tags in S is constructed first. Then, for each tag a two-class linear SVM classifier
is trained using LIBLINEAR [Fan et al. 2008]. The positive training set consists of p
images labeled with the tag in S, and the same amount of negative training examples
are randomly sampled from images not labeled with the tag. The probabilistic output
of the classifier, obtained by the Platt’s scaling [Lin et al. 2007], corresponds to a spe-
cific dimension in the tag feature. By concatenating the tag and visual features, an
augmented feature of d + d0 dimension is obtained. For a test tag t, its tag relevance
function f

TagFeature

(x, t) is obtained by re-training an SVM classifier using the aug-
mented feature. The linear property of the classifier allows us to first sum up all the
support vectors into a single vector and consequently to classify a test image by the
inner product with this vector. That is,

f
TagFeature

(x, t) := b+ < x
t

, x >, (11)

where x
t

is the weighted sum of all support vectors and b the intercept. To build mean-
ingful classifiers, we use tags that have at least 100 positive examples. While d0 is
chosen to be 400 in [Chen et al. 2012], the two smaller training sets, namely Train10k
and Train100k, have 76 and 396 tags satisfying the above requirement. We empiri-
cally set p to 500, and do a random down-sampling if the amount of images for a tag
exceeds this number. For TagFeature, learning a linear classifier for each tag from p
positive and p negative examples requires O((d + d0)p) in computation and O((d + d0)p)

in memory [Fan et al. 2008]. Running Eq. (11) for all the m tags and n images needs
O(nm(d + d0)) in computation and O(m(d + d0)) in memory.

9. RelExample [Li and Snoek 2013]. Different from TagFeature [Chen et al. 2012]
that learns from tagged images, RelExample exploits positive and negative training
examples which are deemed to be more relevant with respect to the test tag t. In par-
ticular, relevant positive examples are selected from S by combining SemanticField
and TagVote in a late fusion manner. For negative training example acquisition, they
leverage Negative Bootstrap [Li et al. 2013], a negative sampling algorithm which it-
eratively selects negative examples deemed most relevant for improving classification.
A T -iteration Negative Bootstrap will produce T meta classifiers. The corresponding
tag relevance function is written as

f
RelExample

(x, t) :=

1

T

TX

l=1

(b
l

+

n

lX

j=1

↵
l,j

· y
l,j

· K(x, x
l,j

)), (12)

where ↵
l,j

is a positive coefficient of support vector x
l,j

, y
l,j

2 {�1, 1} is class label, and
n
l

the number of support vectors in the l-th classifier. For the sake of efficiency, the
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Model-Based Tag + Image

• Train per-tag classifier with tagged images as positive examples and 
random untagged images as negative examples.

• Since rare tags are only
associated with a limited
number of positive training 
images, they may degrade
SVM classifiers
performance.

SVM - sunset

not tagged with sunset
randomly selected

tagged with sunset

Sunset?

0.9

Visual 
Features

[.4 .2 .5 .6 ...]

Visual 
Features

[.1 .4 .7 .2 ...]

[Chen et al. 2012]
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• TagFeature idea is to enrich visual features with tag augmented features, 
derived from prelearned SVM classifiers of popular concepts.

Visual 
Features

[.4 .2 .5 .6 ...]

SVM - beach

SVM - cat

SVM - sunset

0.7

0.1

0.9

Augmented 
Features

[.7 .1 .9 ...]

tagged with sunsetnot tagged with sunset
randomly selected

sunset?

Final SVM
sunset 0.9



• Linear classifiers are used to reduce computational cost.
• It allows to sum up all the support vectors into a single vector xt.
• d visual features and d’ tag features i.e. svm classifiers.

• User tags on test image are not used. Not applicable to Tag 
Refinement.

• Complexity O((d + d’) nm) – n images, m tags.
• Memory O(m (d + d’)).
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7. TagCooccur+ [Li et al. 2009b]. TagCooccur+ is proposed to improve TagCooccur
by adding the visual content. This is achieved by multiplying f

tagcooccur

(x, t) with a
content-based term, i.e.,

f
tagcooccur+

(x, t) = f
tagcooccur

(x, t) · k
c

k
c

+ r
c

(t) � 1

, (10)

where r
c

(t) is the rank of t when sorting the vocabulary by f
TagV ote

(x, t) in descending
order, and k

c

is a positive weighting parameter, which is empirically set to 1. While
TagCooccur+ is grounded on TagCooccur and TagVote, the complexity of the former
is ignorable compared to the latter, so the complexity of TagCooccurs+ is the same as
KNN.

8. TagFeature [Chen et al. 2012]. The basic idea is to enrich image features by
adding an extra tag feature. It thus relies on the possible presence of several tags per
image in the training set. In particular, a tag vocabulary that consists of d0 most fre-
quent tags in S is constructed first. Then, for each tag a two-class linear SVM classifier
is trained using LIBLINEAR [Fan et al. 2008]. The positive training set consists of p
images labeled with the tag in S, and the same amount of negative training examples
are randomly sampled from images not labeled with the tag. The probabilistic output
of the classifier, obtained by the Platt’s scaling [Lin et al. 2007], corresponds to a spe-
cific dimension in the tag feature. By concatenating the tag and visual features, an
augmented feature of d + d0 dimension is obtained. For a test tag t, its tag relevance
function f

TagFeature

(x, t) is obtained by re-training an SVM classifier using the aug-
mented feature. The linear property of the classifier allows us to first sum up all the
support vectors into a single vector and consequently to classify a test image by the
inner product with this vector. That is,

f
TagFeature

(x, t) := b+ < x
t

, x >, (11)

where x
t

is the weighted sum of all support vectors and b the intercept. To build mean-
ingful classifiers, we use tags that have at least 100 positive examples. While d0 is
chosen to be 400 in [Chen et al. 2012], the two smaller training sets, namely Train10k
and Train100k, have 76 and 396 tags satisfying the above requirement. We empiri-
cally set p to 500, and do a random down-sampling if the amount of images for a tag
exceeds this number. For TagFeature, learning a linear classifier for each tag from p
positive and p negative examples requires O((d + d0)p) in computation and O((d + d0)p)

in memory [Fan et al. 2008]. Running Eq. (11) for all the m tags and n images needs
O(nm(d + d0)) in computation and O(m(d + d0)) in memory.

9. RelExample [Li and Snoek 2013]. Different from TagFeature [Chen et al. 2012]
that learns from tagged images, RelExample exploits positive and negative training
examples which are deemed to be more relevant with respect to the test tag t. In par-
ticular, relevant positive examples are selected from S by combining SemanticField
and TagVote in a late fusion manner. For negative training example acquisition, they
leverage Negative Bootstrap [Li et al. 2013], a negative sampling algorithm which it-
eratively selects negative examples deemed most relevant for improving classification.
A T -iteration Negative Bootstrap will produce T meta classifiers. The corresponding
tag relevance function is written as

f
RelExample

(x, t) :=

1

T

TX

l=1

(b
l

+

n

lX

j=1

↵
l,j

· y
l,j

· K(x, x
l,j

)), (12)

where ↵
l,j

is a positive coefficient of support vector x
l,j

, y
l,j

2 {�1, 1} is class label, and
n
l

the number of support vectors in the l-th classifier. For the sake of efficiency, the
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• A classifier tends to misclassify negative examples which are visually
similar to positive examples.

• RelExample exploits positive and negative training examples which are 
deemed to be more relevant with respect to the test tag t.

ing many classifiers built on small subsets of the data is a
promising approach [2]. We thus follow this ensemble learn-
ing approach. To make our discussion more formal, we use
ω to denote a tag of interest. Let x be an image. Its content-
based representation is a d-dimensional feature vector. We
refer to an image and its feature vector interchangeably, us-
ing x(i) to indicate the i-th dimension of the vector. Let
G(x) be a tag relevance estimator for ω. We express G(x)
as an ensemble of T meta classifiers:

G(x) =
1
T

T∑

t=1

gt(x), (1)

where gt(x) indicates the decision function of a meta classi-
fier. We instantiate the meta classifiers using SVMs, for its
well recognized performance on two-class learning:

gt(x) = bt +
nt∑

j=1

αt,j · yt,j · K(x, xt,j), (2)

where bt is the intercept, nt the number of support vectors,
αt,j the positive coefficient of support vector xt,j , yt,j ∈
{1,−1} a class label of xt,j with respect to ω, and K a kernel
function.
Obtaining optimal gt(x) requires proper positive and neg-

ative training data. The relevance of negative examples with
respect to ω depends on positive examples of the tag. In
that regard, we first describe how to select relevant positive
examples in Section 2.1, and then depict negative example
selection in Section 2.2. While the selected positives and
negatives lead to an effective ensemble of SVMs, the com-
putational complexity of G(x) is proportional to the size of
the ensemble. We describe in Section 2.3 acceleration tech-
niques which will make the complexity independent of the
ensemble size. The proposed system is illustrated in Fig. 2.

2.1 Selecting Relevant Positive Examples
We choose to combine two state-of-the-art methods: se-

mantic field [12] and neighbor voting [6]. As the two meth-
ods exploit textual and visual information respectively, they
are orthogonal to each other. Combining them makes sense.
Given a specific tag ω, the semantic field method deter-

mines the positiveness of an image in light of the averaged
semantic similarity between ω and the tags assigned to that
image [12]. The semantic similarity between two tags is
computed by combining the Flickr context similarity and
the WordNet Wu-Palmer similarity. The Flickr similarity
is based on the Normalized Google Distance, but with tag
statistics acquired from Flickr image collections instead of
Google indexed web pages. The WordNet similarity exploits
path length in WordNet hierarchy to infer tag relatedness.
The neighbor voting method determines the positiveness

of an image with respect to ω by exploiting tagging redun-
dancies among multiple users [6]. The method retrieves k
nearest neighbors from a large set of user-labeled images by
content-based search. The number of neighbors labeled with
ω is used as the positiveness score.
From the above discussion we see that the output scores

of the two methods are of different scales. Hence, we use
CombSUM with rank-based score normalization, a robust
choice for multimedia fusion. Given images labeled with ω,
we sort the images in descending order by their scores, and
preserve the top l ranked results as relevant positives.

sheep

...

Crowd-annotated images

Negative Bootstrap

Compressing

Ensembles of SVMs

Positive Example 

Selection

Tag relevance 

estimation relevance scores 
of sheep

0.87  0.70  0.15  

images labeled 
with sheep

Figure 2: The proposed classification system for im-
age tag relevance estimation. For each given tag, the
system automatically selects a set of relevant posi-
tive examples from crowd-annotated images. Sub-
sequently, relevant negative examples are selected
via Negative Bootstrap [7], yielding an ensemble of
SVMs. By compressing the ensemble to make the
test complexity independent of the ensemble size,
the system is both effective and efficient.

2.2 Selecting Relevant Negative Examples
While negative examples can be easily acquired by random

sampling, see [3], such random negatives are inadequate for
attacking challenging cases, like image (c) shown in Fig. 1.
To separate (a) and (c), one might want to manually add
positive examples of tags which resembles visual context of
‘sheep’, say ‘grass’ or ‘hill’. However, the relevance of a neg-
ative example depends on the underlying visual features and
classifiers, and is not necessarily consistent with what an ob-
server may expect. It is thus difficult to specify relevant neg-
atives by hand-crafted rules. In order to automatically select
relevant negatives, we extend the Negative Bootstrap algo-
rithm [7] to the tag relevance estimation problem. Different
from [7] that departs from a few expert-labeled examples,
we use purely crow-annotated examples.

Given the l positives selected in Section 2.1, Negative
Bootstrap finds relevant negatives in an iterative manner.
In the first iteration an initial classifier g1(x) is derived from
the positives and l random negatives. In the t-th iteration,
the algorithm randomly samples m examples to form a can-
didate set, and uses the ensemble of t−1 classifiers previously
obtained to classify each candidate element. The top l most
misclassified elements are selected and used together with
the positives to derive a new meta classifier gt(x). Negative
Bootstrap with T iterations produces an ensemble of T meta
classifiers, which will be the tag relevance estimator for ω.

2.3 Compressing Ensembles of SVMs
As noted earlier, despite the effectiveness of ensemble learn-

ing, the intensive computation associated with applying all
meta classifiers puts the practical use of per-tag modeling
into question. To overcome the difficulty, we study how to

• Positive examples are 
selected by taking the top-
ranked images by TagVote
and SemanticField.

• Negative examples are 
selected by Negative 
Bootstrap [Li et al. 2013].
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• Negative Bootstrap [Li et al. 2013] trains a series of classifiers gt that
explicitly address mis-classified examples at previous step.

Posi!ve examples

Nega!ve examples

Visual classifiers

Adap!ve Sampling

Virtual labeling

Classifier learning

Random sampling

Selec!on

Predic!on Classifier aggrega!on

tU

tU
~

Figure 3: The proposed social negative bootstrapping approach. Given a specific visual category w and a
positive set Bw+, we obtain a series of informative negative sets {B(t)

w−
} from a large set of virtually labeled

negative examples Sw− by multi-round adaptive sampling. In round t, we use Gt−1(x,w) to classify a candidate

set Ut, and select the most misclassified negatives to form B
(t)
w−

. To initialize the bootstrapping process, B(1)
w−

is
randomly sampled from Sw−. By iteratively exploiting the informative negatives, we obtain visual classifiers
with better discrimination ability, but without the cost of manually labeling any negatives.

sampling procedure, we iteratively select informative nega-
tives from Sw− in an adaptive manner.

3.2.3 Classifier Learning and Aggregation
In each round t, we learn a new classifier gt(x,w) from

Bw+ and B
(t)
w−

. As B
(t)
w−

is composed of negatives which
are most misclassified by previous classifiers, we suppose
that the new classifier is complementary to its ancestors.
Therefore, we choose classifier aggregation to obtain the fi-
nal classifier. Let Gt(x,w) be an aggregated classifier which
uniformly combines gt(x,w) and the previous t-1 classifiers:

Gt(x,w) =
t− 1
t

Gt−1(x,w) +
1
t
gt(x,w). (5)

To trigger the bootstrapping process, we train an initial
classifier g1(x,w) on Bw+ and B

(1)
w−

, which consists of exam-

ples randomly sampled from Sw−, with |B(1)
w−

| = |Bw+|.
We illustrate the entire framework in Fig. 3, with the algo-

rithm given in Table 1. By adaptively selecting informative
negative sets, social negative bootstrapping enables us to
derive visual classifiers with better discrimination ability.

4. EXPERIMENTAL SETUP
We compare the proposed approach with the following two

types of baselines, both of which rely on random sampling
to obtain negative training data: 1) “random sampling” [10,
11, 19, 25, 32], and 2) “random+aggregation” [17]. For a fair
comparison, whenever applicable, we will make our approach
and the baselines share the same input and parameters.

4.1 Data sets
Positive training set Bw+. We choose the PASCAL

VOC 2008 training set [7], collected from Flickr, with expert-
labeled ground truth for 20 visual categories. For each cat-
egory, we randomly sample 50 positive examples as Bw+.
Social-tagged image set S. We construct S as follows.

We create the visual category vocabulary V by taking the
intersection between the ImageNet vocabulary [6] and a so-
cial tagging vocabulary in which each tag is used by at least
100 distinct users in a set of 10 million Flickr images. The
size of V is 5,009. Next, we go through 3.5 million Flickr
images1 created in our previous work [12], and remove im-
1Data available at http://staff.science.uva.nl/~xirong

Table 1: The proposed social negative bootstrapping
algorithm.

INPUT: visual concept w, expert-labeled positive
examples Bw+, social-tagged examples S, and
the number of learning rounds T .
OUTPUT: visual classifier GT (x,w).

1. Creating negative example pool:
Sw− ← virtual labeling(S,w).

2. Creating an initial classifier:

(a) B(1)
w−
← random sampling(Sw−, |Bw+|).

(b) g1(x,w)← classifier learning(Bw+, B
(1)
w−

).
(c) G1(x,w) = g1(x,w).

3. For t = 2, . . . , T do
3.1 Adaptive sampling:

(a) Ut ← random sampling(Sw−, nu).
(b) Ũt ← prediction(Ut, Gt−1(x,w)).

(c) B(t)
w−
← selection(Ũt, |Bw+|).

3.2 Classifier learning:

gt(x,w)← classifier learning(Bw+, B
(t)
w−

).

3.3 Classifier aggregation:
Gt(x,w) = t−1

t
Gt−1(x,w) + 1

t
gt(x,w).

ages batch-tagged or having no tags from V . We end with
S consisting of 650K images.

Two test sets. To evaluate classifiers derived from the
same training set but by different approaches, we adopt the
following two test sets, which were created independently
by manually labeling different subsets of Flickr images. For
within-dataset visual categorization, we adopt the VOC2008
validation set [7]. To test the robustness of the proposed
approach in a cross-dataset setting, we choose the NUS-
OBJECT test set [4]. We present in Table 2 data statistics
of the training and test sets.

4.2 Implementation
Image representation. Since vector-quantized keypoint

descriptors are effective features for visual categorization,
we follow this convention. In particular, we adopt dense
sampling for keypoint localization and SURF [1] for keypoint
description, using a fast implementation of dense-SURF [24].
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} from a large set of virtually labeled

negative examples Sw− by multi-round adaptive sampling. In round t, we use Gt−1(x,w) to classify a candidate

set Ut, and select the most misclassified negatives to form B
(t)
w−

. To initialize the bootstrapping process, B(1)
w−

is
randomly sampled from Sw−. By iteratively exploiting the informative negatives, we obtain visual classifiers
with better discrimination ability, but without the cost of manually labeling any negatives.

sampling procedure, we iteratively select informative nega-
tives from Sw− in an adaptive manner.

3.2.3 Classifier Learning and Aggregation
In each round t, we learn a new classifier gt(x,w) from

Bw+ and B
(t)
w−

. As B
(t)
w−

is composed of negatives which
are most misclassified by previous classifiers, we suppose
that the new classifier is complementary to its ancestors.
Therefore, we choose classifier aggregation to obtain the fi-
nal classifier. Let Gt(x,w) be an aggregated classifier which
uniformly combines gt(x,w) and the previous t-1 classifiers:

Gt(x,w) =
t− 1
t

Gt−1(x,w) +
1
t
gt(x,w). (5)

To trigger the bootstrapping process, we train an initial
classifier g1(x,w) on Bw+ and B

(1)
w−

, which consists of exam-

ples randomly sampled from Sw−, with |B(1)
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| = |Bw+|.
We illustrate the entire framework in Fig. 3, with the algo-

rithm given in Table 1. By adaptively selecting informative
negative sets, social negative bootstrapping enables us to
derive visual classifiers with better discrimination ability.

4. EXPERIMENTAL SETUP
We compare the proposed approach with the following two

types of baselines, both of which rely on random sampling
to obtain negative training data: 1) “random sampling” [10,
11, 19, 25, 32], and 2) “random+aggregation” [17]. For a fair
comparison, whenever applicable, we will make our approach
and the baselines share the same input and parameters.

4.1 Data sets
Positive training set Bw+. We choose the PASCAL

VOC 2008 training set [7], collected from Flickr, with expert-
labeled ground truth for 20 visual categories. For each cat-
egory, we randomly sample 50 positive examples as Bw+.
Social-tagged image set S. We construct S as follows.

We create the visual category vocabulary V by taking the
intersection between the ImageNet vocabulary [6] and a so-
cial tagging vocabulary in which each tag is used by at least
100 distinct users in a set of 10 million Flickr images. The
size of V is 5,009. Next, we go through 3.5 million Flickr
images1 created in our previous work [12], and remove im-
1Data available at http://staff.science.uva.nl/~xirong

Table 1: The proposed social negative bootstrapping
algorithm.

INPUT: visual concept w, expert-labeled positive
examples Bw+, social-tagged examples S, and
the number of learning rounds T .
OUTPUT: visual classifier GT (x,w).

1. Creating negative example pool:
Sw− ← virtual labeling(S,w).

2. Creating an initial classifier:

(a) B(1)
w−
← random sampling(Sw−, |Bw+|).

(b) g1(x,w)← classifier learning(Bw+, B
(1)
w−

).
(c) G1(x,w) = g1(x,w).

3. For t = 2, . . . , T do
3.1 Adaptive sampling:

(a) Ut ← random sampling(Sw−, nu).
(b) Ũt ← prediction(Ut, Gt−1(x,w)).

(c) B(t)
w−
← selection(Ũt, |Bw+|).

3.2 Classifier learning:

gt(x,w)← classifier learning(Bw+, B
(t)
w−

).

3.3 Classifier aggregation:
Gt(x,w) = t−1

t
Gt−1(x,w) + 1
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ages batch-tagged or having no tags from V . We end with
S consisting of 650K images.

Two test sets. To evaluate classifiers derived from the
same training set but by different approaches, we adopt the
following two test sets, which were created independently
by manually labeling different subsets of Flickr images. For
within-dataset visual categorization, we adopt the VOC2008
validation set [7]. To test the robustness of the proposed
approach in a cross-dataset setting, we choose the NUS-
OBJECT test set [4]. We present in Table 2 data statistics
of the training and test sets.

4.2 Implementation
Image representation. Since vector-quantized keypoint

descriptors are effective features for visual categorization,
we follow this convention. In particular, we adopt dense
sampling for keypoint localization and SURF [1] for keypoint
description, using a fast implementation of dense-SURF [24].
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w−

is
randomly sampled from Sw−. By iteratively exploiting the informative negatives, we obtain visual classifiers
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sampling procedure, we iteratively select informative nega-
tives from Sw− in an adaptive manner.

3.2.3 Classifier Learning and Aggregation
In each round t, we learn a new classifier gt(x,w) from

Bw+ and B
(t)
w−

. As B
(t)
w−

is composed of negatives which
are most misclassified by previous classifiers, we suppose
that the new classifier is complementary to its ancestors.
Therefore, we choose classifier aggregation to obtain the fi-
nal classifier. Let Gt(x,w) be an aggregated classifier which
uniformly combines gt(x,w) and the previous t-1 classifiers:
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We compare the proposed approach with the following two

types of baselines, both of which rely on random sampling
to obtain negative training data: 1) “random sampling” [10,
11, 19, 25, 32], and 2) “random+aggregation” [17]. For a fair
comparison, whenever applicable, we will make our approach
and the baselines share the same input and parameters.

4.1 Data sets
Positive training set Bw+. We choose the PASCAL

VOC 2008 training set [7], collected from Flickr, with expert-
labeled ground truth for 20 visual categories. For each cat-
egory, we randomly sample 50 positive examples as Bw+.
Social-tagged image set S. We construct S as follows.

We create the visual category vocabulary V by taking the
intersection between the ImageNet vocabulary [6] and a so-
cial tagging vocabulary in which each tag is used by at least
100 distinct users in a set of 10 million Flickr images. The
size of V is 5,009. Next, we go through 3.5 million Flickr
images1 created in our previous work [12], and remove im-
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the number of learning rounds T .
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1. Creating negative example pool:
Sw− ← virtual labeling(S,w).

2. Creating an initial classifier:

(a) B(1)
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← random sampling(Sw−, |Bw+|).
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(a) Ut ← random sampling(Sw−, nu).
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ages batch-tagged or having no tags from V . We end with
S consisting of 650K images.

Two test sets. To evaluate classifiers derived from the
same training set but by different approaches, we adopt the
following two test sets, which were created independently
by manually labeling different subsets of Flickr images. For
within-dataset visual categorization, we adopt the VOC2008
validation set [7]. To test the robustness of the proposed
approach in a cross-dataset setting, we choose the NUS-
OBJECT test set [4]. We present in Table 2 data statistics
of the training and test sets.

4.2 Implementation
Image representation. Since vector-quantized keypoint

descriptors are effective features for visual categorization,
we follow this convention. In particular, we adopt dense
sampling for keypoint localization and SURF [1] for keypoint
description, using a fast implementation of dense-SURF [24].



• T iterations for a corresponding number of trained classifiers.

• User tags on test image are not used. Not applicable to Tag 
Refinement.

• Complexity O(Tdp2) – training T svm classifiers
• Memory O(dp + dq) – d visual features, p pos and q neg

examples.
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7. TagCooccur+ [Li et al. 2009b]. TagCooccur+ is proposed to improve TagCooccur
by adding the visual content. This is achieved by multiplying f

tagcooccur

(x, t) with a
content-based term, i.e.,

f
tagcooccur+

(x, t) = f
tagcooccur

(x, t) · k
c

k
c

+ r
c

(t) � 1

, (10)

where r
c

(t) is the rank of t when sorting the vocabulary by f
TagV ote

(x, t) in descending
order, and k

c

is a positive weighting parameter, which is empirically set to 1. While
TagCooccur+ is grounded on TagCooccur and TagVote, the complexity of the former
is ignorable compared to the latter, so the complexity of TagCooccurs+ is the same as
KNN.

8. TagFeature [Chen et al. 2012]. The basic idea is to enrich image features by
adding an extra tag feature. It thus relies on the possible presence of several tags per
image in the training set. In particular, a tag vocabulary that consists of d0 most fre-
quent tags in S is constructed first. Then, for each tag a two-class linear SVM classifier
is trained using LIBLINEAR [Fan et al. 2008]. The positive training set consists of p
images labeled with the tag in S, and the same amount of negative training examples
are randomly sampled from images not labeled with the tag. The probabilistic output
of the classifier, obtained by the Platt’s scaling [Lin et al. 2007], corresponds to a spe-
cific dimension in the tag feature. By concatenating the tag and visual features, an
augmented feature of d + d0 dimension is obtained. For a test tag t, its tag relevance
function f

TagFeature

(x, t) is obtained by re-training an SVM classifier using the aug-
mented feature. The linear property of the classifier allows us to first sum up all the
support vectors into a single vector and consequently to classify a test image by the
inner product with this vector. That is,

f
TagFeature

(x, t) := b+ < x
t

, x >, (11)

where x
t

is the weighted sum of all support vectors and b the intercept. To build mean-
ingful classifiers, we use tags that have at least 100 positive examples. While d0 is
chosen to be 400 in [Chen et al. 2012], the two smaller training sets, namely Train10k
and Train100k, have 76 and 396 tags satisfying the above requirement. We empiri-
cally set p to 500, and do a random down-sampling if the amount of images for a tag
exceeds this number. For TagFeature, learning a linear classifier for each tag from p
positive and p negative examples requires O((d + d0)p) in computation and O((d + d0)p)

in memory [Fan et al. 2008]. Running Eq. (11) for all the m tags and n images needs
O(nm(d + d0)) in computation and O(m(d + d0)) in memory.

9. RelExample [Li and Snoek 2013]. Different from TagFeature [Chen et al. 2012]
that learns from tagged images, RelExample exploits positive and negative training
examples which are deemed to be more relevant with respect to the test tag t. In par-
ticular, relevant positive examples are selected from S by combining SemanticField
and TagVote in a late fusion manner. For negative training example acquisition, they
leverage Negative Bootstrap [Li et al. 2013], a negative sampling algorithm which it-
eratively selects negative examples deemed most relevant for improving classification.
A T -iteration Negative Bootstrap will produce T meta classifiers. The corresponding
tag relevance function is written as

f
RelExample

(x, t) :=

1

T

TX

l=1

(b
l

+

n

lX

j=1

↵
l,j

· y
l,j

· K(x, x
l,j

)), (12)

where ↵
l,j

is a positive coefficient of support vector x
l,j

, y
l,j

2 {�1, 1} is class label, and
n
l

the number of support vectors in the l-th classifier. For the sake of efficiency, the

ACM XXX, Vol. X, No. X, Article X, Publication date: October 2015.



KEY METHODS

37

Media	\ Learning Instance Based Model Based Transductive Based

Tag SemanticField
[Zhu	et	al.	2012]	

TagCooccur
[Sigurbjörnssonand	van	Zwol2008]	

Tag	+	Image TagRanking
[Liu	et	al.	2009]	

KNN	
[Makadia et	al.	2010]	

TagProp
[Guillaumin et	al.	2009]	

TagFeature
[Chen	et	al.	2012]	

RelExample
[Li	and Snoek	2013]	

RobustPCA
[Zhu	et	al.	2010]	

Tag	+	Image	+	User TagVote
TagCooccur+	
[Li	et	al.	2009b]	

TensorAnalysis
[Sang	et	al.	2012a]	



ROBUSTPCA

38

[Zhu et al. 2010] Transduction-Based Tag + Image

• Based on a few assumptions on tag characteristics:
• low-rank property: the semantic space spanned by tags can be 

approximated by a smaller subset of salient words derived from the 
original space.

• tag correlation: semantic tags are correlated.
• visual consistency: visually similar images have similar tags.
• error sparsity for the image-tag matrix: user’s tagging is reasonably

accurate and one image usually is labelled with few tags.

Figure 1: Framework of image tag refinement towards low-rank, content consistency, tag correlation and
error sparsity. The column-wise user-provided tag matrix D (Note that D is sub-sampled from a larger real
user-provided tag matrix for ease of display), where white grid represents the association of a tag with image
and black one represents non-association, is decomposed into a low-rank matrix A (the refined tag matrix and
here rank(A) = 13) and a sparse matrix E (tagging error in user-provided tags and sparse error is ∥E∥0 = 72 in
this illustration) by considering the properties of content consistency and tag correlation.

tags is thus highly desirable for tag based image retrieval
and other related applications.

In this paper, to address the aforementioned imprecise and
incomplete issues of user-provided image tags, we propose a
novel refinement approach aiming to improve the quality
of tags. The approach is motivated by the following four
observations of image tags from large volume social images.

• Low-rank. The existing work on text information
processing [7] has demonstrated that the semantic space
spanned by text keywords can be approximated by a
smaller subset of salient words derived from the origi-
nal space. As one kind of text information, image tags
are consequently subject to such low-rank property.

• Content consistency. From large-scale image dataset,
we can observe that visually similar images often re-
flect similar themes and thus are typically annotated
with similar tags. Content consistency describes the
relationships between content level and semantic level.
Being an important prior, this observation has been
widely explored in visual category learning [8, 9].

• Tag correlation. Semantic tags associated with im-
ages do not appear in isolation, instead often appear
correlatively and naturally interact with each other at
the semantic level. As another important prior, tag
correlation characterizes the relationships within se-
mantic level and is often the preliminary assumption
of multi-label and contextual learning algorithms [10,
11].

• Error sparsity. With the general knowledge that the
human-beings share most of the common concepts in
the semantic space, the tagging results for one image

are reasonably accurate to certain level. Moreover,
one image usually is labeled with only couple of tags.
Such observations lead to the characteristics of error
sparsity for image tag matrix.

Figure 1 shows the framework of our problem formulation
and solution. Given the user-provided image tag matrix
D, to comprehensively characterize the above four factors,
we cast the tag refinement task into a convex optimization
problem, which simultaneously minimizes the matrix rank
and priors as well as error sparsity. Concretely, the nuclear
norm, ℓ1 norm and trace operation are employed to model
the properties regarding tag low-rank, error sparsity, content
consistency and tag correlation, respectively. The results
are the low-rank matrix A which encodes the refined image
tags, and the sparse matrix E which represents the tagging
errors in user-provided tags. To obtain the results effectively,
we also propose an efficient convergence provable iterative
procedure to accomplish the optimization.

The novelties and main contributions of this paper are
summarized as follows.

• We propose a new tag refinement formulation in form
of convex optimization which comprehensively consid-
ers the tag characteristics from the points of view of
low-rank, error sparsity, content consistency and tag
correlation.

• Compared with existing works, the low-rank and er-
ror sparsity are firstly integrated into the optimization
procedure for image tag refinement. With the assis-
tance of constraints of content consistency and tag cor-
relation, the proposed approach is capable of correct-
ing imprecise tags and enriching the incomplete ones.
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• RobustPCA factorize the tag matrix D into a low-rank matrix A and a sparse 
error matrix E.

• Explicitly enforces content consistency and tag correlation with Laplacian
graph-based regularizers.

Figure 1: Framework of image tag refinement towards low-rank, content consistency, tag correlation and
error sparsity. The column-wise user-provided tag matrix D (Note that D is sub-sampled from a larger real
user-provided tag matrix for ease of display), where white grid represents the association of a tag with image
and black one represents non-association, is decomposed into a low-rank matrix A (the refined tag matrix and
here rank(A) = 13) and a sparse matrix E (tagging error in user-provided tags and sparse error is ∥E∥0 = 72 in
this illustration) by considering the properties of content consistency and tag correlation.

tags is thus highly desirable for tag based image retrieval
and other related applications.

In this paper, to address the aforementioned imprecise and
incomplete issues of user-provided image tags, we propose a
novel refinement approach aiming to improve the quality
of tags. The approach is motivated by the following four
observations of image tags from large volume social images.

• Low-rank. The existing work on text information
processing [7] has demonstrated that the semantic space
spanned by text keywords can be approximated by a
smaller subset of salient words derived from the origi-
nal space. As one kind of text information, image tags
are consequently subject to such low-rank property.

• Content consistency. From large-scale image dataset,
we can observe that visually similar images often re-
flect similar themes and thus are typically annotated
with similar tags. Content consistency describes the
relationships between content level and semantic level.
Being an important prior, this observation has been
widely explored in visual category learning [8, 9].

• Tag correlation. Semantic tags associated with im-
ages do not appear in isolation, instead often appear
correlatively and naturally interact with each other at
the semantic level. As another important prior, tag
correlation characterizes the relationships within se-
mantic level and is often the preliminary assumption
of multi-label and contextual learning algorithms [10,
11].

• Error sparsity. With the general knowledge that the
human-beings share most of the common concepts in
the semantic space, the tagging results for one image

are reasonably accurate to certain level. Moreover,
one image usually is labeled with only couple of tags.
Such observations lead to the characteristics of error
sparsity for image tag matrix.

Figure 1 shows the framework of our problem formulation
and solution. Given the user-provided image tag matrix
D, to comprehensively characterize the above four factors,
we cast the tag refinement task into a convex optimization
problem, which simultaneously minimizes the matrix rank
and priors as well as error sparsity. Concretely, the nuclear
norm, ℓ1 norm and trace operation are employed to model
the properties regarding tag low-rank, error sparsity, content
consistency and tag correlation, respectively. The results
are the low-rank matrix A which encodes the refined image
tags, and the sparse matrix E which represents the tagging
errors in user-provided tags. To obtain the results effectively,
we also propose an efficient convergence provable iterative
procedure to accomplish the optimization.

The novelties and main contributions of this paper are
summarized as follows.

• We propose a new tag refinement formulation in form
of convex optimization which comprehensively consid-
ers the tag characteristics from the points of view of
low-rank, error sparsity, content consistency and tag
correlation.

• Compared with existing works, the low-rank and er-
ror sparsity are firstly integrated into the optimization
procedure for image tag refinement. With the assis-
tance of constraints of content consistency and tag cor-
relation, the proposed approach is capable of correct-
ing imprecise tags and enriching the incomplete ones.



• The problem reduces to recover the noise-free matrix A, so each
column vector can be used to represent the corresponding images.

• Tc and Tt are regularizer based respectively on the similarity of 
images and tags.

• Complexity O(cm2n+c’n3) – SVD computation
• Memory O(cn · m + c’ · (n2 + m2)) – Full matrix D, tag and image 

similarity matrices.

40

min

A,E
||A||⇤ + �1||E||1 + �2[Tc(A) + Tt(A)]

subject to D = A+ E

ROBUSTPCA
[Zhu et al. 2010] Transduction-Based Tag + Image



KEY METHODS

41

Media	\ Learning Instance Based Model Based Transductive Based

Tag SemanticField
[Zhu	et	al.	2012]	

TagCooccur
[Sigurbjörnssonand	van	Zwol2008]	

Tag	+	Image TagRanking
[Liu	et	al.	2009]	

KNN	
[Makadia et	al.	2010]	

TagProp
[Guillaumin et	al.	2009]	

TagFeature
[Chen	et	al.	2012]	

RelExample
[Li	and Snoek	2013]	

RobustPCA
[Zhu	et	al.	2010]	

Tag	+	Image	+	User TagVote
TagCooccur+	
[Li	et	al.	2009b]	

TensorAnalysis
[Sang	et	al.	2012a]	



TENSORANALYSIS

42

[Sang et al. 2012a] Transduction-Based Tag + Image + User

• The method considers that, on top of visual appearance, images tagged by 
similar users can capture more semantic correlations.

• Jointly models the ternary relations between users, tags and images.

• It uses a tensor-based representation and Tucker decomposition to 
inference latent subspaces for the latent factors. 

tag(u, i, t) ✓ U ⇥ I ⇥ VT
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User-Aware Image Tag Refinement
via Ternary Semantic Analysis

Jitao Sang, Changsheng Xu, Senior Member, IEEE, and Jing Liu, Member, IEEE

Abstract—Large-scale user contributed images with tags are
easily available on photo sharing websites. However, the noisy
or incomplete correspondence between the images and tags pro-
hibits them from being leveraged for precise image retrieval and
effective management. To tackle the problem of tag refinement,
we propose a method of Ranking based Multi-correlation Tensor
Factorization (RMTF), to jointly model the ternary relations
among user, image, and tag, and further to precisely reconstruct
the user-aware image-tag associations as a result. Since the user
interest or background can be explored to eliminate the ambiguity
of image tags, the proposed RMTF is believed to be superior to
the traditional solutions, which only focus on the binary image-tag
relations. During the model estimation, we employ a ranking
based optimization scheme to interpret the tagging data, in which
the pair-wise qualitative difference between positive and nega-
tive examples is used, instead of the point-wise 0/1 confidence.
Specifically, the positive examples are directly decided by the ob-
served user-image-tag interrelations, while the negative ones are
collected with respect to the most semantically and contextually
irrelevant tags. Extensive experiments on a benchmark Flickr
dataset demonstrate the effectiveness of the proposed solution
for tag refinement. We also show attractive performances on two
potential applications as the by-products of the ternary relation
analysis.

Index Terms—Factor analysis, social media, tag refinement,
tensor factorization.

I. INTRODUCTION

W ITH the popularity of Web 2.0 technologies, there
are explosive photo sharing websites with large-scale

image collections available online, such as Flickr,1 Picasa,2
Zooomr,3 and Pinterest. 4 These Web 2.0 websites allow users
as owners, taggers, or commenters for their contributed images
to interact and collaborate with each other in a social media
dialogue. Its typical structure (Flickr for example) is illustrated
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at http://ieeexplore.ieee.org.
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1http://www.flickr.com
2http://picasa.google.com
3http://www.zooomr.com
4http://pinterest.com

Fig. 1. Integrated structure of social tagging in Flickr.

in Fig. 1, in which three types of interrelated entities are in-
volved, i.e., image, tag, and user. From this view, we can deem
the user contributed tagging data as the products of the ternary
interactions among images, tags, and users.
Obviously, given such a large-scale web dataset, noisy and

missing tags are inevitable, which limits the performance of so-
cial tag-based retrieval system [1], [2]. Therefore, the tag re-
finement to denoise and enrich tags for images is desired to
tackle this problem. Existing efforts on tag refinement [3]–[10]
exploited the semantic correlation between tags and visual sim-
ilarity of images to address the noisy and missing issues, while
the user interaction as one of important entities in the social tag-
ging data is neglected.
As above mentioned, users are the originator of the tagging

activity and they are involved with images and tags in many as-
pects.We believe that the incorporation of user information con-
tributes to a better understanding and description of the tagging
data. We take two simple examples to explain this observation.
As shown in Fig. 2(a), both images are tagged with “jaguar” by
the two users (indicated by user ID,5) but they have different vi-
sual content, i.e., a luxury car and an animal, respectively. Due
to the well-known “semantic gap”, traditional work on image
content understanding cannot solve the problem well. In this
case, users’ interest and background information can be lever-
aged to specify the image semantics. That is, a car fan will pos-
sibly use “jaguar” to tag a “car” image, while an animal spe-
cialist will use “jaguar” to tag a “wild cat”. Fig. 2(b) shows
three images from the FIFA 2010 final. We can see that dif-
ferent tags of “football” and “soccer” are annotated to the vi-
sually similar images. Considering the tagger information, we
can easily understand this phenomenon: users have different
5The user ID of the taggers can be acquired from the Flickr API: http://www.

flickr.com/services/api

1520-9210/$31.00 © 2012 IEEE
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• Only qualitative differences are important. The task is cast into a ranking 
problem to determine which tag is more relevant for a user to describe an 
image. 

• Thus the method adopt a three state logic:
- positive tags: tags assigned by the users, 
- negative tags: dissimilar tags that do not occur together with positive tags. 
- neutral tags: the other tags, removed from the learning process

Binary vs 
ternary logic
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• H is the heaviside function, T{U,I,T} are laplacian graph-based regularizers.

• Optimization is performed iteratively using stochastic gradient descent, one
latent matrix at a time.

• Complexity O(|P1| · (rT · m2 + rU ·rI ·rT)) – P1 is the ones in D, r{U,I,T} are latent
matrices dimensionalities.

• Memory O(n2 + m2 + u2) – the three regularizers matrices.

argmin
✓

X

t+2T+

X

t�2T�

H(ŷt� � ŷt+) + �1(||✓||2) + �2(TU (✓) + TI(✓) + TT (✓))

✓ = {U, I, T}
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• SemanticField and TagCooccur have the best scalability with respect to 
both computation and memory. 

• The model-based methods require less memory and run faster in the test 
stage, but at the expense of SVM model learning in the training stage. 

• The two transduction-based methods have limited scalability, and can 
operate only on small sized S.

Computational Complexity

M
em

ory Footprint

TagFeature

TagVote

TensorAnalysis
RobustPCA

RelExample

TagCooccur
TagCooccur+

TagProp

KNN

TagRanking

SemanticField
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• We tested the eleven methods on the proposed testbed.

• Here we discuss few main results. Refer to our survey paper for the complete 
picture.

Assignment Refinement Retrieval

KNN X X

TagVote X X

TagProp X X

TagFeature X X

RelExample X X

TagCooccur X X

TagCooccur+ X X

RobustPCA X X

TensorAnalysis X X

SemanticField X

TagFeature X
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Socializing the Semantic Gap X:23
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Fig. 2. Per-tag comparison of methods for tag assignment on MIRFlickr, trained on Train1m. The
colors identify the features used: blue for BovW, red for CNN. The test tags have been sorted in descending
order by the performance of CNN + TagProp.

We observe that RelExample has a better MAP than TagFeature in every case. The
absence of a filtering component makes TagFeature more likely to overfit to train-
ing examples irrelevant to the test tags. For the other two model-based methods, the
overfit issue is alleviated by different strategies: RelExample employs a filtering com-
ponent to select more relevant training examples, while TagProp has less parameters
to tune.

A per-image comparison on NUS-WIDE is given in Fig. 3. The test images are put
into disjoint groups so that images within the same group have the same number of
ground truth tags. For each group, the area of the colored bars is proportional to the
number of images on which the corresponding methods score best. The first group, i.e.,
images containing only one ground-truth tag, has the most noticeable change as the
training set grows. There are 75,378 images in this group, and for 39% of the images,
their single label is ‘person’. When Train1m is used, RelExample beats KNN, TagVote,
and TagProp for this frequent label. This explains the leading position of RelExample
in the first group. The result also confirms our earlier discussion in Section 3.3 that
MiAP is likely to be biased by frequent tags.
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Fig. 3. Per-image comparison of methods for tag assignment on NUS-WIDE. Test images are
grouped in terms of their number of ground truth tags. The area of a colored bar is proportional to the
number of images that the corresponding method scores best.
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• All methods benefit from using CNN Features.

• RelExample has better performance than TagFeature due to its filtering
component.

• TagProp has the best MAP. Its performance is similar to KNN, TagVote since
they all use the same basic nearest-neighbor label propagation.

MIRFlickr test set, 
trained on Train1m.

CNN Features
BovW Features
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Socializing the Semantic Gap X:23
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Fig. 2. Per-tag comparison of methods for tag assignment on MIRFlickr, trained on Train1m. The
colors identify the features used: blue for BovW, red for CNN. The test tags have been sorted in descending
order by the performance of CNN + TagProp.

We observe that RelExample has a better MAP than TagFeature in every case. The
absence of a filtering component makes TagFeature more likely to overfit to train-
ing examples irrelevant to the test tags. For the other two model-based methods, the
overfit issue is alleviated by different strategies: RelExample employs a filtering com-
ponent to select more relevant training examples, while TagProp has less parameters
to tune.

A per-image comparison on NUS-WIDE is given in Fig. 3. The test images are put
into disjoint groups so that images within the same group have the same number of
ground truth tags. For each group, the area of the colored bars is proportional to the
number of images on which the corresponding methods score best. The first group, i.e.,
images containing only one ground-truth tag, has the most noticeable change as the
training set grows. There are 75,378 images in this group, and for 39% of the images,
their single label is ‘person’. When Train1m is used, RelExample beats KNN, TagVote,
and TagProp for this frequent label. This explains the leading position of RelExample
in the first group. The result also confirms our earlier discussion in Section 3.3 that
MiAP is likely to be biased by frequent tags.
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Fig. 3. Per-image comparison of methods for tag assignment on NUS-WIDE. Test images are
grouped in terms of their number of ground truth tags. The area of a colored bar is proportional to the
number of images that the corresponding method scores best.
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• Test images are grouped in terms of their number of ground truth tags. The 
area of a colored bar is proportional to the number of images that the 
corresponding method scores best.

• When increasing the training set size, the most visible change is that of 
TagFeature and RelExample on images with one ground truth tag.
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Fig. 4. Per-tag comparison of methods for tag refinement on MIRFlickr, trained on Train100k. The
colors identify the features used: blue for BovW, red for CNN. The test tags have been sorted in descending
order by the performance of CNN + RobustPCA.

Train10k, TensorAnalysis yielded higher MiAP than RobustPCA, probably thanks to
its capability of modeling user correlations. It is outperformed by RobustPCA when
more training data is used.

As more training data is used, the performance of TagCooccur, TagCooccur+, and
RobustPCA on MIRFlickr consistently improves. Since these three methods rely on
data-driven tag affinity, image affinity, or tag and image affinity, a small set of 10k
images is generally inadequate to compute these affinities. The effect of increasing
the training set size is clearly visible if we compare scores corresponding to Train10k
and Train100k. The results on NUS-WIDE show some inconsistency. For TagCooccur,
MiAP improves from Train100k to Train1m, while MAP drops. This is presumably
due to the fact that in the experiments we used the parameters recommended in the
original paper, appropriately selected to optimize tag ranking. Hence, they might be
suboptimal for image ranking. BovW + RobustPCA scores a lower MAP than BovW
+ TagCooccur+. This is probably due to the fact that the low-rank matrix factoriza-
tion technique, while being able to jointly exploit tag and image information, is more
sensitive to the content-based representation.

A per-image comparison is given in Fig. 5. As for tag assignment, the test images
have been grouped according to the number of ground truth tags associated. The size
of the colored areas is proportional to the number of images where the corresponding
method scores best. For the majority of test image, the three tag refinement meth-
ods have higher average precision than UserTags. This means more relevant tags are
added, so the tags are refined. It should be noted that the success of tag refinement
depends much on the quality of the original tags assigned to the test images. Exam-
ples are shown in Table VII: in row 6, although the tag ‘earthquake’ is irrelevant to the
image content, it is ranked at the top by RobustPCA. To what extent a tag refinement
method shall count on the existing tags is tricky.

To summarize, the tag + image based methods outperform the tag based method
for tag refinement. RobustPCA is the best, and improves as more training data is
employed. Nonetheless, implementing RobustPCA is challenging for both computation
and memory footprint. In contrast, TagCooccur+ is more scalable and it can learn from
large-scale data.
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MIRFlickr test set, 
trained on Train100k.

CNN Features
BovW Features

• All methods have performance superior to user tagging.

• The tag + image based methods outperform the tag based TagCooccur.

• RobustPCA provides the best performance.
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Fig. 5. Per-image comparison of methods for tag refinement on NUS-WIDE. Test images are
grouped in terms of their number of ground truth tags. The area of a colored bar is proportional to the
number of images that the corresponding method scores best.

5.3. Tag retrieval
Table VIII shows the performance of different methods for tag retrieval. Recall that
when retrieving images for a specific test tag, we consider only images that are labeled
with this tag. Hence, MAP scores here are higher than their counterpart in Table VI.

We start our analysis by comparing the three baselines, namely UserTags, TagNum,
and TagPosition, which retrieve images simply by the original tags. As it can be no-
ticed, TagNum and TagPosition are more effective than UserTags, TagNum outper-
forms TagPosition on Flickr51, and the latter has better scores on NUS-WIDE. The
effectiveness of such metadata based features depend much on datasets, and are un-
reliable for tag retrieval.

All the methods considered have higher MAP than the three baselines. All the meth-
ods have better performance than the baselines on Flickr51 and performance increases
with the size of the training set. On NUS-WIDE, SemanticField, TagCooccur, and
TagRanking, are less effective than TagPosition. We attribute this result to the fact
that, for these methods, the tag relevance functions favor images with fewer tags. So
they closely follow similar performance and dataset dependency.

Concerning the influence of the media dimension, the tag + image based methods
(KNN, TagVote, TagProp, TagCooccur+, TagFeature, RobustPCA, RelExample) are in
general better than the tag based method (SemanticField and TagCooccur). Fig. 6
shows the per-tag retrieval performance on Flickr51. For 33 out of the 51 test tags,
RelExample exhibits average precision higher than 0.9. By examining the top retrieved
images, we observe that the results produced by tag + image based methods and tag
based methods are complementary to some extent. For example, consider ‘military’,
one of the test tags of NUS-WIDE. RelExample retrieves images with strong visual
patterns such as military vehicles, while SemanticField returns images of military
personnel. Since the visual content is ignored, the results of SemanticField tend to be
visually different, so making it possible to handle tags with visual ambiguity. This fact
can be observed in Fig. 7, which shows the top 10 ranked images of ‘jaguar’ by TagPo-
sition, SemanticField, BovW + RelExample, and CNN + RelExample. Although their
results are all correct, RelExample finds jaguar-brand cars only, while SemanticField
covers both cars and animals. However, for a complete evaluation of the capability of
managing ambiguous tags, fine-grained ground truth beyond what we currently have
is required.
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• CNN+RobustPCA has the best performance in every group of images. 

• Almost the totality of images with more than 4 ground truth tags are better
refined by RobustPCA than the other methods. 

• TagCooccur+ refines tags better than TagCoccur.
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Socializing the Semantic Gap X:29
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Fig. 6. Per-tag comparison between TagPosition, SemanticField, TagVote, TagProp, and RelEx-
ample on Flickr51, with Train1m as the training set. The 51 test tags have been sorted in descending
order by the performance of RelExample.

Concerning the learning methods, TagVote consistently performs well as in the tag
assignment experiment. KNN is comparable to TagVote, due to the reason we have dis-
cussed in Section 5.1. Given the CNN feature, the two methods even outperform their
model-based variant TagProp. Similar to the tag refinement experiment, the effective-
ness of RobustPCA for tag retrieval is sensitive to the choice of visual features. While
BovW + RobustPCA is worse than the majority on Flickrt51, the performance of CNN
+ RobustPCA is more stable, and performs well. For TagFeature, its gain from using
larger training data is relatively limited due to the absence of denoising. In contrast,
RelExample, by jointly using SemanticField and TagVote in its denoising component,
is consistently better than TagFeature.

The performance of individual methods consistently improves as more training data
is used. As the size of the training set increases, the performance gap between the best
model-based method (RelExample) and the best instance-based method (TagVote) re-
duces. This suggests that large-scale training data diminishes the advantage of model-
based methods against the relatively simple instance-based methods.

In summary, even though the performance of the methods evaluated varies over
datasets, common patterns have been observed. First, the more social data for train-
ing are used the better performance is obtained. Since the tag relevance functions are
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• Like Assignment, 
TagVote and TagProp
provide the best 
performance.

• For 33 out of the 51 test 
tags, RelExample
exhibits average
precision higher than
0.9.
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(a) TagPosition (b) SemanticField (c) BovW + RelExample (d) CNN + RelExample

Fig. 7. Top 10 ranked images of ‘jaguar’, by (a) TagPosition, (b) SemanticField, (c) BovW + RelEx-
ample, and (d) CNN + RelExample. Checkmarks (�) indicate relevant results. While both RelExample
and SemanticField outperform the TagPosition baseline, the results of SemanticField show more diversity
for this ambiguous tag. The difference between (c) and (d) suggests that the results of RelExample can be
diversified by varying the visual feature in use.

learned purely from social data without any extra manual labeling, and social data are
increasingly growing, this result promises that better tag relevance functions can be
learned. Second, given small-scale training data, tag + image based methods that con-
ducts model-based learning with denoised training examples turn out to be the most
effective solution, This however comes with a price of reducing the visual diversity
in the retrieval results. Moreover, the advantage of model-based learning vanishes as
more training data and the CNN feature are used, and TagVote performs the best.

5.4. Flickr versus ImageNet
To address the question of whether one shall resort to an existing resource such as
ImageNet for tag relevance learning, this section presents an empirical comparison
between our Flickr based training data and ImageNet. A number of methods do not
work with ImageNet or require modifications. For instance, tag + image + user infor-
mation based methods must be able to remove their dependency on user information,
as such information is unavailable in ImageNet. Tag co-occurrences are also strongly
limited, because an ImageNet example is annotated with a single label. Because of
these limitations, we evaluate only the two best performing methods, TagVote and
TagProp. TagProp can be directly used since it comes from classic image annotation,
while TagVote is slightly modified by removing the unique user constraint. The CNN
feature is used for its superior performance against the BovW feature.

To construct a customized subset of ImageNet that fits the three test sets, we take
ImageNet examples whose labels precisely match with the test tags. Notice that some
test tags, e.g., ‘portrait’ and ‘night’, have no match, while some other tags, e.g, ‘car’ and
‘dog’, have more than one matches. In particular, MIRFlickr has 2 missing tags, while
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The top 10 ranked images for ‘jaguar’ 

TagPosition SemanticField BovW + 
RelExample

CNN + 
RelExample

Lower diversity
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• Some common patterns have emerged, indipendently from the task:

- All methods benefit from using CNN Features.

- The more social data for training, the better performance is obtained.

- With small-scale training sets, tag + image based methods that
conducts model-based learning with denoised training examples turn 
out to be the most effective solution.
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• Some methods can’t be run or require modifications:
- No user information in ImageNet. Tag+Image+User must be able to 

remove their dependency on user.
- Tag co-occurrences are limited in ImageNet because images are 

labelled with a single WordNet synset.

• We ran an empirical evaluation between Train100k, Train1m and ImageNet.

• We tested TagVote (without unique-user constraint) and TagProp, the two
methods that reported the best overall performance.

ImageNet already provides labeled examples for over 20k
categories. Is it necessary to learn from socially tagged data?
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Table IX. Flickr versus ImageNet. Notice that the numbers on Train100k and Train1M are different from Tables V and VIII
due to the use of a reduced set of test tags. Bold values indicate top performers on a specific test set per performance
metric.

Tag Assignment

MIRFlickr NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MiAP scores:

Train100k 0.377 0.383 0.392 0.389
Train1M 0.389 0.392 0.414 0.393

ImageNet200k 0.345 0.304 0.325 0.368

MAP scores:

Train100k 0.641 0.647 0.386 0.405
Train1M 0.664 0.668 0.429 0.420

ImageNet200k 0.532 0.532 0.363 0.362

Tag Retrieval

Flickr51 NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MAP scores:

Train100k 0.854 0.860 0.742 0.745
Train1M 0.874 0.871 0.753 0.745

ImageNet200k 0.873 0.873 0.762 0.762

NDCG20 scores:

Train100k 0.838 0.863 0.849 0.856
Train1M 0.894 0.851 0.891 0.853

ImageNet200k 0.920 0.898 0.843 0.847
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Fig. 8. Per-image comparison of TagVote/TagProp learned from different training datasets,
tested on NUS-WIDE. Test images are grouped in terms of the number of ground truth tags. Within each
group, the area of a colored bar is proportional to the number of images that (the method derived from) the
corresponding training dataset scores the best. ImageNet200k is less effective for assigning multiple labels
to an image.

the number of missing tags on Flickr51 and NUS-WIDE is 9 and 15. For a fair compar-
ison these missing tags are excluded from the evaluation. Putting the remaining test
tags together, we obtain a subset of ImageNet, containing 166 labels and over 200k
images, termed ImageNet200k. For a fair comparison, we considered only Train100k
and Train1m training sets of socially tagged images.

The left half of Table IX shows the performance of tag assignment. TagVote/TagProp
trained on the ImageNet data are less effective than their counterparts trained on the
Flickr data. For a better understanding of the result, we employ the same visualization
technique as used in Section 5.1, i.e., grouping the test images in terms of the number
of their ground truth tags, and subsequently checking the performance per group. As
shown in Fig. 8, while ImageNet200k performs better on the first group, i.e., images
with a single relevant tag, it is outperformed by Train100k and Train1M on the other
groups. For its single-label nature, ImageNet is less effective for assigning multiple
labels to an image.

For tag retrieval, as shown in the right half of Table IX, TagVote/TagProp learned
from ImageNet200k in general have higher MAP and NDCG scores than their coun-
terparts learned from the Flickr data. By comparing the performance difference per
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• Methods trained on socially tagged datasets show better performance for 
tag assignment.
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• TagVote and TagProp trained on ImageNet200k have better performance 
on images with a single relevant tag.

• On the other groups, Train100k and Train1M are a better choice.

• For its single-label nature, ImageNet is less effective for assigning
multiple labels to an image.

Socializing the Semantic Gap X:31

Table IX. Flickr versus ImageNet. Notice that the numbers on Train100k and Train1M are different from Tables V and VIII
due to the use of a reduced set of test tags. Bold values indicate top performers on a specific test set per performance
metric.

Tag Assignment

MIRFlickr NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MiAP scores:

Train100k 0.377 0.383 0.392 0.389
Train1M 0.389 0.392 0.414 0.393

ImageNet200k 0.345 0.304 0.325 0.368

MAP scores:

Train100k 0.641 0.647 0.386 0.405
Train1M 0.664 0.668 0.429 0.420

ImageNet200k 0.532 0.532 0.363 0.362

Tag Retrieval

Flickr51 NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MAP scores:

Train100k 0.854 0.860 0.742 0.745
Train1M 0.874 0.871 0.753 0.745

ImageNet200k 0.873 0.873 0.762 0.762

NDCG20 scores:

Train100k 0.838 0.863 0.849 0.856
Train1M 0.894 0.851 0.891 0.853

ImageNet200k 0.920 0.898 0.843 0.847
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Fig. 8. Per-image comparison of TagVote/TagProp learned from different training datasets,
tested on NUS-WIDE. Test images are grouped in terms of the number of ground truth tags. Within each
group, the area of a colored bar is proportional to the number of images that (the method derived from) the
corresponding training dataset scores the best. ImageNet200k is less effective for assigning multiple labels
to an image.

the number of missing tags on Flickr51 and NUS-WIDE is 9 and 15. For a fair compar-
ison these missing tags are excluded from the evaluation. Putting the remaining test
tags together, we obtain a subset of ImageNet, containing 166 labels and over 200k
images, termed ImageNet200k. For a fair comparison, we considered only Train100k
and Train1m training sets of socially tagged images.

The left half of Table IX shows the performance of tag assignment. TagVote/TagProp
trained on the ImageNet data are less effective than their counterparts trained on the
Flickr data. For a better understanding of the result, we employ the same visualization
technique as used in Section 5.1, i.e., grouping the test images in terms of the number
of their ground truth tags, and subsequently checking the performance per group. As
shown in Fig. 8, while ImageNet200k performs better on the first group, i.e., images
with a single relevant tag, it is outperformed by Train100k and Train1M on the other
groups. For its single-label nature, ImageNet is less effective for assigning multiple
labels to an image.

For tag retrieval, as shown in the right half of Table IX, TagVote/TagProp learned
from ImageNet200k in general have higher MAP and NDCG scores than their coun-
terparts learned from the Flickr data. By comparing the performance difference per
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Table IX. Flickr versus ImageNet. Notice that the numbers on Train100k and Train1M are different from Tables V and VIII
due to the use of a reduced set of test tags. Bold values indicate top performers on a specific test set per performance
metric.

Tag Assignment

MIRFlickr NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MiAP scores:

Train100k 0.377 0.383 0.392 0.389
Train1M 0.389 0.392 0.414 0.393

ImageNet200k 0.345 0.304 0.325 0.368

MAP scores:

Train100k 0.641 0.647 0.386 0.405
Train1M 0.664 0.668 0.429 0.420

ImageNet200k 0.532 0.532 0.363 0.362

Tag Retrieval

Flickr51 NUS-WIDE

Training Set TagVote TagProp TagVote TagProp

MAP scores:

Train100k 0.854 0.860 0.742 0.745
Train1M 0.874 0.871 0.753 0.745

ImageNet200k 0.873 0.873 0.762 0.762

NDCG20 scores:

Train100k 0.838 0.863 0.849 0.856
Train1M 0.894 0.851 0.891 0.853

ImageNet200k 0.920 0.898 0.843 0.847
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Fig. 8. Per-image comparison of TagVote/TagProp learned from different training datasets,
tested on NUS-WIDE. Test images are grouped in terms of the number of ground truth tags. Within each
group, the area of a colored bar is proportional to the number of images that (the method derived from) the
corresponding training dataset scores the best. ImageNet200k is less effective for assigning multiple labels
to an image.

the number of missing tags on Flickr51 and NUS-WIDE is 9 and 15. For a fair compar-
ison these missing tags are excluded from the evaluation. Putting the remaining test
tags together, we obtain a subset of ImageNet, containing 166 labels and over 200k
images, termed ImageNet200k. For a fair comparison, we considered only Train100k
and Train1m training sets of socially tagged images.

The left half of Table IX shows the performance of tag assignment. TagVote/TagProp
trained on the ImageNet data are less effective than their counterparts trained on the
Flickr data. For a better understanding of the result, we employ the same visualization
technique as used in Section 5.1, i.e., grouping the test images in terms of the number
of their ground truth tags, and subsequently checking the performance per group. As
shown in Fig. 8, while ImageNet200k performs better on the first group, i.e., images
with a single relevant tag, it is outperformed by Train100k and Train1M on the other
groups. For its single-label nature, ImageNet is less effective for assigning multiple
labels to an image.

For tag retrieval, as shown in the right half of Table IX, TagVote/TagProp learned
from ImageNet200k in general have higher MAP and NDCG scores than their coun-
terparts learned from the Flickr data. By comparing the performance difference per
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• For retrieval, in general the two socially tagged yield better performance 
than ImageNet200k. However, in some cases is not!

• Train100k and Train1m yields better performance on tags where ImageNet 
examples lack diversity (for instance ‘running’).

• ImageNet200k performance gain is largely due to a few tags where social 
tagging is very noisy.
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ImageNet already provides labeled examples for over 20k
categories. Is it necessary to learn from socially tagged data?

• Yes!

• For tag assignment social media examples are a preferred resource
of training data.

• For tag retrieval ImageNet may provide better performance, yet the 
performance gain is largely due to a few tags where social tagging
is very noisy.
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• We went through eleven key methods of various media and learning.

• Take home messages:

- The more social data for training, the better performance is obtained

- Substituting BovW for CNN features boosts all methods performance.

- TagVote and TagProp provide the best overall performance for 
Assignment and Retrieval.

- RobustPCA is the choice for Refinement.

- Given a small sized training set, the model-based RelExample may be 
a better performance.
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PART 5
PRACTICES

• Introduction to Jingwei
• design
• API

• Hands on
• Run TagVote on Train10k + MIRFlickr
• Learning new tag models on the fly

xirong@ruc.edu.cn
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Renmin University of China
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PRINCIPLES OF DESIGN
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• Usability6
• Python6APIs
• cross:platform:6linux,6window,6mac

• Readability
• Majority6of6the6code6is6written6in6Python

• Flexibility
• Extend6easily6to6new6datasets6and6new6visual6features



CODE ARCHITECTURE OF JINGWEI
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pickled
result
matrix

test tags

test images

https://github.com/li-xirong/jingwei



RUN A SPECIFIC METHOD

- doit series

5
https://github.com/li:xirong/jingwei/tree/master/doit



DATA ORGANIZATION
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• Training and test collections follow the same data organization

Put a new collection here Put a new feature here



CASE STUDY: TAGVOTE

• In this part, we show how to use the TagVote method

• Datasets
• Training set: train10k
• Test set: mirflickr08

• Tasks
• Tag assignment
• Tag retrieval

7



RUN TAGVOTE
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• Modify6two6variables6in6start.sh according6to6your6machine

export6SURVEY_CODE=/Users/xirong/jingwei
export6SURVEY_DATA=/Users/xirong/mm15tut

• Go6to6doit

./do_tagvote.sh train10k6mirflickr086color64+dsift

$SURVEY_DATA/surveyruns/train10k_mirflickr08_color64+dsift,tagvote.pkl



IMPLEMENTATION OF TAGVOTE

- Source code: instance_based/tagvote.py
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specify6concepts6

for6visual6neighbor6search



IMPLEMENTATION OF TAGVOTE

- Key functions

10

Context6is6optional

Re:implement6this6function6for6
your6own6method



EVALUATE TAGVOTE

- specify runs (pickle files) to be evaluated in the following file
$SURVEY_DATA/eval_output/runs_tagvote_mirflickr08.txt

- script
- eval/eval_pickle.sh mirflickr08 tagvote

11

$SURVEY_DATA/eval_output/runs_tagvote_mirflickr08.res



TO IMPROVE TAGVOTE

- Now try deep learning features
- vgg-verydeep-16-fc7relu

12

./do_tagvote.sh train10k mirflickr08 vgg-verydeep-16-fc7relu

$SURVEY_DATA/surveyruns/train10k_mirflickr08_vgg-verydeep-16-fc7relu,tagvote.pkl



LEARNING NEWTAG MODELS ONTHE FLY

• In this part, we show  step-by-step how to learn new tag
models on the fly using the Jingwei API

• Scenario: To retrieve images from an (unlabeled) 
collection for a given set of tags, e.g., child, face, and 
insect.

13



STEP 1. SPECIFY CONCEPTS

- Generate a new concept file at
train100k/Annotations/conceptsmm15tut.txt, which has three
lines:

- Obtain labeled examples for these three tags
python6util/imagesearch/obtain_labeled_examples.py train100k6

~/mm15tut/train100k/Annotations/conceptsmm15tut.txt

14

child
face
insect



STEP 2. CREATE ANNOTATIONS

15

>>>6from6model_based.dataengine.positiveengine import6PositiveEngine

>>>6from6model_based.dataengine.negativeengine import6NegativeEngine
>>>6pe =6PositiveEngine('train100k')
>>>6ne6=6NegativeEngine('train100k')

>>>6pos_set =6pe.sample('child',6100)
>>>6neg_set =6ne.sample('child',6100)
>>>6names6=6pos_set +6neg_set

>>>6labels =6[1]6*6len(pos_set)6 +6[:1]6*6len(neg_set)
>>>6name2label6=6dict(zip(names,labels))



STEP 3. LOAD FEATURE VECTORS

16

>>>6from6basic.constant import6ROOT_PATH

>>>6from6util.simpleknn.bigfile import6BigFile
>>>6feature6 =6"vgg:verydeep:16:fc7relul2"
>>>6feat_file =6BigFile('%s/train100k/FeatureData/%s'6%6(ROOT_PATH,6
feature))6
>>>6(renamed,6vectors)6=6feat_file.read(names)

>>>6y6=6[name2label[x]6 for6x6in6renamed]



STEP 4. TRAIN A LINEAR SVM MODEL

17

>>>6from6model_based.svms.fastlinear.liblinear193.python.liblinearutil6 import6 train
>>>6from6model_based.svms.fastlinear.fastlinear import6 liblinear_to_fastlinear
>>>6svm_params =6':s626:B6:16:q’
>>>6model6=6train(y,6vectors,6svm_params)
>>>6fastmodel =6liblinear_to_fastlinear([model],6 [1.0],6feat_file.ndims)

#6optionally6 save6the6learned6model6 to6disk
>>>6from6model_based.svms.fastlinear.fastlinear import6 fastlinear_save_model
>>>6import6os
>>>6model_filename =6os.path.join(ROOT_PATH,6'train100k',6'Models',6
'conceptsmm15tut.txt',6feature,6'fastlinear',6'child.model')

>>>6from6basic.common import6makedirsforfile
>>>6makedirsforfile(model_filename)
>>>6fastlinear_save_model(model_filename,6 fastmodel)



STEP 5. APPLY THE TRAINED MODEL

18

>>>6from6basic.util import6readImageSet

>>>6testCollection =6'mirflickr08’
>>>6imset =6readImageSet(testCollection)
>>>6test_feat_dir =6os.path.join(ROOT_PATH,6testCollection,6'featureData',6feature)
>>>6test_feat_file =6BigFile(test_feat_dir)
>>>6renamed,6vectors6=6test_feat_file.read(imset)

>>>6scores6=6[fastmodel.predict(x)6for6x6in6vectors]
>>>6ranklist =6sorted(zip(renamed,6scores),6key=lambda6v:(v[1],v[0]),6reverse=True)
>>>6from6basic.common import6writeRankingResults
>>>6resultfile =6os.path.join(ROOT_PATH,6testCollection,6'SimilarityIndex',6
testCollection,6'train100k',6'conceptsmm15tut.txt',6'%s,fastlinear'%feature,6
'child.txt')
>>>6writeRankingResults(ranklist,6resultfile)



STEP 6. VISUALIZATION

19

Go6to6visualize/webdemo,6 and6set6config.json

{
"imagedata_path":6"/Users/xirong/mm15tut",
"rootpath":6"/Users/xirong/mm15tut",
"max_hits":650,
"collection":6"mirflickr08",
"annotationName":6"conceptsmir14.txt",
"rankMethod":6"train100k/conceptsmm15tut.txt/vggBverydeepB16B
fc7relul2,fastlinear",
"metric":6"AP"
}

python main.py 9001



STEP 6. VISUALIZATION

20



GO BACK TO STEP 2
- Generate better annotations by leveraging tag relevance learning

results

>>> from6model_based.dataengine.positiveengine import6
SelectivePositiveEngine
>>>6spe =6SelectivePositiveEngine('train100k',6 'tagged,lemm/train100k/vggB
verydeepB16Bfc7relu,cosineknn,1000,lemm')
>>>6pos_set =6spe.sample('child',6100)

21

python util/imagesearch/sortImages.py train100k conceptsmm15tut.txt 
tagrel train100k/vgg-verydeep-16-fc7relu,cosineknn,1000,lemm

train100k/SimilarityIndex/train100k/tagged,lemm/train100k/vgg-verydeep-
16-fc7relu,cosineknn,1000,lemm/child.txt



NOW THE ‘CHILD’ MODEL IS IMPRVOED

22
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The	web	evolutionary trend
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1990-
2011 2011 - 2015 2015-onwards

Community-based

Interactive

Sensor-based



The	wisdom of	crowds
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Image	collections
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Fig. 2. Per-tag comparison of methods for tag assignment on MIRFlickr. The training set is
Train1m.
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Fig. 3. Per-image comparison of methods for tag assignment on NUS-WIDE. Visual feature: CNN.
Test images are grouped in terms of their number of ground truth tags. The area of a colored bar is propor-
tional to the number of images that the corresponding method scores best.

cerning TagFeature, we observe that increasing the training set size brings moderated
improvements and even a decrease of MiAP for NUS-WIDE. The absence of a filtering
component makes TagFeature more likely to overfit to training examples irrelevant to
the test tags. For the other two model-based methods, the overfit issue is alleviated by
different strategies: RelExample employs a filtering component to select more relevant
training examples, while TagProp has less parameters to tune.

ACM XXX, Vol. X, No. X, Article X, Publication date: March 2015.

Content-based annotation,	 refinement,	 retrieval



The	relevance function

5

Socializing the Semantic Gap X:5

Test Media
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S

⇥
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Retrieval

tag t

X
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�

(x, t; ⇥)

Auxiliary Components

Instance-based 
Model-basedinductive

transductive

ˆS

Fig. 1. Dataflow to structure the literature on tag relevance learning for image tag assignment, refinement
and retrieval. We follow the input data as it flows through the process of the tag relevance function f to
higher level tasks, complete with common internal activities and surrounding auxiliary components. Dashed
lines indicate optional processes such as the auxiliary components and transduction-based algorithms.

We use x, t, and u to represent the three basic elements in social images, namely
image, tag, and user. An image x is shared on social media by its user u. A user u
can choose a specific tag t to label x. By sharing and tagging images, a set of users U
contribute a set of n socially tagged images X , wherein X

t

denotes the set of images
tagged with t. Tags used to describe the image set form a vocabulary of m tags V. The
relationship between images and tags can be represented by an image-tag association
matrix D 2 {0, 1}n⇥m, where D

ij

= 1 means the i-th image is labeled with the j-th tag,
and 0 otherwise.

Given an image and a tag, we introduce a real-valued function that computes the
relevance between x and t based on the visual content and an optional set of user
information ⇥ associated with the image:

f
�

(x, t; ⇥)

We use ⇥ in a broad sense, making it refer to any type of information provided by or
referring to the user like social features (e.g. user’s profile), user’s tags, other media or
a timestamp. The subscript � specifies how the tag relevance function is constructed.
We can easily interpret each of the three tasks: assignment and refinement can be
done by sorting V in descending order by f

�

(x, t; ⇥), while retrieval can be achieved by
sorting the labeled image set X

t

in descending order in terms of f
�

(x, t; ⇥).
Fig. 1 presents a unified framework, which illustrates the main data flow of varied

approaches to tag relevance learning. Compared to traditional methods that rely on
expert-labeled examples, a novel characteristic of a social media based method is its
capability to learn from socially tagged examples with unreliable annotations. Such
a training media is marked as S in the framework. Optionally, in order to obtain a
refined training media ˆS, one might consider designing a filter to remove unwanted
tags and images. In addition, prior information such as tag statistics, tag correlations,
and image affinities in the training media are independent of a specific image-tag pair.
They can be precomputed for the sake of efficiency. As the filter and the precomputation
appear to be a choice of implementation, we position them as auxiliary components in
Fig. 1.

ACM XXX, Vol. X, No. X, Article X, Publication date: March 2015.

Definition	of	 	a	function f which measures the	relevance between a	given image	
and	a	specific tag,	stands at the	heart of	annotation,	 refinement and	retrieval task

Tag	relevance learning is based on	the	visual content (and	eventually a	set	of	user
information	 associatedwith	the	image)
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X:8 X. Li et al.

Table I. The taxonomy of methods for tag relevance learning, organized along the Media and Learning dimensions of Fig.
1. Methods for which this survey provides an experimental evaluation are indicated in bold font.

Learning

Media Instance-based Model-based Transduction-based

tag

[Sigurbjörnsson and van Zwol 2008]
[Sun et al. 2011]
[Zhu et al. 2012]

[Xu et al. 2009] –

tag + image

[Liu et al. 2009]
[Makadia et al. 2010]
[Tang et al. 2011]
[Wu et al. 2011]
[Yang et al. 2011]
[Truong et al. 2012]
[Qi et al. 2012]
[Lin et al. 2013]
[Lee et al. 2013]
[Uricchio et al. 2013]
[Zhu et al. 2014]
[Ballan et al. 2014]
[Pereira et al. 2014]

[Wu et al. 2009]
[Guillaumin et al. 2009]
[Verbeek et al. 2010]
[Liu et al. 2010]
[Ma et al. 2010]
[Liu et al. 2011b]
[Duan et al. 2011]
[Feng et al. 2012]
[Srivastava and Salakhutdinov 2012]
[Chen et al. 2012]
[Lan and Mori 2013]
[Li and Snoek 2013]
[Li et al. 2013]
[Wang et al. 2014]
[Niu et al. 2014]

[Zhu et al. 2010]
[Wang et al. 2010]
[Li et al. 2010]
[Zhuang and Hoi 2011]
[Richter et al. 2012]
[Kuo et al. 2012]
[Liu et al. 2013]
[Gao et al. 2013]
[Wu et al. 2013]
[Yang et al. 2014]
[Feng et al. 2014]
[Xu et al. 2014]

tag + image + user

[Li et al. 2009b]
[Kennedy et al. 2009]
[Li et al. 2010]
[Znaidia et al. 2013]
[Liu et al. 2014]

[Sawant et al. 2010]
[Li et al. 2011b]
[McAuley and Leskovec 2012]
[Kim and Xing 2013]
[McParlane et al. 2013b]
[Ginsca et al. 2014]
[Johnson et al. 2015]

[Sang et al. 2012a]
[Sang et al. 2012b]
[Qian et al. 2015]

2.3. Learning for tag relevance
This section presents the second dimension of the taxonomy, elaborating on various
algorithms for tag relevance learning. Depending on whether the tag relevance learn-
ing process is transductive, i.e., producing tag relevance scores without distinction as
training and testing, we divide existing works into transduction-based and induction-
based. Since the latter produces rules or models that are directly applicable to a novel
instance [Michalski 1983], it has a better scalability for large-scale data compared to
its transductive counterpart. Depending on whether an explicit model, let it be dis-
criminative or generative, is built, a further division for the induction-based methods
can be made: instance-based algorithms and model-based algorithms. Consequently,
we divide existing works into the following three exclusive groups: 1) instance-based,
2) model-based, and 3) transduction-based.

2.3.1. Instance-based. This class of methods does not perform explicit generalization
but, instead, compares new test images with training instances. It is called instance-
based because it constructs hypotheses directly from the training instances them-
selves. These methods are non parametric and the complexity of the learned hypothe-
ses grows as the amount of training data increases. The neighbor voting algorithm
[Li et al. 2009b] and its variants [Kennedy et al. 2009; Li et al. 2010; Truong et al.
2012; Lee et al. 2013; Zhu et al. 2014] estimate the relevance of a tag t with respect
to an image x by counting the occurrence of t in annotations of the visual neighbors

ACM XXX, Vol. X, No. X, Article X, Publication date: March 2015.

“Socializing the Semantic Gap: A Comparative Survey on Image Tag
Assignment, Refinement andRetrieval “
X.	LI,	T.	URICCHIO,	L.	BALLAN,	M.	BERTINI,	C.	SNOEK,	A.	DEL BIMBO
http://arxiv.org/abs/1503.08248



The	wisdom of	context
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2011 - 2015 2015-onwards

Community-based

Sensor-based

Discover relationships between
user,	 content and	concepts,	
time	of	use,	environment,	
situation	sentiment…….	

• Topics	are	originated	by	real-world	phenomena	such	
as cultural	events,	real	world	physical	facts….

• User	intentions	follow	facts	and	change	through	
time…

• Often	tags	are	used	to	describe	a	situation	rather	
than	a	visual	content



Research trends	and	challenges
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- Mapping cyberspace and real-world beyond multimodal fusion and tag
processing…

- Correlation between visual content and context
- Video….

• Images are not static entities in the cyberspace

• Defining tag importance,	beyond tags that merely describe objects visually
represented in	the	image,	towards more	user-centric and	subjective notions such
as emotion,	 sentiment,	and	preferences….



Mapping cyberspace	and	real-world	

• Mapping between cyberspace	and	real world	will be	a	law	about a	highly
complex systemand	as such can	only be	a	best	approximation of	delineated
aspects of	topic evolution and	is beyond multimodal fusion	 and	tag processing

• Content	is increasingly personalized and	tailored to	user tastes,	so	it is important
to	understand user tagging behavior and	trends
• User	influence is fundamental for		prediction,		personalized retrieval…
• Spatial and	temporal information	are	fundamental for		prediction,		personalized

retrieval,	topic relevance detection,		social	trends	detection,	 	sub-topic outbreak
detection,	….

• Improving both relevance and	diversification is fundamental for	personalized
retrieval

9
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Personalized image	tags

• Personalize generic annotation models by	
learning from	a	user’s multimedia	 tagging history

• Personalized tag recommendation by	jointly
exploring the	tagging resources and	the	geo-
location	information	by	learning from	user
tagging history and	geo-location	related tagging

• User	provided lists treated as having structure:	
users tend to	present their tag lists with	an	
inherent preference order not as a	bag-of-words

• Graph learning for	enriching the	tagging data	
according to	item	similarities and	tensor
factorization for	learning coherent ternary
relations	among users,	 images	and	tags

“Towards Understanding User Preferences from User
Tagging Behavior”,
A. O. NWANA, TSHUANCHEN,
arXiv:1507.05150, 2015

“Tag Refinement for User-Contributed Images via Graph
Learning and Nonnegative Tensor Factorization”,
Z QIAN, et al.
Signal Processing Letters, IEEE, 2015

“Personalizing automated image annotation using cross-
entropy”,
X. LI, et al.
ACMMultimedia 2011

“PersonalizedGeo-Specific Tag	Recommendation for	Photos
on	Social	Websites”
J.	LIU,	Z.	LI,	J.	TANG,	YU JIANG,	ANDH.	LU, IEEE	TMM	2014
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• Geo-location	characterize locations about events,	
current affairs topic-characteristic patterns

• Topic characteristic temporal patterns:
– following a	trend,	cyclical,	periodic,	episodic

– ….

;PILYPV <YPJJOPV 3HTILY[V )HSSHU 4HYJV )LY[PUP (SILY[V +LS )PTIV
[PILYPV�\YPJJOPV'\UPÄ�P[ SHTILY[V�IHSSHU'\UPÄ�P[ THYJV�ILY[PUP'\UPÄ�P[ HSILY[V�KLSIPTIV'\UPÄ�P[

6]LY]PL^ HUK TV[P]H[PVU
;̀ WPJHSS` ]PZ\HS JVU[LU[� [L_[ HUK TL[HKH[H� HYL \ZLK [V PTWYV]L
[OLZL [HZRZ� ( JOHYHJ[LYPZ[PJ [OH[ OHZ YLJLP]LK SLZZ H[[LU[PVU� ZV
MHY� PZ [OL [LTWVYHS HZWLJ[ VM ZVJPHS TLKPH WYVK\J[PVU HUK [HNNPUN�

� ;LTWVYHS PUMVYTH[PVU HZZVJPH[LK [V ZLHYJO LUNPUL X\LYPLZ JHU
IL \ZLK [V WYLKPJ[ [YLUKZ HUK ILOH]PVYZ YLSH[LK [V LJVUVTPJZ
HUK TLKPJPUL BJOVP�����D BNPUZILYN���� D�

� ;LTWVYHS K`UHTPJZ VM ZVJPHS PTHNL JVSSLJ[PVUZ OHZ ILLU Z[\K�
PLK PU BRPT�����D [V PTWYV]L �

� 0[ PZ UV[ L_HJ[S` JSLHY PM HUK OV^ \ZLY [HNZ HYL [LTWVYHSS` YL�
SH[LK [V ]PZ\HS JVUJLW[Z HUK ZVJPHS L]LU[Z�

2006 2007 2008

−1
0

1
2

3
4

time

va
lu
e

●
●

●

●

●
●
●●

●●

●●●

●

●
●

●

●

●●

●

●●●●
●

●●
●

●

●
●●●●

●●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●
●
●
●
●●
●

●

●
●●

●●●

●●●

●●●●●●
●
●
●
●●●
●●
●
●●
●●
●●●●●●

●●
●
●
●●●●●●

●●●●
●●
●
●
●●
●●●●

●●●●●●
●●

●●●●●●●
●●
●
●●●

●

●

●●
●
●
●
●●

soccer (r = 0.46)

●●●
●
●
●
●
●
●
●
●●●
●●
●
●●
●

●

●

●
●

●
●●●●●

●
●●
●
●
●●
●
●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●
●●●●

●
●
●
●
●
●

●

●

●
●
●●●●●

●
●●
●
●●
●●
●
●●
●
●●
●●
●●●●●●●●●●

●●
●●●
●●●
●●●
●
●
●
●
●
●
●

●
●
●
●●●●●

●
●
●●
●
●●
●●
●●
●
●
●
●
●
●
●●
●●●
●

UserTags
GoogleTrends

2006 FIFA World Cup
(9 June - 9 July)

(UHS`ZPZ VM [OL [LTWVYHS L]VS\[PVU VM IV[O \ZLY [HNZ HUK NYV\UK�
[Y\[O [HNZ HSSV^Z [V L]HS\H[L [OL HUK �

;LTWVYHS MLH[\YLZ
-VY L]LY` ZL[ JVUZPKLYLK� ^L JVTW\[LK H ZL[ VM MLH[\YLZ!

� ! [OL U\TILY VM YLSL]HU[ PTHNLZ ^OPJO HYL
taken PU H KH �̀ .P]LU H KH` d ∈ D!

(d) := |{i ∈ I|day(i) = d}|

� ! [OL U\TILY VM YLSL]HU[ PTHNLZ
HZZVJPH[LK ^P[O H [HN ^OPJO HYL taken PU H KH �̀ .P]LU H [HN
t ∈ T HUK H KH` d ∈ D!

(t, d) := |{i ∈ I|day(i) = d ∧ t ∈ tag(i)}|

:PTPSHYS` ^L HSZV KLÄUL MLH[\YLZ WLY ^LLR �04>� 0;>� HUK WLY
TVU[O �044� 0;4��

;OL MLH[\YLZ KLÄULK HIV]L HYL ZLUZP[P]L [V [OPZ RPUK VM UVPZL� WYV�
K\JPUN UVPZ` WLHRZ V]LY ZPUNSL KH`Z�

+H[HZL[Z
409-30*29��4 5<:>0+,����2

0THNLZ ��������� �� ����
=HSPK [PTLZ[HTWZ ����� � �������

.YV\UK [Y\[O �� ���R PTHNLZ� ��
;HNZ ����� �����

;PTL PU[LY]HS �������� ���������

-SPJRY 7VW\SHYP[` 4VKLS
;OL U\TILY VM PTHNLZ V]LY [PTL PU -SPJRY HYL TVZ[S` ]HYPHISL� IHZLK
VU [OL WVW\SHYP[` VM [OL ZP[L P[ZLSM� ;OPZ ZSV^ JOHUNL V]LY [PTL JHU
ILTVKLSLK HZ H [YLUK V]LY HSS [HNZ� PUKLWLUKLU[ MYVT HU` WHY[PJ\SHY
X\LY �̀
:\WWVZPUN HU \UPMVYT ZHTWSPUN PU -SPJRY ZLHYJOLZ� ^L \ZL [OL MLH�
[\YL 04+ [V YLTV]L [OPZ IHJRNYV\UK KL]PH[PVU I` UVYTHSPaPUN [OL
0;+ MLH[\YL�
.P]LU H [HN t ∈ T HUK H KH[L d ∈ D ^L JVTW\[L!

(t, d) =
(t, d)

(d)

:PTPSHYS` ^L HSZV JVTW\[L HUK I` JVUZPKLYPUN H ^LLR HUK
H TVU[O NYHU\SHYP[ �̀ YLZWLJ[P]LS �̀

5<:�;(.: ]Z 5<:�.;

2006 2007 2008

−2
−1

0
1

2
3

4

time

va
lu
e

●●
●●

●●
●
●●●●

●
●

●

●●
●●
●

●●
●
●

●

●

●
●
●
●
●

●

●

●●

●

●●●
●

●

●●

●

●

●

●●
●
●●

●●

●
●●
●●●●

●

●●●
●●
●●●
●

●
●

●●

●●

●

●
●●

●●
●
●

●●

●

●
●

●
●
●

●
●●
●
●

●●
●●
●

●●

●●
●

●

●

●●●●
●●

●

●

●
●●
●

●
●●
●

●●●

●●
●

●
●●
●

●●●
●●
●

●
●
●
●

●

●

●●
●
●●

●

●
●

●

●●

airport (r = 0.55)

●

●
●
●

●
●

●●

●
●●

●●

●

●
●

●
●

●

●

●●

●

●
●

●
●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●●
●

●

●

●
●
●
●●●

●

●

●
●

●
●

●●
●

●

●

●●

●
●

●●

●●
●
●

●

●

●

●

●●

●

●
●●
●

●●

●●

●
●
●●

●●
●●
●
●●

●

●●

●
●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●●

●●

●
●

●

●
●
●

●
●

●

●●●

●

●

●

●

●

●
●●
●

●

●

●
●●

●

●

GroundTruth
UserTags

2006 2007 2008

−2
−1

0
1

2
3

time

va
lu
e

●●●

●

●●

●●

●

●●●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●●
●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●●

●
●

●

●●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●
●
●

●
●
●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●●●

●

●

●
●●

●●
●

●
●

●
●

●

book (r = 0.11)

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●●

●●

●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●
●
●●

●
●

●

●

●

●

●

●
●
●

●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●
●
●●

●

●
●

●
●●●
●●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

GroundTruth
UserTags

2006 2007 2008

−3
−2

−1
0

1

time

va
lu
e

●
●
●

●
●
●●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●●
●●●●

●
●●●
●

●

●

●
●
●

●

●

●
●
●●

●●
●●

●
●
●

●

●

●

●●

●

●

●

●

●●
●

●

●
●
●
●
●●

●●●

●

●●

●
●●
●
●
●●
●
●
●

●

●

●●

●●
●

●
●●

●

●

●
●
●

●●●
●●●

●

●

●●

●
●

●
●
●●
●●

●●

●
●●
●

●

●●●
●●
●
●

●

●

●

●
●●

●
●

●

sunset (r = 0.97)

●●
●

●
●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●●●
●

●

●
●
●

●

●
●
●●

●

●

●
●

●
●
●●

●
●

●
●●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●●
●
●

●

●

●

●

●

●

●
●●

●
●

●
●●
●

●

●
●
●
●

●
●●

●
●●●

●
●●
●
●●●●

●●

●
●

●●

●●

●
●
●
●

●●

●●

●
●
●
●

●

●●
●●●●●

●
●
●

●

●
●
●

●
●

GroundTruth
UserTags

2006 2007 2008

−2
−1

0
1

2

time

va
lu
e

●

●

●

●
●

●
●
●

●

●●
●

●●
●

●

●
●

●
●●
●
●●

●●●

●

●

●
●

●
●
●

●

●

●
●

●

●
●
●
●

●

●

●

●

●●
●●●
●
●●
●

●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●
●

●●

●

●●●●

●

●

●
●

●
●
●●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●
●

●

●

●

●●

●
●●

●
●
●●
●
●●

●
●●

●
●

●

●

●
●

●

●
●

●

●●●

●

●
●●●

●

●●●

●●●

●
●

●
●

●
●
●
●
●

●

birds (r = 0.74)

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●●

●

●
●

●

●
●
●

●●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●
●

●

●●

●

●

●●●

●

●

●
●

●
●

●●

●
●

●
●●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●●
●●●

●

GroundTruth
UserTags

2006 2007 2008

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

time

va
lu
e

●●●

●
●
●
●
●
●●
●
●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●

●●●●

●
●●●●

●
●
●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●●●●●●●●●●●●

●●●●●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●

snow (r = 1.00)

●●●
●●●

●●●
●●●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●●●●●●

●●●●

●
●●
●●
●
●
●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●
●

●
●
●
●●●●●●

●●
●●●
●●●
●●
●●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●●●●

GroundTruth
UserTags

:V\YJLZ VM [LTWVYHS KH[H
>L JVUZPKLY ^OPJO HYL KPMMLYLU[
PU [OL RPUK VM \UKLYSPUPUN SH[LU[ WYVJLZZ!

�� ! MYVT 5<:�>0+,����2� ^L JVUZPKLY [OL T ZL[ VM
[HNZ \ZPUN [OL [HNZ ^OPJO JVUZ[P[\[L [OL
LU[PYL NYV\UK [Y\[O ��� THU\HSS` JOLJRLK��

�� ! MYVT 5<:�>0+,����2� ^L JVUZPKLY [OL T ZL[
VM [HNZ \ZPUN [OL �

�� ! MYVT 409-30*29��4� ^L JVUZPKLY [OL T ZL[ VM
[HNZ \ZPUN [OL �

�� ! ILZPKL PTHNL KH[HZL[Z� ^L HSZV JVUZPKLY H
ZV\YJL VM [LTWVYHS X\LY` PUMVYTH[PVU NP]LU I` .VVNSL ;YLUKZ�
>L OH]L KV^USVHKLK HSS H]HPSHISL X\LY` KH[H MVY [OL T ZL[ VM
[HNZ JVUZPKLYLK�

0THNLZ HYL OPNOS` \UIHSHUJLK V]LY [PTL� YLZ\S[PUN PU KH`Z ^P[O O\U�
KYLKZ VM PTHNLZ HUK V[OLYZ ^P[O H[ TVZ[ [LU PTHNLZ�

7YVJLZZPUN
;V YLK\JL \UIHSHUJL HUK UVPZL!

�� ^L JVSSHWZL IH[JO [HNNLK PTHNLZ �HSI\T [HNZ��

�� ^L JVUZPKLY VUS` [OL SHYNLZ[ [PTL ZWHU ^P[O H[ SLHZ[ ��� PT�
HNLZ WLY ^LLR�

�� ^L JOVVZL H JVTTVU PU[LY]HS Z[HY[PUN MYVT ���������� HUK
LUKPUN PU �����������

;V JSLHYS` ]PZ\HSPaL TVZ[ JOHYHJ[LYPZ[PJZ WH[[LYU ^L [OLU JVTW\[LK
H ZPTWSL TV]PUN H]LYHNL V]LY HSS [PTL ZLYPLZ� -VY H KH` [PTL ZLYPLZ
P[ PZ KLÄULK HZ!

n(t, d) =
1

n

n∑

i=−n

(t, d+ i) ∀d ∈ Ψ

;OL ÄUHS [PTL ZLYPLZ HYL JVTWVZLK VM ����� HUK �� ^LLR ZHTWSLZ
YLZWLJ[P]LS` MVY 5<:�>0+,����2 HUK 409�-SPJRY��4�

*VYYLSH[PVU HUHS`ZPZ
>L Z[HUKHYKPaL HSS [PTL ZLYPLZ!

x̂i =
xi −X

sX
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[HNZ \ZPUN [OL [HNZ ^OPJO JVUZ[P[\[L [OL
LU[PYL NYV\UK [Y\[O ��� THU\HSS` JOLJRLK��

�� ! MYVT 5<:�>0+,����2� ^L JVUZPKLY [OL T ZL[
VM [HNZ \ZPUN [OL �

�� ! MYVT 409-30*29��4� ^L JVUZPKLY [OL T ZL[ VM
[HNZ \ZPUN [OL �

�� ! ILZPKL PTHNL KH[HZL[Z� ^L HSZV JVUZPKLY H
ZV\YJL VM [LTWVYHS X\LY` PUMVYTH[PVU NP]LU I` .VVNSL ;YLUKZ�
>L OH]L KV^USVHKLK HSS H]HPSHISL X\LY` KH[H MVY [OL T ZL[ VM
[HNZ JVUZPKLYLK�

0THNLZ HYL OPNOS` \UIHSHUJLK V]LY [PTL� YLZ\S[PUN PU KH`Z ^P[O O\U�
KYLKZ VM PTHNLZ HUK V[OLYZ ^P[O H[ TVZ[ [LU PTHNLZ�

7YVJLZZPUN
;V YLK\JL \UIHSHUJL HUK UVPZL!

�� ^L JVSSHWZL IH[JO [HNNLK PTHNLZ �HSI\T [HNZ��

�� ^L JVUZPKLY VUS` [OL SHYNLZ[ [PTL ZWHU ^P[O H[ SLHZ[ ��� PT�
HNLZ WLY ^LLR�

�� ^L JOVVZL H JVTTVU PU[LY]HS Z[HY[PUN MYVT ���������� HUK
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n(t, d) =
1

n

n∑

i=−n

(t, d+ i) ∀d ∈ Ψ
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YLZWLJ[P]LS` MVY 5<:�>0+,����2 HUK 409�-SPJRY��4�

*VYYLSH[PVU HUHS`ZPZ
>L Z[HUKHYKPaL HSS [PTL ZLYPLZ!

x̂i =
xi −X

sX
ŷi =

yi − Y

sY

HUK [OHU ^L \ZL [OL HUK P[Z
ZX\HYL� VM[LU KLUV[LK HZ r HUK r2�

r =
1

n− 1

n∑

i=1

(xi −X

sX

)(yi − Y

sY

)
=

1

n− 1

n∑

i=1

x̂iŷi
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ZV\YJLZ TH` IL ILULÄJPHS [V HUUV[H[L ZVJPHS TLKPH�

� >L ^PSS M\Y[OLY HUHS`aL [OL ZVJPHS HUK ]PZ\HS JVTWVULU[Z PU
YLSH[PVU [V [PTL�

;PILYPV <YPJJOPV 3HTILY[V )HSSHU 4HYJV )LY[PUP (SILY[V +LS )PTIV
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;̀ WPJHSS` ]PZ\HS JVU[LU[� [L_[ HUK TL[HKH[H� HYL \ZLK [V PTWYV]L
[OLZL [HZRZ� ( JOHYHJ[LYPZ[PJ [OH[ OHZ YLJLP]LK SLZZ H[[LU[PVU� ZV
MHY� PZ [OL [LTWVYHS HZWLJ[ VM ZVJPHS TLKPH WYVK\J[PVU HUK [HNNPUN�
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2006 FIFA World Cup
(9 June - 9 July)

(UHS`ZPZ VM [OL [LTWVYHS L]VS\[PVU VM IV[O \ZLY [HNZ HUK NYV\UK�
[Y\[O [HNZ HSSV^Z [V L]HS\H[L [OL HUK �

;LTWVYHS MLH[\YLZ
-VY L]LY` ZL[ JVUZPKLYLK� ^L JVTW\[LK H ZL[ VM MLH[\YLZ!

� ! [OL U\TILY VM YLSL]HU[ PTHNLZ ^OPJO HYL
taken PU H KH �̀ .P]LU H KH` d ∈ D!

(d) := |{i ∈ I|day(i) = d}|

� ! [OL U\TILY VM YLSL]HU[ PTHNLZ
HZZVJPH[LK ^P[O H [HN ^OPJO HYL taken PU H KH �̀ .P]LU H [HN
t ∈ T HUK H KH` d ∈ D!

(t, d) := |{i ∈ I|day(i) = d ∧ t ∈ tag(i)}|

:PTPSHYS` ^L HSZV KLÄUL MLH[\YLZ WLY ^LLR �04>� 0;>� HUK WLY
TVU[O �044� 0;4��

;OL MLH[\YLZ KLÄULK HIV]L HYL ZLUZP[P]L [V [OPZ RPUK VM UVPZL� WYV�
K\JPUN UVPZ` WLHRZ V]LY ZPUNSL KH`Z�

+H[HZL[Z
409-30*29��4 5<:>0+,����2

0THNLZ ��������� �� ����
=HSPK [PTLZ[HTWZ ����� � �������

.YV\UK [Y\[O �� ���R PTHNLZ� ��
;HNZ ����� �����

;PTL PU[LY]HS �������� ���������

-SPJRY 7VW\SHYP[` 4VKLS
;OL U\TILY VM PTHNLZ V]LY [PTL PU -SPJRY HYL TVZ[S` ]HYPHISL� IHZLK
VU [OL WVW\SHYP[` VM [OL ZP[L P[ZLSM� ;OPZ ZSV^ JOHUNL V]LY [PTL JHU
ILTVKLSLK HZ H [YLUK V]LY HSS [HNZ� PUKLWLUKLU[ MYVT HU` WHY[PJ\SHY
X\LY �̀
:\WWVZPUN HU \UPMVYT ZHTWSPUN PU -SPJRY ZLHYJOLZ� ^L \ZL [OL MLH�
[\YL 04+ [V YLTV]L [OPZ IHJRNYV\UK KL]PH[PVU I` UVYTHSPaPUN [OL
0;+ MLH[\YL�
.P]LU H [HN t ∈ T HUK H KH[L d ∈ D ^L JVTW\[L!

(t, d) =
(t, d)

(d)

:PTPSHYS` ^L HSZV JVTW\[L HUK I` JVUZPKLYPUN H ^LLR HUK
H TVU[O NYHU\SHYP[ �̀ YLZWLJ[P]LS �̀

5<:�;(.: ]Z 5<:�.;
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Spatial and	temporal information	

“Evaluating Temporal Information	for	Social	Image	Annotation and	
Retrieval”
T.	URICCHIO et	al.	Proc.	ICIAP	2013

“A	study on	the	accuracy of	Flickr’s geotag data”
C.	HAUFF,	
Proc.	SIGIR’13,	2013

TAIA’14	Workshop	on	Temporal,	Social	and	Spatially Aware
Information	Access,	2014	

Event BasedCharacterization and	Comparison of
Geosocial Environment
C.	KUMARet	al.	
Proc.	TAIA’14,	2014
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Image	diversity

• A	set	of	images	is considered to	be	diverse	if it depicts different visual
characteristics of	the	target,	i.e.,	most of	 the	perceived visual information	 is
different from	one image	to	another

• Diversity improved by	applying clustering algorithms which rely on	textual
or/and	visual cues

• Diversification based on	the	social	metadata associated with	the	images	
or/and	on	the	visual characteristics of	the	images.	

“RetrievingDiverse Social Images“
MEDIAEVAL 2014, Benchmarking Initiative for
Multimedia Evaluation.

“Visual	diversification of	image	search results”,	
R.	H.	VANLEUKENet	al.,	in	Proc.	of	WWW	2009



Correlation between visual content and	
context

• Internet	topics are	originated by	different real-world	phenomena:
• User	factors (credibility,	groups…)
• Correlation between visual content and	external factors
• Correlationwith	social	trends
• Different speed,	acceleration,	directions…		of	digital propagation
• Internet	culture	or	subculture	(reposting between differentmedia	platforms,	

remixing,	symbolization,	repurposing…)	
• ..

• The	unit of	diffusion keeps getting smaller and	smaller,	with	tweets and	images	
and	content fragments

• All of	this may result into deviation of	image	content and		tagging and	requires
modeling the	influencing factors.	Only a	small	number of	prevalent factorsmay
suffice to	explain

13
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User	annotation credibility

• The	quality of	annotations provided by	
different users can	vary strongly

• User	credibility determined as an	estimation
of	the	quality (correctness)	of	a	particular
user’s tags

• increase relevance by	favoring images	
uploaded from	users with	good credibility
estimates (user-based reranking)…

“Toward estimating user tagging credibility for social image retrieval”,
A.L. GINSCA ̆ et al. , ACM Multimedia 2014.

“Learning	tag relevance by	neighbor voting for	social	image	retrieval”,	
X.	LI et	al.,	Proc ACM	MIR	2008.	

Figure 1: Di↵erent senses of dog in ImageNet.

as support. Our credibility estimator should be able to au-
tomatically select the right sense of dog for the content of
the tested image. A simple way to process ambiguity is to
compare the tag-image pair to all models available for the
tag and retain only the maximum classification score. Pre-
liminary tests showed that this procedure has good behavior
and it is thus used in the experiments. Beyond ambiguity,
another problem is the coverage of ImageNet, with some
important senses of words not being included. For instance,
berlin is represented as car but not as city. These problems
represent limitations of our method and their tackling would
probably improve credibility estimations.

5. IMAGE RETRIEVAL METHOD
We propose a retrieval method which diversifies images

using k-Means and improves relevance with credibility esti-
mations. Let LF = {(I1, U1), (I2, U2), (I3, U1), ..., (IN , UM )}
be the ranked list of Flickr images which should be reranked.
Here (Ii, Uj) denote image-user pairs. Our retrieval method
can be broken down into three steps: initial filtering, cluster
ranking and image ranking.

Image Filtering In this step, we remove from LF all
pairs (Ii, Uj) for which Ii qualifies for face or blur removal.

Cluster Ranking After image filtering, we perform k-
Means clustering to diversify the topic representation. Let
CF = {C1, C2, ..., Ck} be the clustered version of LF. In-
spired by [9], we rank clusters based on #Users, the number
of distinct users which contribute to each cluster. Ranking
based on #Users gives priority to clusters which show social
consensus. When ties appear with #Users, they are broken
by using the top Flickr rank among the images of the user
with the highest credibility score cred(U) from each cluster.
As a result, we obtain CR

F = {C3, Ck, C2, ..., C1}, a list of
clusters ranked using social cues. For comparison, we also
rank clusters based on their raw image count (#Images).

Image Sorting We exploit credibility estimation to sort
images within clusters. Let Cc = {(I1, U1), (I3, U5), (I8, U1)}
be a cluster with its images ranked by Flickr. Assuming that
cred(U5) > cred(U1), the sorted representation of the cluster
will be CR

c = {(I3, U5), (I1, U1), (I8, U1)}. In CR
c , priority is

given to images uploaded by users with higher credibility
score.
The final image ranking LR

F is obtained by iterating over
CR

F , the ranked list of clusters, and by selecting each time
the first unseen image from CR

c , the sorted images of Cc.

6. EVALUATION
Dataset Description We evaluate our retrieval method

with the DIV400 dataset, which is thoroughly described

Figure 2: CR@10 performances with di↵erent clus-
tering methods and di↵erent numbers of clusters on
the testset of DIV400. Sort denotes the type of im-
age sorting used within clusters. Cred is a sorting
based on user credibility and Flickr is the original
Flickr ordering. ”Cluster” denotes the cluster rank-
ing method. #Users and #Images represent the
user and image counts of a cluster.

in [6]. It consists of a development dataset (50 tourist POIs,
5,118 photos) and a testing dataset (346 POIs, 38,300 pho-
tos). Each POI is represented with up to 150 photos and as-
sociated metadata retrieved with Flickr’s default “relevance”
algorithm. Relevance and diversity annotations are available
for each photo. Photos are considered relevant if they depict
a common photo representation of the POI. A set of photos
is considered to be diverse if it depicts complementary vi-
sual characteristics of the target POI. Clusters are manually
built from relevant images of each POI. The main objective
of the evaluation from [6] is diversity, which is captured
with cluster recall at N (CR@N). However, since a good
retrieval method should find a good compromise between
relevance and diversity, we also report precision (P@N) and
their combination, F1@N.

Clustering Analysis In Figure 2, we illustrate the im-
pact of the number of clusters on clustering performances.
Within each cluster, Cred, the credibility based image sort-
ing outperforms the use of the initial Flickr sorting in all
settings. Intuitively, the best overall results are obtained
when #Users and Cred are combined for inter- and intra-
cluster ranking. With 30 clusters, Flickr + #Users brings a
2 CR@10 points improvement of results compared to Flickr
+ Images. This result confirms the conclusions of [9], namely
that the use of social cues for cluster ranking is beneficial.
More importantly, the introduction of credibility estimation
(Cred + #Users) further improves CR@10 by 4 points. We
present results on the testset here because they are obtained
by averaging a larger number of topics. However, similar re-
sults are obtained on the devset and Cred + #Users with
30 clusters is used for further experiments.

Global performances In table 1, we present the results
obtained with the best credibility based retrieval method,
described in Section 5. It combines clustering and user cred-
ibility estimates and produces a reranked list of images LR

F .
For comparison, we also present results obtained by the two
most e�cient existing methods tested on DIV400 [6].

1023

Cluster	retrieval @10	performances	 with	
DIV400	dataset [A.L:	Ginsca]
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Figure 1: Di↵erent senses of dog in ImageNet.

as support. Our credibility estimator should be able to au-
tomatically select the right sense of dog for the content of
the tested image. A simple way to process ambiguity is to
compare the tag-image pair to all models available for the
tag and retain only the maximum classification score. Pre-
liminary tests showed that this procedure has good behavior
and it is thus used in the experiments. Beyond ambiguity,
another problem is the coverage of ImageNet, with some
important senses of words not being included. For instance,
berlin is represented as car but not as city. These problems
represent limitations of our method and their tackling would
probably improve credibility estimations.

5. IMAGE RETRIEVAL METHOD
We propose a retrieval method which diversifies images

using k-Means and improves relevance with credibility esti-
mations. Let LF = {(I1, U1), (I2, U2), (I3, U1), ..., (IN , UM )}
be the ranked list of Flickr images which should be reranked.
Here (Ii, Uj) denote image-user pairs. Our retrieval method
can be broken down into three steps: initial filtering, cluster
ranking and image ranking.

Image Filtering In this step, we remove from LF all
pairs (Ii, Uj) for which Ii qualifies for face or blur removal.

Cluster Ranking After image filtering, we perform k-
Means clustering to diversify the topic representation. Let
CF = {C1, C2, ..., Ck} be the clustered version of LF. In-
spired by [9], we rank clusters based on #Users, the number
of distinct users which contribute to each cluster. Ranking
based on #Users gives priority to clusters which show social
consensus. When ties appear with #Users, they are broken
by using the top Flickr rank among the images of the user
with the highest credibility score cred(U) from each cluster.
As a result, we obtain CR

F = {C3, Ck, C2, ..., C1}, a list of
clusters ranked using social cues. For comparison, we also
rank clusters based on their raw image count (#Images).

Image Sorting We exploit credibility estimation to sort
images within clusters. Let Cc = {(I1, U1), (I3, U5), (I8, U1)}
be a cluster with its images ranked by Flickr. Assuming that
cred(U5) > cred(U1), the sorted representation of the cluster
will be CR

c = {(I3, U5), (I1, U1), (I8, U1)}. In CR
c , priority is

given to images uploaded by users with higher credibility
score.

The final image ranking LR
F is obtained by iterating over

CR
F , the ranked list of clusters, and by selecting each time

the first unseen image from CR
c , the sorted images of Cc.

6. EVALUATION
Dataset Description We evaluate our retrieval method

with the DIV400 dataset, which is thoroughly described

Figure 2: CR@10 performances with di↵erent clus-
tering methods and di↵erent numbers of clusters on
the testset of DIV400. Sort denotes the type of im-
age sorting used within clusters. Cred is a sorting
based on user credibility and Flickr is the original
Flickr ordering. ”Cluster” denotes the cluster rank-
ing method. #Users and #Images represent the
user and image counts of a cluster.

in [6]. It consists of a development dataset (50 tourist POIs,
5,118 photos) and a testing dataset (346 POIs, 38,300 pho-
tos). Each POI is represented with up to 150 photos and as-
sociated metadata retrieved with Flickr’s default “relevance”
algorithm. Relevance and diversity annotations are available
for each photo. Photos are considered relevant if they depict
a common photo representation of the POI. A set of photos
is considered to be diverse if it depicts complementary vi-
sual characteristics of the target POI. Clusters are manually
built from relevant images of each POI. The main objective
of the evaluation from [6] is diversity, which is captured
with cluster recall at N (CR@N). However, since a good
retrieval method should find a good compromise between
relevance and diversity, we also report precision (P@N) and
their combination, F1@N.

Clustering Analysis In Figure 2, we illustrate the im-
pact of the number of clusters on clustering performances.
Within each cluster, Cred, the credibility based image sort-
ing outperforms the use of the initial Flickr sorting in all
settings. Intuitively, the best overall results are obtained
when #Users and Cred are combined for inter- and intra-
cluster ranking. With 30 clusters, Flickr + #Users brings a
2 CR@10 points improvement of results compared to Flickr
+ Images. This result confirms the conclusions of [9], namely
that the use of social cues for cluster ranking is beneficial.
More importantly, the introduction of credibility estimation
(Cred + #Users) further improves CR@10 by 4 points. We
present results on the testset here because they are obtained
by averaging a larger number of topics. However, similar re-
sults are obtained on the devset and Cred + #Users with
30 clusters is used for further experiments.

Global performances In table 1, we present the results
obtained with the best credibility based retrieval method,
described in Section 5. It combines clustering and user cred-
ibility estimates and produces a reranked list of images LR

F .
For comparison, we also present results obtained by the two
most e�cient existing methods tested on DIV400 [6].

1023

• Social	images	are	related to	situations more	than
simply describing objects:	compare	the	tag-
image	pair to	all models available for	the	tag and	
retain only the	maximum	classification score	is
too simplistic

• Tags occur frequently in	correspondence of	
special	events or	have correspondence with	
event patterns

“Evaluating Temporal Information	for	Social	Image	Annotation
and	Retrieval”
T.	URICCHIO,	et	al.	Proc.	 ICIAP	2013

[A.L:	Ginsca]



Modeling the	influencing factors

• Contents of	images	that are	associated with	the	same keyword	can	be	variable
according to	owners and	temporal information.	 Social	images	reflect different
users’	experiences and	preferences at different times.	
- Occurrence of	a	media	document correlated to	multiple	Influencing factors
- A generalizedmodel	may describe the	time	series

• Learn a	model	of	the	image	occurrences with	related factors and	then sample	
the	images	based on	the	learned model

16

Figure 1: (a) Given an image sequence of world+cup up to 12/31/2008, can we guess what images are likely to appear
at a future time point t

q

=6/6/2009? (c) Collective image prediction. The world+cup usually refers to the soccer event,
so a soccer scene can be a reasonable guess. However, the actual Web images are diverse because they reflect di↵erent
users’ experiences and preferences. (d) Personalized image prediction for user u6. A user’s unique angle of seeing the
topic can make the prediction more focused.

diction is time and user sensitive Web image re-ranking.
Suppose that a user submits a query world+cup into Google
and Bing image search, which then invariably retrieve re-
dundant photos of soccer in the first page. Although the
term world+cup usually refers to the international soccer
event, it is also commonly used in other international sports
and competitions (e.g . ski, skate, bicycle, or horse riding, as
shown in Fig.1.(a)). Therefore, if the world+cup is submit-
ted in winter by a user who likes skiing, it is more desirable
to include ski world cup photos in the retrieved result. Our
image prediction framework can enable the re-ranking of the
retrieved images, so that various views of the query word
are shown, according to who searches, and when the search
takes place. With the majority of Web photos now coming
from hundreds of millions of general users with di↵erent ex-
periences and preferences, the contents of images that are
associated even with the same keyword can be highly vari-
able according to owners and temporal information.
On the technical aspect, we develop an image prediction

algorithm using a multivariate point process, which is a
stochastic process that consists of a series of random events
occurring at points in time and space [6]. In our method,
an observed image stream is viewed as an instance of the
multivariate point process. Although this well-established
statistical model has been employed for analysis of neural
spiking activities [27], and for event detection in video [21],
no attempt has been made for image retrieval or re-ranking
so far. Nonetheless, we adapt it to o↵er several key advan-
tages for large-scale image prediction as follows: (i) Flexi-
bility : The image occurrence on the Web is correlated with
a wide range of factors or covariates (e.g . season, time, user
preference, and other external events). A parametric model
can be easily set up to relate the image occurrence probabil-
ity with any number of factors that influence it (section 3.3).
(ii) Optimality : The sparse globally-optimal MLE solution
is computed to identify only a small number of key factors
and their relative weights (section 3.2). (iii) Scalability : The
learning and prediction are performed in a linear time with
respect to all parameters, including time steps and the num-
ber of covariates (section 3.4). (iv) Prediction accuracies:
Our experiments on more than ten millions of Flickr images
have demonstrated compelling results on both collective and
personalized image forecast over various 40 topic keywords.
Indeed we show that our approach outperforms other meth-
ods including a PageRank-based image retrieval [15] and a
generative author-time topic model [23] (section 4).

1.1 Relations to Previous work
The problem of image prediction using large-scale Web

photo collections remains an under-addressed topic in the
image retrieval literature. Our work is remotely related to
following four lines of research, but is significantly di↵erent
on the task, utility and methodology. Due to vast volume of
literatures on these topics, we introduce only some selected
papers that are most closely related to our work.
Web content dynamics: This research aims at large-

scale analyses to describe how the Web content changes over
time. Most previous work [1, 28] has dealt with the textual
content on the Web such as news articles and scientific li-
braries. In the image domain, the most related work to ours
may be [15] in that both involve studying topic evolution in
large-scale Flickr photos. However, the main tasks of [15]
were subtopic outbreak detection and classification of noisy
web images. They did not address the image prediction,
which is our main task here. Also, they did not explore any
issues regarding personalization, as done in this work.
Similar image retrieval: The image prediction prob-

lem is also related to similar image retrieval, a well-studied
topic in computer vision [8, 20, 26]. They are related in a
way that in both cases, given a query, relevant images are
returned from the database. Yet, there are a number of key
di↵erences. Traditional similar image retrieval tends to fo-
cus solely on the semantic meaning of the query word and
feature-wise image similarity, whereas our image prediction
additionally emphasizes the temporal trends and user histo-
ries associated with the images.
Image based collaborative filtering: The goal of this

research is to mine the trends of people’s interests from com-
munity photos such as Flickr. Examples include the so-
cial trends in politics and markets [13], and spatio-temporal
events [24]. However, most existing work has taken advan-
tage of online images as the source of information to infer
other phenomena rather than taking themselves as a subject
to be forecasted.
Leveraging Web photos to infer missing informa-

tion: The final related work is on inferring missing in-
formation by leveraging a large-scale Web image corpus.
Some notable examples include scene completion [12], geo-
location estimation of a photo sequence [14], 3-D models of
landmarks [25], semantic image hierarchies [17], and people
matching [11]. However, the future image occurrence has
not been explored as missing information to be inferred.

“Web	Image	Prediction Using	
Multivariate	Point	Processes”,				
G.	KIM et	al.	,	Proc KDD’12,	2012	



Trendy	applications

• Personalized prediction,	 recommendation,	 retrieval of	multimedia	
information….

• Popularity prediction based based on	user sentiments
• Extending to video, tag localization…….

• Tracking web information sources and their correlation
• Connecting social and mobile contexts to media sensemaking...

• ….
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Popularity prediction

The	impact	of	visual	attributes	on	online	image	diffusion:	visual	
properties	have	low	predictive	power	compared	that	of	
social	cues.	However,	after	factoring-out	social	influence,	
visual	features	show	 considerable	predictive	power….	 	
L.	Totti	et	al.	2014

Visual	Features
Image	content:									1000d	representation	from	CNN
Sentibank	 features (1200	ANPs	from	the	image)

Social	Features
User	Based:															mean	views,	#	photos,	 #	contacts,	#	groups…		
Context	Based:									Freebase	(topic	notable	type),	 named entity

“What makes an	image	popular?”		A.	Khosla
et	al.,	2014.	

“Image	Popularity Prediction in	Social	Media	
using Sentiment and	Context Features”
F.	GELLI ET AL.		2015

Prediction by	exploiting user data	and	image	
contextual information	 expressed by	associated
sentiments
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__________________________________________
Events   Objects  Activities   Scenes   Sites          Avg
____________________________________________________________________________________

64,8         57,8        66,1         76,1       67,5          65,3
Precision @1 (DUT-WEBV - YOUTUBE video)

• Intra-video	indexing	and	search

Video	automatic	annotation	and	
tag	localization

requested to evaluate the relevance of each tag with respect to
the visual content of each frame. Given the di�culty of this
assessment this was performed after watching the whole video,
and reading video title, description and list of original tags, so to
understand the topics of each video and the content of the indi-
vidual frames; frames were presented to the annotators follow-
ing their order of appearance in the video. Results are reported
in Tab. 8, comparing the results with a baseline that randomly
selects tags, with a probability proportional to their frequency
in the downloaded images. As can be expected the precision is
lower than that of the other experiments, but this is due to the
di�culty of multi-label annotation and to the very large vocab-
ulary used to annotate each video.

Method Precision@5 Precision@10

Random 6.1 4.5
Our 33.4 30.4

Table 8: Annotation “in the wild”, using an open vocabulary. Comparison
between our method and the random baseline.

4.7. Running time and system details

Finally, we provide a rough analysis about the computa-
tional requirements of our system. The Python implementa-
tion of the proposed algorithm annotates a video frame in about
0.17 seconds, of which 96% of the time is spent in computing
the visual neighborhood, and ⇠ 4% to compute tag localiza-
tion and suggestion. The time required to compute temporal
consistency is negligible. The average DUT-WEBV video is
composed by around 110 keyframes (with a median of 98), re-
quiring about 18.7 seconds to process it. This is mostly an un-
optimized and un-parallelized implementation, and all our ex-
periments are run on a single workstation with Xeon 2.67 GHz
six core CPU and 48 GB RAM. As previously reported, for
each image and keyframe we have computed a 2000-d bag-of-
visual-words histogram obtained from densely sampled SIFT
descriptors. Moreover, we used ANN and hierarchical k-Means
trees [48] to speed up nearest neighbor search.

In order to promote further research on this topic, we pro-
vide all the additional annotation of the DUT-WEBV dataset to
the public at large on our webpage www.micc.unifi.it/vim,
as well as the visual features used in our experiments. We share
also the images retrieved from the di↵erent web sources to build
our retrieval set.

5. Conclusions

In this paper we have presented a tag refinement and lo-
calization approach based on lazy learning. Our system ex-
ploits collective knowledge embedded in user generated tags
and visual similarity of keyframes and images uploaded to so-
cial sites like YouTube and Flickr, as well as web image sources
like Google and Bing. We also improve our baseline algorithm
with a temporal smoothing procedure which is able to exploit
the strong temporal coherence which is normally present in a
video.

We have demonstrated state-of-the-art results on the DUT-
WEBV dataset and we have shown an extensive analysis of the
contribution given by di↵erent web sources. We plan to extend
this work with a large experimental campaign with an open set
of tags (not only the ground truth labels provided in the original
benchmark) in order to evaluate our system in a tag recommen-
dation scenario.

Acknowledgments

This research was supported in part by a grant from the Tus-
cany Region, Italy, for the AQUIS-CH project (POR CRO FSE
2007-2013). L. Ballan acknowledges the support of a Marie
Curie Individual Fellowship from the EU’s Seventh Framework
programme under grant agreement No. 623930.

References

[1] L. S. Kennedy, S.-F. Chang, I. V. Kozintsev, To search or to label? Pre-
dicting the performance of search-based automatic image classifiers, in:
Proc. of ACM MIR, Santa Barbara, CA, USA, 2006, pp. 249–258.

[2] B. Sigurbjörnsson, R. van Zwol, Flickr tag recommendation based on
collective knowledge, in: Proc. of WWW, Beijing, China, 2008, pp. 327–
336.

[3] M. Wang, B. Ni, X.-S. Hua, T.-S. Chua, Assistive tagging: A survey of
multimedia tagging with human-computer joint exploration, ACM Com-
puting Surveys 44 (2012) 25:1–25:24.

[4] X. Li, T. Uricchio, L. Ballan, M. Bertini, C. G. M. Snoek, A. Del Bimbo,
Socializing the semantic gap: A comparative survey on image tag assign-
ment, refinement and retrieval, arXiv preprint arXiv:1503.08248 (2015).

[5] D. Liu, X.-S. Hua, L. Yang, M. Wang, H.-J. Zhang, Tag ranking, in: Proc.
of WWW, Madrid, Spain, 2009, pp. 351–360.

[6] D. Liu, X.-S. Hua, M. Wang, H.-J. Zhang, Image retagging, in: Proc. of
ACM Multimedia, Firenze, Italy, 2010, pp. 491–500.

[7] Y. Wang, G. Mori, A discriminative latent model of image region and
object tag correspondence, in: Proc. of NIPS, Vancouver, BC, Canada,
2010, pp. 2397–2405.

[8] A. Makadia, V. Pavlovic, S. Kumar, A new baseline for image annotation,
in: Proc. of ECCV, Marseille, France, 2008, pp. 316–329.

[9] M. Guillaumin, T. Mensink, J. Verbeek, C. Schmid, TagProp: Discrimina-
tive metric learning in nearest neighbor models for image auto-annotation,
in: Proc. of ICCV, Kyoto, Japan, 2009, pp. 309–316.

[10] Y. Verma, C. V. Jawahar, Image annotation using metric learning in se-
mantic neighbourhoods, in: Proc. of ECCV, Firenze, Italy, 2012, pp.
836–849.

[11] L. Ballan, T. Uricchio, L. Seidenari, A. Del Bimbo, A cross-media model
for automatic image annotation, in: Proc. of ACM ICMR, Glasgow, UK,
2014, pp. 73–80.

[12] X. Li, C. G. M. Snoek, M. Worring, Learning social tag relevance by
neighbor voting, IEEE Transactions on Multimedia 11 (2009) 1310–
1322.

[13] L. Ballan, M. Bertini, T. Uricchio, A. Del Bimbo, Data-driven approaches
for social image and video tagging, Multimedia Tools and Applications
74 (2015) 1443–1468.

[14] Y. Yang, Y. Yang, Z. Huang, H. T. Shen, Tag localization with spatial
correlations and joint group sparsity, in: Proc. of CVPR, Providence, RI,
USA, 2011, pp. 881–888.

[15] X. Cao, X. Wei, Y. Han, Y. Yang, N. Sebe, A. Hauptmann, Unified dictio-
nary learning and region tagging with hierarchical sparse representation,
Computer Vision and Image Understanding 117 (2013) 934–946.

[16] M. Douze, H. Jégou, C. Schmid, P. Pérez, Compact video description
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