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Abstract

In this paper we present a simple yet effective approach to
extend without supervision any object proposal from static
images to videos. Unlike previous methods, these spatio-
temporal proposals, to which we refer as “tracks”, are gen-
erated relying on little or no visual content by only exploit-
ing bounding boxes spatial correlations through time. The
tracks that we obtain are likely to represent objects and are
a general-purpose tool to represent meaningful video con-
tent for a wide variety of tasks. For unannotated videos,
tracks can be used to discover content without any super-
vision. As further contribution we also propose a novel
and dataset-independent method to evaluate a generic ob-
ject proposal based on the entropy of a classifier output re-
sponse. We experiment on two competitive datasets, namely
YouTube Objects [6] and ILSVRC-2015 VID [7].

1 Introduction

Image and video analysis can be considered similar on
many levels, but whereas new algorithms are continuously
raising the bar for static image tasks, advancements on
videos seem to be slower and hard going. What makes video
comprehension more difficult is mainly the huge amount of
data that has to be processed and the need to model an ad-
ditional dimension: time.

We believe that focusing on relevant regions of videos,
such as objects, will reduce the complexity of the problem
and ease learning for models like Deep Networks. The same
concept has been successfully applied to images using ob-
ject proposals, which analyse low level properties, such as
edges, to find regions that are likely to contain salient ob-
jects. Advantages are twofold, first the search space is con-
siderably reduced, second, as a consequence, the number of
false positives generated by classifiers is lowered.

In this work we propose a technique to include time into
a generic object proposal, by exploiting the weak super-
vision provided by time itself to match spatial proposals
between adjacent frames. This results in spatio-temporal
tracks that represent salient objects in the video and can
therefore be used instead of the whole sequence. To the
best of our knowledge we are the first to adopt a fully un-

supervised matching strategy that only relies on bounding
box coordinates without any semantic content or visual de-
scriptor apart from optical flow. We also introduce a novel
dataset-independent proposal evaluation method based on
the entropy of classifier scores.

2 Related Work
Object proposals [3] provide a relatively small set of bound-
ing boxes likely to contain salient regions in images, based
on some objectness measure. Different proposals, such as
EdgeBoxes [12], are commonly used in image related tasks
to reduce the number of candidate regions to evaluate. Re-
cently, there have been some attempts to adapt the paradigm
of object proposals to videos to solve specific tasks, by gen-
erating consistent spatio-temporal volumes. In [6] motion
segmentation is exploited to extract a single spatio-temporal
tube for video, in order to perform video classification.
The task of object discovery is tackled in [9] by generat-
ing a set of boxes using a foreground estimation method
and matching them across frames using both geometric and
appearance terms. Kwak et al. [4] combine a discovery step
matching similar regions in different frames and a tracking
step to obtain temporal proposals. In [5] a classifier is learnt
to guide a super-voxel merging process for obtaining object
proposals. Temporal proposals have been exploited to seg-
ment objects in videos in [10] by discovering easy instances
and propagating the tube to adjacent frames. Other methods
to generate salient tubes have been proposed for action lo-
calization in [11] using human and motion detection.

Differently from the above approaches we do not rely on
segmentation, which is a time-consuming task especially
for videos. Our method is simply based on the response
of a frame-wise proposal method. The weak supervision
obtained from the temporal consistency of the video is ex-
ploited to generate tracks. Our method aims at generating
few, highly precise, tracks containing objects in the video.

3 Video Temporal Proposals
In this section we introduce the concept of “track”, describ-
ing in details how these are generated from a set of bound-
ing boxes extracted by an object proposal in the video.
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Figure 1: Example of frame matching; matched boxes are inserted into their respective track. (left) reference frame where the top 10 proposals extracted with EdgeBoxes are
shown; (center) following frame with top 10 EdgeBoxes proposals; (right) 2 matched proposals between the two frames; these will be part of two different tracks

Given a video V , for each frame fi we extract a setBi of
bounding boxes bki using an object proposal. We propose a
method to match boxes that exhibit a temporal consistency
in consecutive frames through the video, yielding to a set T
of tracks tj . A track is defined as a succession of bound-
ing boxes bki for which the intersection over union (IoU)
between two boxes bmi (belonging to frame fi) and bni+1

(belonging to frame fi+1) is above a defined threshold θτ .
Starting from the first frame, each time a match is found,

the corresponding bounding box is added to the end of
the track and becomes the reference box for the following
frame. If no match is found the last box of the track is com-
pared with the following frames until a good match is ob-
tained. An example of matching is shown in Fig. 1.

When one or more consecutive matches are not found,
tracks become fragmented, i.e. there are frames for which a
track is active but there is no bounding box. This is usually
due to a lack of good bounding boxes for that frame, oc-
clusion or appearance changes of the object. It is thus nec-
essary to avoid matching boxes in frames too far apart that
therefore do not represent the same content, but at the same
time we want to be able to tolerate some missing boxes
without prematurely terminating the track.

To this end we introduce a Time to Live counter (TTL)
τ for each track. We define τi(tj) as the number of frames,
at frame i, that the method can still wait before considering
the track tj terminated. TTL starts from an initial value γ;
each time a box can not be matched in a consecutive frame
the TTL is decremented, otherwise is incremented (up to γ).
More formally, given a track tj and its last bounding box bmi
we increment or decrement its TTL as follows:

τi+1(tj) =

{
τi(tj) + 1, if ∃ n : IoU(bmi , b

n
i+1) > θτ

τi(tj)− 1, otherwise
(1)

When the TTL for a track reaches 0, the track is con-
sidered terminated. Missing frames caused by track frag-
mentation are linearly interpolated using the positions of the
previous and following bounding boxes in the track.

Proposal Motion Compensation Proposals around ob-
jects in consecutive frames are usually unaligned due to

movements of the object or the camera. This causes the
IoU score to decrease even if the matching is good. We
work around this problem by registering the boxes with op-
tical flow before computing the IoU. The registration is per-
formed on the last box of each track, by computing the mean
offsets along the x and y axes inside the boxes. Shifted
boxes are only used for matching and tracks consist only of
unaltered boxes.

Temporal NMS As in the spatial case, temporal propos-
als also suffer of high redundancy. To reduce this effect we
extend spatial non-maximal suppression to time, defining a
temporal NMS where instead of computing IoU on areas it
is computed over volumes (vIoU). If αkj is the area of the k-
th bounding box in track tj , then the volume υj of the track
is calculated as υj =

∑K
k = 0 α

k
j where K is the length of

the track. Then, vIoU is defined as:

vIoU(tj , tk) =
υj ∩ υk
υj ∪ υk

(2)

Using vIoU we apply the standard NMS.

Proposal Suppression Once all the tracks are computed
for a given video, we apply a post-processing to remove the
ones that are unlikely to represent an object. To this end
we remove those tracks which have a length smaller than a
value l. In this way we exclude very short tracks that are
likely to be composed by background boxes that happen to
have a high IoU.

Another problem is posed by logos and writings im-
pressed on the video. In fact both of these are very well
located by an object proposal but are usually of no interest.
To prevent such objects to be considered as valid tracks, we
take the mean optical flow magnitude in all the boxes of the
track and we discard it if under a threshold s.

Track Ranking It is important to compute a score for
temporal proposals, in order to account for the likelihood
of objects in such proposal. To this end, we propose to con-
sider two factors: the object proposal score used to generate
the bounding boxes at each frame and the values given by
the IoUs between frames of the tracks. For the former we
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define Et as the mean of the scores given by EdgeBoxes,
for the latter we define It as the mean of all the IoUs of
the frames in the track. Using these two figures we define a
track score as:

St = λEt + (1− λ)It (3)

where λ ∈ [0, 1] is a weighting factor used to balance the
contributions of the two scores.

4 Method Evaluation
Object proposals are usually evaluated measuring how well
objects are covered by the generated boxes. These kind of
evaluation does not take into account unannotated objects,
and therefore provide a benchmark not reflecting the real
capabilities of the proposal method.

The method presented in this paper is a general frame-
work for discovering salient spatio-temporal tracks in
videos, which is built upon a generic bounding box ora-
cle. To evaluate it, we introduce a novel method to establish
the effectiveness of a generic video proposal, which is also
dataset-independent since it does not rely on annotations.
We evaluate whether a proposal effectively represents an in-
stance of some object, since the goal of an object proposal
is to locate good candidates and not to produce the candi-
date of a given class (i.e. the one of the ground truth). To
this end we propose an entropy based evaluation which in-
dicates how the proposal is likely to be recognized as an
object. Given a classifier capable of providing for an im-
age a probability distribution X = {x1, . . . , xN} over N
classes, we compute the Shannon entropy H for the proba-
bility vector X , H(X) = −

∑N
i=1 xilog(xi).

The rationale behind this choice is that, given a good
classifier, for a known object the output probability distri-
bution will be high for the relative class and near zero for
the others, thus producing a small entropy. On the con-
trary, for inputs that the classifier is unsure of, e.g. back-
ground patches, the output probability will be distributed
non-uniformly among all the possible classes, resulting in a
higher entropy. Therefore, if the classifier is able to cover
effectively a sufficiently large number of classes, then the
entropy can be interpreted as a measure of objectness for
the given proposal.

5 Experiments
We experiment on the YouTube-Objects (YTO) [6] and on
the ILSVRC2015-VID (VID) datasets [7], which both pro-
vide a per-frame annotation of the objects. YTO is com-
posed by 10 classes and most videos contain a single object
per video. VID instead is a more challenging dataset with
30 classes with multiple objects per video.

Method Mean
EB [12] 5.02 5.19 5.48 4.52 5.92 6.27 6.16 6.54 5.68 5.19 5.60
Ours 3.58 3.25 3.10 2.45 4.02 3.00 3.58 3.25 3.10 2.45 3.18

GT 0.58 1.33 1.03 1.83 2.31 2.41 2.28 2.58 2.57 2.41 1.93

Table 1: Entropy comparison (lower is better) between the proposals provided by
EdgeBoxes (EB) and our method (Ours) and Ground Truth boxes (GT).

Here we evaluate our method using the entropy measure
introduced in Section 4. In all experiments we use Edge-
Boxes [12] as object proposal to generate bounding boxes
and as baseline. For the entropy-based proposal scoring we
chose the VGG-16 [8] network, trained on the ImageNet
[7] dataset as image classifier, yielding a 1000-dimensional
output probability vector.

For each video we classify 25 proposals and compute
the entropy score. For our method we select the best 25
tracks of each video, according to Eq.3, and for each of
them we classify, as representative, the box with the best
EdgeBoxes score. We compare the entropy scores against
the best 25 boxes given by EdgeBoxes for the whole video.
As a lower-bound reference value we run the classifier on
the dataset ground truth. This value is what can be expected
to be obtained when proposing only meaningful objects.

Results for YTO are shown in detail in Table 1; it can
be seen that our method yields a much lower entropy than
EdgeBoxes, also it is close to the ground truth reference.
The same trend can be observed on the VID dataset where
we measured an average Entropy of 4.73, 3.96 and 3.71 for
EdgeBoxes, Our method and the ground truth respectively.

High precision proposals As a further evaluation, we
treated our proposal as an object detector measuring the
mean Average Precision (mAP) for the YTO dataset. This
aims at measuring the precision of a proposal method. Since
the class set of YTO is a subset of the one of Pascal VOC
[1], for this evaluation we used Fast-RCNN [2], restricted
to the ten common classes.

Table 2 shows a comparison between our proposed
tracks and EdgeBoxes. In order to make the comparison
fair, we evaluated the best 25 boxes proposed by both meth-
ods for each video, similarly to the entropy evaluation in
Section 5. The mAP of our tracks is 8.5 times higher than
EdgeBoxes, proving that our proposal is much more pre-
cise.

Qualitative results We report some qualitative results,
showing a comparison of content extracted by our proposal
with respect to EdgeBoxes. We compare the best boxes and
tracks in a given video. In Fig. 2 it can be seen how our pro-
posals are more diverse and frame an object correctly with
respect to the top proposal chosen from EdgeBoxes.

In Fig. 3 we show an example of high and low entropy
proposals. For our method and EdgeBoxes we report the
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Figure 2: Keyframes of the top 10 tracks in the VID dataset, compared with the top 10 EdgeBoxes proposals. Our method has less redundancy and frames objects more clearly.

Method Mean
EB [12] 0.94 0.40 0.49 1.80 10.96 0.57 0.56 0.61 0.26 2.95 0.98
Ours 9.15 7.16 5.98 14.94 10.95 8.43 6.10 2.26 3.42 14.91 8.33

Table 2: AP comparison (higher is better) for object detection between EdgeBoxes
(EB) and Our method.
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Figure 3: Highest and lowest entropy proposals for our method (Ours), EdgeBoxes
(EB) and ground truth boxes (GT).

10 boxes with the lowest and highest entropies among the
first best 25 proposals. As reference we also report high and
low entropy boxes from the ground truth. It can be seen that
our method is more focused on objects even in its highest
entropy proposals.

6 Conclusions

We proposed a novel and unsupervised method to extract
from videos, tracks containing meaningful objects. Our
track proposal can build on any object bounding box pro-
posal method. The matching process only relies on bound-
ing box geometry and optical flow, resulting in a simple and
effective method for high precision video object proposals.
We also introduce a dataset independent method to evalu-
ate the effectiveness of an object proposal, not relying on
dataset annotations. The proposal has been evaluated on the
YouTube Objects and ILSVRC-2015 VID datasets, show-

ing a high precision and providing meaningful object pro-
posals that can be used for any video analysis task without
looking at the whole sequence.
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