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Abstract. In this paper we present a solution for tracking-by-detection
that is able to handle both scale variations and occlusions of the tracked
object. We build upon the framework proposed in [7] based on structured
output SVM and improve it in order to deal with both variations of target
scale and occlusions. We first propose to modify the original solution to
include the scale variations both in the patch sampling stage and in
the structured output state. Then in order to deal with occlusions we
introduce an incremental classifier to discriminate the target from the
context. This classifier combines a learning phase with a unlearning one
that help to avoid drift in the model of the tracked object. The proposed
solution outperforms the method in [7] for sequences that present scale
variations or occlusions while maintaining comparable performance on
those sequences with none of these issues. Moreover, we outperform other
state-of-the-art solutions on publicly available sequences commonly used
in literature.

1 Introduction

Tracking is a fundamental problem in computer vision. Several aspects of this
difficult task have been considered in literature. Generally speaking, difficulties
arise depending on the type of information that needs to be tracked: 3D pose,
imaged 2D location, imaged 2D shape, 3D shape, imaged 2D articulated body
shape, 3D articulated body shape, etc. Besides dealing with the inherent diffi-
culties related to the specific information of interest, effective methods must also
provide robust object representation coping with nuisance factors that affect the
image formation process. For example objects may have non-rigid shape or may
be made of translucent or reflective materials and camera sensors may suffer
from the effects of noise, sensor quantization and motion blur. In addition to
these intrinsic problems, practical requirements such as: 1) long-term tracking;
and 2) object reacquisition after partial or total occlusion, may prevent correct
tracking. In some applications, the object to be tracked is known in advance
and it is possible to incorporate specific prior knowledge when designing the
tracker to alleviate some of these issues. However, the general case of tracking
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arbitrary objects by simply specifying a single (one-shot) training example at
runtime, is a challenging open problem which deserves particular attention. In
this scenario, the tracker must be able to model the appearance of the object
on-the-fly by generating and labeling image features and learning the model of
the object appearance.

In this paper we propose to exploit structured output SVM, extending the
work proposed in [7], in order to be able to deal with some classical nuisance
factors. In particular, we introduce scale sampling in the prediction of the target
state in order to be able to manage target scale variations. Then we introduce an
incremental classifier that act as validator of the structured output SVM in order
to handle occlusions and out of view of the scene. Experimental results show that
the proposed scale and occlusion handling allows to improve performance while
preserving the adaptability of [7].

1.1 Related Work

A number of methods have been developed in which tracking is considered as
2D image bounding box localization, each one dealing with different nuisance
factors.

However, not all nuisance factors are equal; a distinction should be made in
order to better understand the problem. When we are facing occlusions, we are
dealing with presence or absence of a signal while in the case of illumination
and pose variations the signal is changing but still remains strongly correlated.
The former nuisance factors are not invertible and do not admit invariant rep-
resentations while the latter will. The latter case is generally well captured by
features like HoG, Haar or LBP while the former is much more complex and
cannot be explicitly modeled through the feature representation [15] invariance.
MILTrack [2], for example, adopting bag of image patches can cope with mis-
alignments and occlusions by adding novel examples as new instances for the
object representation.

Recently, three methods have received a lot of attention for their positive
performance and for their algorithmic design and image representation peculiar-
ity [2,8,12]. They mainly differ on how they consider the template update problem
which primarily impacts on the drift of the tracker [11]. Babenko et al. [2] address
the problem by building an evolving boosting classifier that tracks bags of image
patches. Kalal et al. [8] combine a optic flow tracker with a online random forest.
This solution has been succesively extended in [9] with the TLD-Predator track-
ing framework where the tracking task is decomposed into tracking, learning
and detection and a P-N learning method is exploited. In Mei and Ling [12] the
tracking problem is formulated as finding a sparse representation of the candi-
date object, combining trivial templates which are primarily responsible for the
presence or the absence of certain object regions.

Our work as many others [2,4,6,8,10,17] makes use of context information
to extract the features of the background surrounding the target. Features are
then used to improve the distinction of the target against its background, either
by feature selection or by training classifiers as in [1,3]. In [18] the CT-Tracking
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Fig. 1. Scheme of the proposed solution. The classifier (green box) validates the pre-
diction of the structured output SVM and controls the target position change and the
model update.

exploits an appearance model based on features extracted from foreground and
background at multiple scales of the image and employs non-adaptive random
projections to preserve the structure of the image feature space. A critical issue
here is in the accuracy between foreground and background image regions. Gen-
erally they are divided by the bounding box of the object; such a partition is too
rough and it could happen that background regions are treated as part of the
foreground. This typically causes a gradual degradation in object appearance
representation which results in template drift.

2 Scale and Occlusion Invariant Tracking-By-Detection

Hare et al. proposed a novel tracking approach [7] that directly estimates the
object transformation between frames rather than performing a detection. In this
solution structured output SVM has been used to learn a prediction function
f : X → Y, which maps the target features into the space of the in-plane
translations:

Y = {(u, v) | u2 + v2 ≤ r2s} (1)

where (u, v) are respectively the x and y translation components.
This solution, however, suffers from some limitations. Firstly, the tracker

cannot handle target scale and this mostly affects the tracking quality. Moreover,
no occlusions and out-of-field detection mechanisms are present and this can
introduce erroneous data into the appearance model, compromising the long
term performance.

To overcome these limitations we propose to slightly modify the original
formulation of [7] in order to be able to handle target scale variations. Moreover,
we introduce a detector that is able to overcome occlusion and out-of-view during
the tracking. A scheme of the whole approach is shown in Fig. 1.
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2.1 Scale Invariance

In order to manage the target scale variation it is necessary to extend the output
space of the prediction function in Eq. 1 as follows:

Ỹ = {(u, v, s) | u2 + v2 ≤ r2s ; s ∈ {smin . . . smax}} (2)

where s represents the percentage variation of the target’s bounding box dimen-
sion compared to the previous frame. The values smin and smax are the smallest
and the greatest change allowed between two consecutive frames.1

A feature vector of 4288 elements, obtained as concatenation of HOG (4096)
and Haar-like (192) features, is adopted as patch descriptor.

2.2 Occlusion and Out-of-View Handling

An occlusion and out-of-view detection mechanism is crucial in order to be able
to manage complex tracking situations. Our main idea is to introduce a classi-
fier to discriminate the target from the context [5,14]. This classifier acts as a
validator of the structured output SVM prediction by accepting or rejecting the
target model update and therefore the target position update, see Fig. 1.

The classifier initialization phase lasts for the first K frames of the sequence.
During this period the classifier is not considered and it is assumed that the
target is completely visible in the scene. Positive and negative examples are
collected at every frame. The positive examples are chosen as warped versions
of the region of interest (roi) of the target position. The negative samples are
chosen, instead, from eight patches around the current target location.

The classifier is incrementally trained during the sequence. In particular, at
every frame a prediction of the position of the target is performed, following
Eq. 2, and the classifier evaluates if the predicted region contains the tracked
target or not. When the classifier is not able to identify the target in any of
the τc consecutive frames, the tracking procedure is interrupted and the reac-
quisition phase starts. During the reacquisition, a whole image target search is
accomplished and neither the structured output SVM model nor the classifier
model are updated, in order to prevent degradation of the target model.

A huge number of examples and their variability can corrupt the classifier
decision boundary. To avoid this problem, similarly to [5], we integrated an
unlearning phase during which a defined percentage of training examples, ran-
domly picked every M frames, is removed. In [5] this was done following a tem-
poral window mechanism that keeps only the latest examples. We argue that this
choice produces a classifier which focuses only on the latest target appearances.
This may limit the reacquisition ability for all of these cases where the target
appearance differs from the latest seen. For this reason we perform a uniform
random sampling in order to prevent the data distribution corruption.

1 We chose to handle only fixed aspect ratio scale changes mainly due to computational
limits.
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In order to decide if the prediction is correct or not we need to report the
classifier output in a probabilistic form following [13], such as:

p(T | f(x)) =
1

1 + exp(Af(x) + B)
(3)

where f(x) is the SVM output value and A, B are the sigmoid parameters.
Eq. 3 gives the probability that x is an instance of the target (T) given the
SVM output f(x). The sigmoid parameters (A and B) are updated during the
tracking procedure every M frames as described in [13] in order to be able to
adapt the tracker to the visual changes.

The target prediction will be classified as correct if the 80% of the positive
examples of the training set are correctly classified:

∑
xis.t.yi=1 1(

1
1 + exp(Af(x) + B)

≥ θ)

N+
≥ 0.8 (4)

where 1(d) returns 1 if the inequality d is satisfied and 0 otherwise, N+ is the
amount of positive examples in the training set and θ is a threshold automatically
estimated every M frames from the observed samples (in order to adapt the
learned model to the new observed examples).

3 Experiments

We performed a series of experiments to show the effectiveness of the proposed
solution. In particular, we first show how managing scale variations allows to
improve the performance of [7] (we refer to this method as Struck); then we
show the effectiveness of the occlusion handling mechanism; finally we report
a comparison against some of the state-of-the-art tracking-by detection meth-
ods [2,7,9,18].

Tests were conducted on 21 public available sequences from the dataset
in [16].

3.1 Parameters

In our experiments we set the scale sampling values smin and smax to 0.8 and
1.2 respectively. We found that these values are a good tradeoff between the
computational burden and the fact that in the reality the target scale does not
change abruptly between consecutive frames. Before extracting HOG and Haar-
like features, every patch is preliminary resized to a fixed resolution of 32 × 96
pixels.

As regards the classifier for occlusion detection we set the initialization to
K = 8 frames in order to be able to collect sufficient information about the
target appearance. For the unlearning phase we decided to remove the 20% of
training examples randomly picked every M = 70 frames. All these parameters
were set accordingly to [5,13] and considering the validation reported in Fig. 2.
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Fig. 2. Left The success rate variation according to the maintain period. Right The
success rate variation according to the unlearn percentage.

3.2 Scale Handling Test

With these experiments we evaluate the performance of the scale handling as
described in 2.1. For this test we chose four different video sequences in which
the scale changes is the main nuisance factor. During these tests the classifier
component for occlusion handling was not ran.

In Table 1 we report this comparison in terms of Success Rate and Average
Overlap. Clearly handling scale variations increases both the tracking ability
(higher success rate) and the tracking quality (higher avg. overlap).

Table 1. Success Rate and Average Overlap comparison for the Struck with and
without our scale handling on four test sequences. Best results in bold.

Success Rate Avg. Overlap

Sequence Frames Struck Struck+Scale Struck Struck+Scale

CarScale 252 0.34 0.63 0.36 0.52
Jogging 307 0.25 0.95 0.16 0.63
Singer1 351 0.30 0.99 0.36 0.62

Walking2 500 0.42 0.99 0.50 0.82

Mean - 0.32 0.89 0.34 0.65

In Fig. 3 we also show the percentage of frame associated to the overlap
score, for the Jogging and Walking2 sequences. It is possible to appreciate that
our solution with scale handling obtains an overlapping score between 0.5 and 0.7
for the Jogging sequence and between 0.7 and 0.9 for the Walking2 sequence, for
a large number of frames. On the contrary, Struck is not able to track the target
for a large number of frames in the Jogging sequence, while for the Walking2
sequence it presents a decreasing overlapping score.
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3.3 Occlusion Handling Test

To evaluate the re-acquisition ability of the classifier component we used syn-
thetic sequences to overcome the problem of the limited number of video
sequences where out-of-field cases occur. In particular, we used 5 sequences and
split them in clips of 50 frames each. Then, for each clip we replaced the 30
central frames with a synthetic image obtained by removing the target from the
original scene in order to simulate an out-of-field scenario. A total of 31 cases
have been analysed. In Table 2 we report the number of splits generated from
the sequence, the number of cases in which the target is correctly tracked after
the synthetic occlusion, the number of cases in which the target is missed after
the synthetic occlusion and the number of cases in which the target is wrongly
tracked during the occlusion. We assume that the target is correctly tracked if
the Pascal Overlap Score is greater than 0.5.

Table 2. Reacquisition performance on synthesized sequences.

Sequence # Splits # Tracked # Missed # F. Alarm

Clutter 10 8 2 0
Couple 3 3 0 0

Jumping 5 3 1 1
Subway 3 2 1 0
Sylvester 10 4 6 0

Total 31 20 10 1

It can be observed that most of our Missed cases come from the Sylvester
sequence. This is mainly due to the change in appearance that occurs when
the target re-enter in the scene (after the synthetic out-of-field) in an extremely
different pose with respect to the latest one observed by the tracker.

Fig. 3. Percentage of frames associated per Pascal Score for the sequences Jogging
(Left) and Walking2 (Right) for Struck without (red) and with scale handling (blue).
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3.4 Final Test

In this section we report the experiments performed with our full solution over
various tracking conditions. Illumination changes, occlusions, out of plane rota-
tions and scale changes are some of the issues present in the 21 sequences that
we chose from the dataset in [16].

Table 3. Success Rate/Average Location error(px) - Bold numbers indicate the best
score, underlined numbers indicate the second best.

Sequence Frames Struck Our CT TLD MIL

Boy 602 0.98/3.21 0.93/6.77 0.68/8.75 0.93/7.93 0.38/13.15
Car4 659 0.40/25.58 0.70/17.28 0.27/87.03 0.78/19.90 0.27/40.21

CarDark 393 1/2.21 0.99/3.54 0.01/119.10 0.52/28.32 0.18/42.88
CarScale 252 0.34/70.90 0.72/24.95 0.45/63.68 0.43/28.52 0.45/11.26
Couple 140 0.63/32.51 0.83/8.12 0.68/32.79 1/4.82 0.67/33.80

Crossing 120 0.86/3.25 1/1.80 0.98/3.33 0.52/22.70 0.98/2.30
David2 537 1/1.32 0.77/4.70 0.01/76.84 0.95/5.86 0.32/11.01
Deer 71 1/8.71 0.90/8.55 0.04/243.10 0.73/3.16 0.12/94.83

Dudek 1145 0.94/18.70 0.86/16.10 0.85/20.17 0.84/22.20 0.85/24.70
Fish 476 1/3.70 1/3.71 0.89/10.91 0.96/10.60 0.38/26.66

FleetFace 707 0.69/62.74 0.64/38.34 0.63/67.47 0.56/55.56 0.53/71.63
Freeman1 326 0.20/13.60 0.64/11.74 0.10/121.45 0.21/42.22 0.15/19.22
Jogging 307 0.21/89.49 0.97/3.28 0.22/93.22 0.97/5.72 0.22/93.03

Lemming 1336 0.64/33.86 0.83/7.08 0.68/32.58 0.59/19.95 0.81/13.59
MountainBike 228 0.98/6.60 0.98/6.72 0.17/216.62 0.26/96.38 0.57/74.39

Singer1 351 0.30/79.19 1/8.81 0.24/74.39 0.99/17.91 0.27/76.54
Subway 175 0.38/108.29 0.76/4.92 0.7/10.86 0.23/50.43 0.79/7.62

Suv 945 0.73/28.94 0.90/4.13 0.22/62.91 0.83/7.76 0.13/72.04
Sylvester 1345 0.80/14.88 0.81/3.94 0.83/10.98 0.93/11.97 0.54/16.13
Walking 412 0.55/8.18 0.99/4.05 0.50/18.75 0.38/7.16 0.54/13.69
Walking2 500 0.42/7.45 0.97/2.87 0.38/50.32 0.34/27.43 0.38/50.10

Mean - 0.67/29.68 0.86/9.12 0.45/68.30 0.67/23.65 0.46/38.51

We compare our solution against Struck, CT-Tracking (CT), TLD-Predator
(TLD) and MILTrack (MIL). In particular, Struck results are obtained using
the original source code provided by the authors while for the other methods we
used the public available results2. Performance are expressed in terms of Success
Rate, Average Center Location Error and Average Overlap and are reported
respectively in Table 3 and Table 4.

Experiments show how the proposed solution obtains state-of-the-art results
in almost every sequence under test. In terms of Success Rate the average increase
is about 20%. It’s also worth to note that in all the sequences where Struck
achieves best results, our solution produces similar performances. This fact
2 http://cvlab.hanyang.ac.kr/tracker benchmark/v1.0/tracker benchmark v1.

0 results.zip

http://cvlab.hanyang.ac.kr/tracker_benchmark/v1.0/tracker_benchmark_v1.0_results.zip
http://cvlab.hanyang.ac.kr/tracker_benchmark/v1.0/tracker_benchmark_v1.0_results.zip
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Table 4. Average Overlap - Bold numbers indicate the best score, underlined numbers
indicate the second best.

Sequence Struck Our CT TLD MIL

Boy 0.77±0.10 0.66±0.11 0.59±0.18 0.66±0.09 0.49±0.21
Car4 0.49±0.19 0.55±0.20 0.21±0.30 0.63±0.22 0.26±0.31

CarDark 0.80±0.07 0.76±0.10 0.00±0.05 0.44±0.35 0.19±0.25
CarScale 0.36±0.28 0.59±0.25 0.43±0.31 0.42±0.24 0.40±0.31
Couple 0.48±0.35 0.65±0.20 0.46±0.32 0.77±0.08 0.49±0.34

Crossing 0.63±0.11 0.76±0.06 0.68±0.09 0.40±0.35 0.72±0.11
David2 0.86±0.04 0.66±0.13 0.00±0.04 0.69±0.12 0.45±0.21
Deer 0.73±0.07 0.67±0.10 0.03±0.18 0.59±0.36 0.12±0.24

Dudek 0.72±0.14 0.67±0.22 0.64±0.13 0.64±0.15 0.70±0.15
Fish 0.87±0.06 0.83±0.05 0.71±0.14 0.80±0.14 0.45±0.19

FleetFace 0.57±0.25 0.58±0.23 0.52±0.23 0.48±0.25 0.49±0.23
Freeman1 0.38±0.18 0.52±0.23 0.14±0.19 0.27±0.28 0.34±0.18
Jogging 0.16±0.31 0.80±0.15 0.17±0.32 0.76±0.14 0.18±0.33

Lemming 0.49±0.31 0.65±0.29 0.54±0.26 0.53±0.22 0.64±0.18
MountainBike 0.67±0.10 0.69±0.07 0.14±0.30 0.19±0.32 0.45±0.30

Singer1 0.36±0.25 0.79±0.08 0.34±0.24 0.72±0.08 0.35±0.25
Subway 0.28±0.34 0.59±0.14 0.57±0.10 0.18±0.33 0.64±0.14

Suv 0.62±0.38 0.71±0.24 0.23±0.27 0.67±0.24 0.20±0.26
Sylvester 0.63±0.27 0.62±0.30 0.66±0.16 0.67±0.16 0.52±0.23
Walking 0.56±0.16 0.70±0.09 0.52±0.13 0.44±0.21 0.54±0.15
Walking2 0.50±0.19 0.77±0.14 0.26±0.29 0.29±0.34 0.28±0.34

Mean 0.57 0.70 0.37 0.53 0.42

underlines how the introduction of the classifier does not compromise Struck’s
adaptive ability. A similar observation can be also made for the Average Center
Location Error results and the Average Overlap, respectively in Table 3 and
Table 4.

In Fig. 4 we report some sample frames for four different sequences and in
comparison with [2,7,9,18]. Compared to other methods only TLD can reach
similar results in terms of precision. For the Jogging sequence at the 77-th frame
the tracking procedure is interrupted by the classifier due to an occlusion. In
Lemming, again, the classifier stops the tracking due to a strong out-of-plane
rotation. In both cases our method is able to correctly reacquire the target after
some frames.



584 A. Mazzeschi et al.

Fig. 4. Tracking results sample frames. From top to bottom: Singer1, Jogging, Lem-
ming and Suv sequences. In each frame the results color are: Our, Struck, TLD, MIL,
CT, in black the ground-truth (GT). In Singer1 the scale variation handling of our
method is highlighted.

4 Conclusion

In this paper we have proposed a tracking-by-detection solution, starting
from [7], that is able to deal with both variations of target scale, occlusions and
out-of-view. We have shown how including scale information during the tracking
allows us to achieve better performance compared to [7]. After that we have
introduced a classifier to discriminate the target from the context. The proposed
solution outperforms the method in [7] for those sequences that present scale
variations or occlusions while it maintains comparable performance on those
sequences with none of these issues.
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