
Machine Vision and Applications manuscript No.
(will be inserted by the editor)

Continuous Localization and Mapping of a Pan Tilt Zoom Camera for
Wide Area Tracking

Giuseppe Lisanti · Iacopo Masi · Federico Pernici · Alberto Del Bimbo

Revised: February 28, 2016

Abstract Pan-tilt-zoom (PTZ) cameras are well suited for
object identification and recognition in far-field scenes. How-
ever, the effective use of PTZ cameras is complicated by the
fact that a continuous on-line camera calibration is needed
and the absolute pan, tilt and zoom values provided by the
camera actuators cannot be used because they are not syn-
chronized with the video stream. So, accurate calibration
must be directly extracted from the visual content of the
frames. Moreover, the large and abrupt scale changes, the
scene background changes due to the camera operation and
the need of camera motion compensation make target track-
ing with these cameras extremely challenging. In this paper,
we present a solution that provides continuous on-line cal-
ibration of PTZ cameras which is robust to rapid camera
motion, changes of the environment due to varying illumi-
nation or moving objects. The approach also scales beyond
thousands of scene landmarks extracted with the SURF key-
point detector. The method directly derives the relationship
between the position of a target in the ground plane and the
corresponding scale and position in the image, and allows
real-time tracking of multiple targets with high and stable
degree of accuracy even at far distances and any zoom level.

Keywords Rotating and Zooming Camera · PTZ Sensor ·
Localization and Mapping ·Multiple Target Tracking

1 Introduction

Pan-tilt-zoom (PTZ) cameras are powerful to support ob-
ject identification and recognition in far-field scenes. They
are equipped with adjustable optical zoom lenses that can
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be manually or automatically controlled to permit both wide
area coverage and close-up views at high resolution. In surveil-
lance applications this capability is particularly useful for
tracking of targets at high resolution and zooming on bio-
metric details in order to resolve ambiguities and understand
target behaviors.

However, the practical use of PTZ cameras in real world
scenarios is complicated due to several reasons. First, the ge-
ometrical relationship between the camera view and the ob-
served scene is time-varying and depends on camera calibra-
tion. Unfortunately, the absolute pan tilt and zoom positional
values provided by the camera actuators, even when they
are sufficiently precise, in most cases are not synchronized
with the video stream, and, for IP cameras, a constant frame
rate cannot be assumed. So, accurate calibration must be ex-
tracted from the visual content of the frames. Second, the
pan tilt and zoom capability may determine large and abrupt
scale changes. This prevents the assumption of smooth cam-
era motion. Moreover, since the scene background is contin-
uously changing, some adaptive representation of the scene
under observation becomes necessary. All these facts have
a significant impact also on the possibility of having effec-
tive target detection and tracking in real-time. Due to this
complexity, there is a small body of literature on tracking
with PTZ cameras and most of the solutions proposed were
limited to either unrealistic or simple and restricted settings.

In this paper, we present a novel solution that provides
continuous adaptive calibration of a PTZ camera and en-
ables real-time tracking of targets in world coordinates. We
demonstrate that the method is effective and is robust over
long time periods of operation.

The method has two distinct stages. In the off-line stage,
we collect a finite number of keyframes taken with differ-
ent values of pan, tilt and zoom, and for each keyframe we
estimate the camera pose and extract the scene landmarks
using the SURF keypoint detector [4]. In the on-line stage,
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at each time instant, we perform camera calibration by es-
timating the homography between the current view and the
ground plane. Changes in the scene that have occurred over
time due to varying illumination and moving objects are ad-
dressed with an adaptive representation of the scene under
observation by updating the uncertainty in landmark local-
ization. The relationship between the target position in the
ground plane and its position in the image allows us to esti-
mate the scale of the target in each frame and to compensate
camera motion. The proposed solution is finally exploited to
detect targets at the correct scale and perform multi-target
tracking in the ground plane.

2 Related work

In the following, we review the research papers that are most
relevant for the scope of this work. In particular, we review
separately solutions for self-calibration and target tracking
with moving and PTZ cameras.

PTZ camera self-calibration

Hartley et al. [18] were the first to demonstrate the possi-
bility of performing self-calibration of PTZ cameras based
on image content. However, since calibration is performed
off-line, their method cannot be applied in real-time. The
method was improved in [1] with a global optimization of
the parameters.

Solutions for on-line self-calibration and pose estima-
tion of moving and PTZ cameras were presented by sev-
eral authors. Among them, the most notable contributions
were in [30,31,21,36,8,25,37]. Sinha and Pollefeys in [30]
used the method of [1] to obtain off-line a full mosaic of the
scene. Feature matching and bundle adjustment were used to
estimate the values of the intrinsic parameters for different
pan and tilt angles at the lowest zoom level, and the same
process is repeated until the intrinsic parameters are esti-
mated for the full range of views and zoom levels. In [31] the
same authors suggested that on-line control of a PTZ cam-
era in closed loop could be obtained by matching the current
frame with the full mosaic. However, their paper does not
include any evidence of the claims nor provides any eval-
uation of the accuracy of the on-line calibration. Civera et
al. [8], proposed a method that exploits real-time sequential
mosaicing of a scene. They used Simultaneous Localization
and Mapping (SLAM) with Extended Kalman Filter (EKF)
to estimate the location and orientation of a PTZ camera and
included the landmarks of the scene in the filter state. This
solution cannot scale with the number of scene landmarks.
Moreover, they only considered the case of camera rota-
tions, and did not account for zooming. Lovegrove et al. [25]
obtained the camera parameters between consecutive im-
ages by whole image alignment. As an alternative to using

EKF sequential filtering, they suggested to use keyframes to
achieve scalable performance. They claimed to provide full
PTZ camera self-calibration but did not demonstrate cali-
bration with variable focal length. The main drawback of
all these methods is that they assume that the scene is al-
most stationary and changes are only due to camera motion,
which is a condition that is unlikely to happen under real
conditions. The solution in [9] is the first to achieve a cali-
bration level of accuracy with PTZ cameras good enough for
performing outdoor surveillance tasks. In [12] rather than
relying on a small target, a large virtual calibration object is
constructed, made of a moving LED, which covers the entire
working volume.

Wu and Radke [37] presented a method for on-line PTZ
camera self-calibration based on a camera model that ac-
counts for changes of focal length and lens distortion at dif-
ferent zoom levels. The authors claimed robustness to smooth
scene background changes and drift-free operation, with higher
calibration accuracy than [30,31] especially at high zoom
levels. However, as reported by the authors, this method fails
when a large component in the scene abruptly modifies its
position or the background changes slowly. It is therefore
mostly usable with stationary scenes. A similar strategy was
also applied in [32], but accounts for pan and tilt camera
movements, only.

Other authors developed very effective methods for pose
estimation of moving cameras with pre-calibrated internal
camera parameters [21,36]. In [21], Klein and Murray ap-
plied on-line bundle adjustment to the five nearest keyframes
sampled every ten frames of the sequence. In [36], Williams
et al. used a randomized lists classifier to find the correspon-
dences between the features in the current view and the (pre-
calculated) features from all the possible views of the scene,
with RANSAC refinement. However both these approaches,
if applied to a PTZ camera, are likely to produce over-fitting
in the estimation of the camera parameters at progressive
zoom in. The methods proposed in [2,24] address hand-held
mobile devices and rotational camera models similar to the
PTZ camera situation described here. In particular, the prac-
tical analogy between PTZ actuators with the accelerome-
ters of hand-held devices may be used to exploit our ap-
proach to the case of free moving cameras when the user is
not walking. That is, instead of querying the PTZ actuators
to retrieve the closest image on the map it could be possible
querying the accelerometers to retrieve the closest image in
a similar fashion.

Tracking with PTZ cameras

Solutions to perform general object tracking with PTZ cam-
eras were proposed by a few authors. Hayman et al. [19] and
Tordoff et al. [34] proposed solutions to adapt the PTZ cam-
era focal length to compensate the changes of target size,
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assuming a single target in the scene and fixed scene back-
ground. In particular, in [19], the authors used the affine
transform applied to lines and points of the scene background;
in [34] the PTZ camera focal length is adjusted to compen-
sate depth motion of the target. Kumar et al. [33] suggested
to adapt the variance of the Kalman filter to the target shape
changes. They performed camera motion compensation and
implemented a layered representation of spatial and tempo-
ral constraints on shape, motion and appearance. However,
the method is likely to fail in the presence of abrupt scale
changes. In [35], Varcheie and Bilodeau addressed target
tracking with IP PTZ cameras, in the presence of low and ir-
regular frame rate. To follow the target, they commanded the
PTZ motors with the predicted target position. A fuzzy clas-
sifier is used to sample the target likelihood in each frame.
Since zooming is not managed, this approach can only be
applied in narrow areas. The authors in [20] assumed that
PTZ focal length is fixed and coarsely estimated from the
camera CCD pixel size. They performed background sub-
traction by camera motion compensation to extract and track
targets. This method is therefore unsuited for wide areas
monitoring and highly dynamic scenes.

Solutions for tracking with PTZ cameras in specific do-
mains of application were proposed in [27,39,29,3]. All these
methods exploit context-specific fiducial markers to obtain
an absolute reference and compute the time-varying rela-
tionship between the positions of the targets in the image
and those in the ground plane. In [39], the authors used the
a-priori known circular shape of the hockey rink and play-
field lines to locate the reference points needed to estimate
the world-to-image homography and compute camera mo-
tion compensation. The hockey players were tracked using
a detector specialized for hockey players trained with Ad-
aboost and particle filtering based on the detector’s confi-
dence [27]. The changes in scale of the targets was managed
with simple heuristics using windows slightly larger/smaller
than the current target size. Similar solutions were applied
in soccer games [29,3].

Beyond the fact that these solutions are domain-specific
and have no general applicability, the main drawback is that
fiducial markers are likely to be occluded and impair the
quality of tracking.

2.1 Contributions and Distinguishing Features

The main contributions of the proposed method are:

– We define a method for on-line PTZ camera calibration
that jointly estimates the pose of the camera, the focal
length and the scene landmark locations. Under the as-
sumption that landmark and keypoint localization errors
have a Gaussian distribution (as detailed in Sec. 3.3),
such estimation is Bayes-optimal and is very robust to

zoom and camera motion. The method does not assume
any temporal coherence between frames but only con-
siders the information in the current frame.

– We provide an adaptive representation of the scene under
observation that makes PTZ camera operations indepen-
dent of the changes of the scene.

– From the optimally estimated camera pose we infer the
expected scale of a target at any image location and com-
pute the relationship between the target position in the
image and the ground plane at each time instant.

Differently from the other solutions published in the lit-
erature like [31], [8], [25] and [37] our approach allows
performing on-line PTZ camera calibration also in dynamic
scenes. Estimation of the relationship between positions in
the image and the ground plane permits more effective target
detection, data association and real-time tracking.

Some of the ideas for calibration contained in this pa-
per were presented with preliminary results under simplified
assumptions in [15,13]. Targets were detected manually in
the first frame of the sequence and the scene was assumed
almost static through time. Therefore we could not main-
tain camera calibration over hours of activity, neither sup-
port rapid camera motion.

3 PTZ Camera Calibration

In the following, we introduce the scene model and define
the variables used. Then we discuss the off-line stage, where
a scene map is obtained from the scene landmarks of the
keyframes, and the on-line stage, where we perform camera
pose estimation and updating of the scene map.

3.1 Scene model

We consider an operating scenario where a single PTZ cam-
era is allowed to zoom and to rotate around its nodal point,
while observing targets that move over a planar scene. In
video surveillance applications, zooming cameras are gener-
ally mounted quite far from the monitored scene and there-
fore they are set to work with an already relatively long focal
length. In this viewing condition the periphery of the lens,
causing the most radial distortion, is not taking part in the
image formation and its effect rapidly decreases with the in-
crease of the focal length. In addition to this, estimating the
radial distortion could lead to parameters which are largely
affected by uncertainty as firstly noticed in [1] and as also
shown in [31]. For these reasons, we do not model radial
distortion.

The following entities are defined as time-varying ran-
dom variables:
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Fig. 1: Main entities and their relationships: the current frame and the landmark observations extracted v; the view maps m including the scene
landmarks u; the initial scene map M obtained from the union of the view maps; the homography H(t) mapping the current frame to the nearest
view map mk∗; the homography Hrk that maps each view map mk to the reference view map mr; the homography HW from the mosaic plane to
the ground plane; the homography G(t) mapping a target position on the ground plane to its position in the current frame.

– The camera pose c. Camera pose is defined in terms of
the pan and tilt angles (ψ and φ, respectively), and focal
length f of the camera. The principal point is assumed to
be constant in the center of the image in order to obtain
a more precise calibration [1].

– The scene landmarks u. They are represented as 2D co-
ordinates in the image. These landmarks account for salient
points of the scene background. In the off-line stage SURF
keypoints [4] are detected in keyframe images sampled
at fixed intervals of pan, tilt and focal length. A SURF
descriptor is associated with each landmark. These land-
marks change during the on-line camera operation.

– The view map m and scene map M. A view map is cre-
ated for each keyframe and collects the scene landmarks
(i.e. m = {ui}). The scene map is obtained as the union
of all the view maps and collects all the scene landmarks
that have been detected at different pan, tilt and focal
length values (i.e. M = {mk}).

– The landmark observations v. They are represented as
2D coordinates in the image. These landmarks account
for the salient points that are detected in the current frame.

They can either belong to the scene background or to
targets. The SURF descriptors of the landmark obser-
vations v are matched with the descriptors of the scene
landmarks u, in order to estimate the camera pose and
update the scene map.

– The target state s. The target state is represented in world
coordinates. It is assumed that targets move on a planar
surface, i.e. Z = 0, so that s = [X,Y, Ẋ, Ẏ ], where
X,Y and Ẋ, Ẏ represent the position and speed of the
target, respectively.

– The target observations in the current frame, p. This is
a location in the current frame that is likely to corre-
spond to the location of a target. At each time instant t
we estimate the non-linear transformation g that maps
the position of the target in world coordinates s to the
location p of the target in the image. The estimation of
g depends on the camera pose c and the scene map M

at time t. More details are given in Sec. 4.2.

Fig. 1 provides an overview of the main entities of the
scene model and their relationships.
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(a) (b)

Fig. 2: Estimations of the camera focal length of the last frame of a sequence with right panning and progressive zooming in: a) using the on-line
bundle adjustment of [21]; b) using our off-line solution with keyframes obtained by uniform sampling of the camera parameter space and the last
frame. The focal length of the last frame is represented with a rectangle on the scene mosaic. Focal length estimation is respectively 741.174 pixels
and 2097.5 pixels. The true focal length is 2085 pixels.

3.2 Off-line Scene Map Initialization

In the off-line stage, image views (keyframes) are taken at
regular samples of pan and tilt angles and focal length, and
view maps mk are created so as to cover the entire scene.

Given a reference keyframe and the corresponding view
map mr, the homography that maps each mk to mr can be
estimated as in the usual way of planar mosaicing [18]:

Hrk = KrRrR
−1
k K−1k (1)

The optimal values of both the external camera parameter
matrix Rk and the internal camera parameter matrix Kk are
estimated by bundle adjustment for each keyframe k.

Differently from [21], we use bundle adjustment for off-
line scene map initialization and use the whole set of keyframes
of the scene at multiple zoom levels. Since keyframes were
taken by uniform sampling of the parameter space, over-
fitting of camera parameters is avoided. This results in a
more accurate on-line estimation of the PTZ parameters.
Fig. 2 shows an example of estimation of the focal length
with the two approaches for a sample sequence with right
panning and progressive zooming in. It can be observed that
compared to our approach performing online bundle adjust-
ment directly on the sequence as in [21] provides less accu-
rate focal length estimation especially in the case in which
the PTZ camera operates at high zoom levels.

The pan, tilt, zoom values of the camera actuators are
stored in order to uniquely identify each view map. The
complete scene map M is obtained as the union of all the

view maps. In order to speed up the scene landmarks match-
ing, we used a set of k-d trees (one tree for each view map).
This allows us to update the k-d tree of each view map in
real-time while the solution in [15] used a single k-d tree for
all the landmarks, that is unfeasible to update in real time.

3.3 On-line camera pose estimation and mapping

The positional values provided by the camera actuators at
each time instant, although not directly usable for on-line
camera calibration, are sufficiently precise to retrieve the
view map mk? with the closest values of pan, tilt and fo-
cal length. This map is likely to have almost the same con-
tent as the current frame and many landmarks will match.
The landmarks matched can be used to estimate the homog-
raphy H(t) from the current view to mk?(t). Matching is
performed as follows: the two nearest neighbors of a land-
mark observation are selected from mk? according to the
Euclidean distance between the SURF descriptors; then the
ratio between these distances is used to reject or accept the
match, as in [26]. RANSAC [16] is finally used to refine this
process and reject outliers. To reduce the computational ef-
fort of matching, only a subset of the landmarks in mk? is
taken by random sampling. The descriptors of the matched
landmarks are updated using a running average with a for-
getting factor.

The optimal estimation of H(t) on the basis of the corre-
spondences between landmark observations vi(t) and scene
landmarks ui(t) is fundamental for effective camera pose
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estimation and mapping in real conditions. However, changes
of the visual environment due to illumination or to objects
entering, leaving or changing position in the scene induce
modifications of the original scene map as time progresses.
Moreover, imprecisions in the detection and estimation pro-
cess might affect scene landmark estimation and localiza-
tion. To this end, we derive a linear measurement model that
accounts for all the sources of error of landmark observa-
tions, and allows estimating the optimal localization of the
scene landmarks.

Closed-form recursive estimation of scene landmarks

Camera pose estimation and mapping requires inference of
the joint probability of the camera pose c(t) and scene land-
mark locations in the map M(t), given the landmark obser-
vations v until time t and the initial scene map M(0):

p
(
c(t),M(t)|v(0 : t),M(0)

)
. (2)

In order to make the problem scalable with respect to the
number of landmarks, Eq. (2) is approximated by decou-
pling camera pose estimation from map updating:

p
(
c(t)|v(t),M(t− 1)

)︸ ︷︷ ︸
camera pose estimation

p
(
M(t)|v(t), c(t),M(t− 1)

)︸ ︷︷ ︸
map updating

(3)

Considering the view map mk? with the closest values
of pan, tilt and focal length and applying Bayes theorem to
the map updating term in Eq. (3), we obtain:

p
(
mk?(t)|v(t), c(t),mk?(t− 1)

)
=

p
(
v(t)|c(t),mk?(t)

)
p
(
mk?(t)|mk?(t− 1)

)
, (4)

where the term p
(
mk?(t)|mk?(t − 1)

)
indicates that view

map mk?(t) at time t depend only on mk?(t−1). Assuming
that for each camera pose the observation landmarks vi that
match the scene landmarks ui in mk?(t) are independent of
each other, i.e.:

p
(
v(t)|c(t),mk?(t)

)
=
∏
i

p
(
vi(t)|c(t),ui(t)

)
, (5)

Eq. (4) can be written as:

p
(
mk?(t)|v(t), c(t),mk?(t− 1)

)
=∏

i

p
(
vi(t)|c(t),ui(t)

)
p
(
ui(t)|ui(t− 1)

)
, (6)

where p
(
ui(t)|ui(t − 1)

)
is the prior probability of the i-

th scene landmark at time t given its state at time t − 1.
Under the assumptions that both scene landmarks ui(t) and
the keypoint localization errors have a Gaussian distribution,
and that Direct Linear Transform is used, the observation
model p

(
vi(t)|c(t),ui(t)

)
can be expressed as:

vi(t) = Hi(t)
−1ui(t) + λi(t), (7)

Fig. 3: Proximity check for scene map updating. Current frame and
its nearest keyframe in the scene map. Matched landmarks and a new
landmark are shown in magenta and white, respectively, together with
their bounding boxes.

where Hi(t)
−1 is the 2× 2 transformation in the Euclidean

space that is obtained by linearizing the homography H(t)−1

(in homogeneous coordinates) at the landmark observation
vi(t), and λi(t) is an additive Gaussian noise term with
covariance Λi(t) that represents the total error in the land-
mark mapping process. This covariance can be expressed in
closed form and in homogeneous coordinates as:

Λi(t) = Bi(t) Σi(t)Bi(t)
> + Λ′i + H(t)−1 Pi(t)H(t)

−>, (8)

where the three terms account respectively for the spatial
distribution of the matched landmarks, the covariance of key-
point localization in the current frame and the uncertainty
associated to the scene landmark positions in the view map.
In Eq. (8), Σi(t) is the 9× 9 homography covariance matrix
(calculated in closed form according to [10]) and Bi(t) is the
3× 9 block matrix of landmark observations; Λ′i models the
keypoint detection error covariance; Pi(t) is the covariance
of the estimated landmark position on the nearest view map,
and H is obtained from the Direct Linear Transform. Covari-
ance Λi(t) can be directly obtained as the 2 × 2 principal
minor of Λi(t).

The optimal localization of the scene landmarks is there-
fore obtained in closed form through multiple applications
of the Extended Kalman Filter to each landmark observa-
tion, with the Kalman gain being computed as:

Ki(t) = Pi(t|t− 1)Hi(t)
−1[Hi(t)

−1Pi(t|t− 1)Hi(t)
−> + Λi(t)

]−1
,

(9)

where Pi is the Kalman covariance of the i-th scene land-
mark.

Birth-death of scene landmarks

Objects that enter or leave the scene introduce modifications
of the original scene map. Their landmarks are not taken
into account in the computation of H(t) at the current time,
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Fig. 4: The transformation from the mosaic plane (Left) to the ground plane (Right). The vanishing points and the vanishing lines are used for the
computation of matrix Hp. A pair of corresponding points to compute Hs is shown.

but are taken into account in the long term, in order to avoid
the issue that the representation of the original scene could
become drastically different from that of the current scene.
We assume that new landmarks that persist in 20 consecu-
tive frames and are close to the already matched landmarks
have higher probability of belonging to a new scene element
(they have smaller covariance according to Eq. (8)). Accord-
ing to this, we implemented a proximity check (Fig. 3) that
computes such probability as the ratio between the bound-
ing box of the landmarks matched and the extended bound-
ing box of the new landmark (respectively box A and B in
Fig. 3). Such candidate landmarks are included in mk? us-
ing the homography H(t). Landmarks are terminated when
they are not matched anymore in consecutive frames.

Since the transformation between two near frames under
pan tilt and zoom can be locally approximated by a similar-
ity transformation, the asymptotic stability of the updating
procedure is guaranteed by the Multiplicative Ergodic The-
orem [28]. Therefore, we can assume that no sensible drift
is introduced in the scene landmark updating.

Localization in world coordinates

Looking at Fig. 1, the time varying homography G(t) (in
homogeneous coordinates), mapping a target position in the
ground plane to its position p in the current frame, can be
represented as:

G(t) =
(
HW Hrk?H(t)

)−1
, (10)

where HW is the stationary homography from the mosaic
plane to the ground plane:

HW = HsHp, (11)

that can be obtained as the product of the rectifying ho-
mography Hp (derived from the projections of the vanishing
points by exploiting the single view geometry of the pla-
nar mosaic1 [23]) and transformation Hs from pixels in the

1 In the case of a PTZ sensor, the homography between each
keyframe and the reference keyframe is the infinite homography H∞

mosaic plane to world coordinates (estimated from the pro-
jection of two points at a known distance L in the ground
plane onto two points in the mosaic plane as in Fig. 4).

4 Target tracking with PTZ cameras

We perform multi-target tracking in world coordinates using
the Extended Kalman Filter. A data association technique
to discriminate between target trajectories is implemented
according to the Cheap-JPDAF model [17].

The relationship between the image plane and the ground
plane of Eq. (10) allows us to obtain the target scale and per-
form tracking in the world coordinates. As it will be shown
in Section 5, tracking in the world coordinates allows a bet-
ter discrimination between targets.

4.1 Target scale estimation

As in [15], at each time instant t, the homography G(t) per-
mits to derive the homology relationship that directly pro-
vides the scale at which the target is observed in the current
frame:

h(t) = W(t)p(t) (12)

where h(t) and p(t) are respectively the position of the target
top and bottom in the image plane and W(t) is defined as:

W(t) = I+ (µ− 1)
v∞(t) · l>∞(t)

v>∞(t) · l∞(t)
, (13)

where I is the identity matrix, l∞(t) is the world plane van-
ishing line, v∞(t) is the vanishing point of the world nor-
mal plane direction, and µ is the cross-ratio. The vanishing
point v∞(t) is computed as v∞(t) = K(t)K(t)> · l∞(t),
with l∞(t) = G(t) · [0, 0, 1]> and K(t) is derived from H(t).

that puts in relation vanishing lines and vanishing points between the
images.
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Estimation of the target scale allows us to apply the detec-
tor at a single scale instead of multiple scales and improve
in both recall and computational performance for detection
and tracking.

4.2 Multiple Target Tracking

The Extended Kalman filter observation model for each tar-
get is defined as:

p(t) = g
(
s(t), t

)
=
[
G(t) 02×2

]
s(t) + ζ(t), (14)

where ζ(t) is a Gaussian noise term with zero mean and
diagonal covariance that models the target localization error
in the current frame; s(t) is the target state, represented in
world coordinates, G(t) is the homography G(t) linearized
at the predicted target position and 02×2 is the 2 × 2 zero
matrix. Assuming constant velocity, the motion model in the
ground plane is defined as:

p(s(t)|s(t− 1)) = N (s(t);As(t− 1),Q), (15)

where A is the 4 × 4 constant velocity transition matrix
and Q is the 4× 4 process noise matrix. For multiple target
tracking, G(t) influences the target covariance of the Cheap-
JPDAF respectively for the Kalman gain expression:

W(t) = P(t|t− 1)G(t)S(t|t)−1, (16)

and the target covariance on the image plane:

S(t|t) = G(t)P(t|t− 1)G(t)> + V(t), (17)

where V(t) is the covariance matrix of the measurement er-
ror of Eq. (14).

5 Experimental results

In this Section we report on an extensive set of experiments
to assess the accuracy of our PTZ camera calibration method
and its effective exploitation for real-time multiple target
tracking. These experiments are performed using a SONY
SNC-RZ30P. The images are acquired at a resolution of 320×
240 pixels and the PTZ camera is set to move in a pan range
of {−85◦, . . . , 55◦}, a tilt range of {−35◦, . . . , 30◦} and a
zoom range of {400, . . . , 2000} pixels.

5.1 PTZ camera calibration

In the following, we summarize the experiments that vali-
date our approach for camera calibration. We justify the use
of motor actuators to retrieve the closest scene map; we re-
port on the precision of the off-line scene map initialization
and the on-line camera pose estimation and mapping.

Accuracy of PTZ motor actuators

We validated the use of pan tilt and zoom values provided
by the camera motor actuators to retrieve the closest view
map, by checking their precision with the same experiment
as in [37]. We placed four checkerboard targets at different
positions in a room. These positions corresponded to dif-
ferent pan, tilt and zoom conditions. The PTZ camera was
moved to a random position every 30 seconds and returned
at the initial positions every hour. For each image view the
corners of the checkerboard were extracted and compared
to the reference image. The errors were collected for 200
hours. We have measured an average error of 2 pixels at the
lowest zoom level and 9 pixels for the maximum zoom level.
Fig. 5 shows the plots of the errors and the initial and final
camera view for each target.

Scene map initialization

Off-line scene map initialization as discussed in Sect. 3.2 is
accurate and produces repeatable results. Fig. 6 reports the
mean and standard deviation of the focal length estimated
during the scene map initialization. In this experiment, we
acquired images of the same outdoor scene in 43 consecu-
tive days at different time of the day, at 202 distinct values
of pan tilt zoom. The PTZ camera was driven using motor
actuators. We can notice that the standard deviation of the
focal length that is estimated through off-line bundle adjust-
ment increases almost proportionally with focal length. The
maximum standard deviation value observed is 23 pixels at
focal length of about 1700 pixels.

On-line PTZ camera pose estimation and mapping

In this experiment, we report on the average reprojection
error and calibration errors with our method. We discuss the
influence of the number of landmarks and RANSAC inlier
threshold on the reprojection error and the effectiveness of
scene landmark updating.

As in [37], we recorded 10 outdoor video sequences of
8 hours each (80 hours in total). Due to the long period
of observation, all the sequences include slow background
changes due to shadows or illumination variations, as well
as large changes due to moving objects entering or exiting
the scene. The PTZ camera was moved continuously using
the motor actuators and stopped for a few seconds at the
same pan tilt zoom values, so to have a large number of
keyframes at the same scene locations and different condi-
tions, in all the sequences. On average we performed about
34, 000 measurements per sequence. For each keyframe, a
grid of points was superimposed and the average reprojec-
tion error was measured between the grid points as obtained
by the estimated homography and the same points by the
off-line bundle adjustment.
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Fig. 5: (a) Checkerboard images at the initial camera pose. (b) Average Errors over 200 hours. (c) Checkerboard images after the camera has
returned in the same initial pose after 200 hours.

Sequence #measurements Avg. reproj. error (px) Pan (degree) Tilt (degree) Focal Length (%)
– – Ours Ours w/o p. Ours Ours w/o p. Ours Ours w/o p. Ours Ours w/o p.
Seq. 1 34,209 2.83 2.96 1.18 1.55 0.39 0.42 0.96 1.06
Seq. 2 34,605 6.69 6.90 2.47 2.09 0.68 0.94 4.41 3.65
Seq. 3 33,102 3.26 3.30 1.26 1.17 0.33 0.33 0.84 0.91
Seq. 4 33,939 6.88 7.09 2.11 2.58 1.93 1.73 2.78 3.79
Seq. 5 33,974 22.54 60.04 11.14 11.53 9.51 9.85 12.49 14.21
Seq. 6 33,570 3.21 4.26 1.91 2.84 0.49 0.54 1.26 3.05
Seq. 7 34,157 3.62 3.59 1.71 1.27 0.35 0.43 1.81 2.15
Seq. 8 33,932 21.76 21.99 7.08 7.41 10.07 9.23 11.91 11.81
Seq. 9 34,558 8.78 12.26 3.35 5.48 1.37 2.70 3.47 4.80
Seq. 10 34,405 8.47 9.26 7.20 5.71 5.28 6.59 8.99 9.54
Average 34,032 8.80 13.17 3.94 4.16 3.04 3.28 4.89 5.50

Table 1: Average reprojection error and calibration errors of pan, tilt and focal length with and without proximity check evaluated at the keyframes
during the period of observation.

Tab. 1 shows the average reprojection error, the errors
in the estimation of pan, tilt and focal length for the outdoor
sequences under test. As in [37], the errors in pan and tilt an-
gles were computed as eψ(t) = |ψ(t)− ψrk| and eφ(t) =

|φ(t)− φrk|, respectively, and the focal length error as
ef (t) =

∣∣∣ f(t)−frkfrk

∣∣∣ (in percentage). Pan and tilt angles es-
timated and those calculated with bundle adjustment were
obtained from the rotation matrices R(t) = K−1r Hrk?H(t)Kk
(see Eq. (10)) and Rrk = K−1r HrkKk (see Eq. (1)), respec-
tively.

It is possible to observe that the errors for Sequence
5 and Sequence 8 are higher with respect to the other se-
quences. This is mainly because they were acquired in two
days in which low or no activity is observed in the scene and
this means that the method is lacking of new structure that is
needed to keep the camera calibrated. In particular, no new
features are added to our model to maintain the calibration
over time. Overall, the results in Tab. 1 confirm that the prox-
imity checking avoids selecting those landmarks that may
introduce error in the online calibration. It can be also ob-
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Fig. 6: Average (a) and standard deviation (b) of the bundle-adjusted
focal length for the keyframes used in scene map initialization.
Keyframes are ordered for increasing values of focal lenght.
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Fig. 7: Reprojection error as a function of (a) the number of landmarks
extracted (b) inlier threshold in the RANSAC algorithm, for Sequence
1 under test.
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Fig. 8: (a) Cumulative sum of number of inliers as a function of time:
without and with scene landmark updating (dashed and solid curve re-
spectively). (b) Distributions of the number of inliers without and with
scene landmark updating (grey and black bins respectively).
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Fig. 9: Lifetime of scene landmarks observed for a sample keyframe.

served that errors in focal length measured with our method
over a long period in an outdoor scenario are similar to those
obtained in [37], and lower than those in [31] (as reported
in [37]), for an indoor experiment with a few keyframes.

The reprojection error depends on both the number of
landmarks extracted and the RANSAC threshold for inliers

as shown in Fig. 7 for one of the sequences under test (Se-
quence 1). It can be observed that with less than 200 land-
marks a large reprojection error with high standard deviation
(plotted at one sigma) is present. Instead, such error is low
when the number of landmarks is between 200 and 1500
(Fig. 7(a)). Fig. 7(b) shows that RANSAC thresholds be-
tween 1 and 3 pixels for the inliers used in the homography
estimation assure small reprojection errors. Values of 1000
and 3 pixels were used respectively for the number of land-
marks extracted and RANSAC threshold in our experiments.

Scene map updating significantly contributes to the ro-
bustness of our camera calibration to both slow and sud-
den variations of the scene, maintaining a high number of
RANSAC inliers through time. Fig. 8(a) shows the cumu-
lative sum of the inliers with and without scene landmark
updating. It is possible to observe that without scene land-
mark updating the number of inliers decreases (the cumu-
lative curve is almost flat) as the initial landmarks do not
match anymore with the landmarks observed due to scene
changes. Fig. 8(b) shows the distribution of the inliers in the
two cases. With no scene landmark updating, typically only
few of the original landmarks are taken as inliers for each
keyframe, which is insufficient to assure a robust calibration
over time. With scene landmark updating, a higher number
of inliers is taken for each frame that include both the orig-
inal and the new scene landmarks. As can be inferred from
Fig. 8, in a dynamic scene few of the original scene land-
marks survive at the end of the observation period. Fig. 9
highlights the scene landmark lifetime over a 20 minutes
window, for one keyframe (randomly chosen). The scene
landmarks with ID ∈ [0..2000] are the original landmarks.
Landmarks with ID ≥ 2000 are those observed during the
20 minutes.

Camera calibration at different time of the day without
and with scene landmark updating is shown in Fig. 10(a-b)
for a few sample frames. It can be observed that with scene
landmark updating, camera calibration (represented by the
superimposed grid of points) is still accurate despite of the
large illumination changes occurred in the scene.

Performance under slow scene changes and abrupt camera
motion

Our PTZ camera calibration remains sufficiently stable over
long periods of observation. Fig. 11-Top shows a plot of
the reprojection error over 8-hour operation for a sample
keyframe. We noticed that this keyframe represents a part
of the scene with lack of structure (no cars or motorbikes)
and the camera is mostly observing the ground plane. In the
sample frames reported in Fig. 11-Bottom, we plot a grid of
points re-projected from the ground plane onto the image
plane using the offline bundle adjusted homography (green
points), the homography estimated with proximity checking
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Fig. 10: Camera calibration without (a) and with scene map updating (b) at different time of the day.

0 1 2 3 4 5 6 7
Time 5

0

5

10

15

20

25

Er
ro

r (
pi

xe
ls

)

Reprojection Error
With proximity checking
Without proximity checking

x10

Fig. 11: Top: Reprojection error over 8-hour operation for a sample keyframe without (red) and with (blue) proximity checking. Bottom: Sample
frames with three grids of points superimposed using the offline bundle adjusted homography (green points), the homography estimated with
proximity checking (blue points) and the one without proximity checking (red points).

(blue points) and the one without proximity checking (red
points). We can see clearly that proximity checking reduces
the displacement error when the scene lacks of texture and
is affected by slow background movement (e.g. movement
of the shadows).

Concerning abrupt scene changes, after inspecting sev-
eral hours of recorded results we have found that there are
some viewing conditions where a view-based approach could
fail. Typical examples are due to blur caused by fast or abrupt
motion and moving objects. A solution to these problems
was proposed in [14] by exploiting temporal coherence from
previous frames when the registration onto the view map is
likely to fail.

5.2 Multi-Target Tracking with PTZ cameras

In the following, we summarize experiments on multi-target
tracking in world coordinates using our on-line PTZ cam-
era calibration, and compare our method with a few meth-
ods that appeared in the literature on a standard PTZ video
sequence. In our experiments targets were detected automat-
ically using the detector in [11].

Influence of camera calibration

To evaluate the impact of our PTZ calibration on tracking,
we recorded a 8-hour sequence in a parking area during a
working day and extracted three videos with one, two and
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Sequence and Method CLEAR MOT USC Metric
MOTA% MOTP% FN% FP% ID SW TR FR MT% PT% ML% FAF

Seq. #1 (1 target)
Our method w/o map updating -89.9 58.4 70.8 118.2 0 23 0.0 100.0 0.0 1.17
Our method w/o proximity check 80.4 60.4 10.9 8.6 0 1 100.0 0.0 0.0 0.09
Our method 88.2 66.7 10.9 0.7 0 3 100.0 0.0 0.0 0.01
Seq. #2 (2 targets)
Our method w/o map updating -130.0 52.1 96.1 133.0 0 27 0.0 0.0 100.0 2.49
Our method w/o proximity check 70.4 61.5 25.7 3.6 0 10 50.0 50.0 0.0 0.07
Our method 78.8 64.2 19.4 1.6 0 8 50.0 50.0 0.0 0.03
Seq. #3 (3 targets)
Our method w/o map updating -51.5 59.4 81.9 69.1 0 20 0.0 66.7 33.3 2.06
Our method w/o proximity check 67.5 67.3 26.9 5.4 0 6 33.3 66.7 0.0 0.16
Our method 74.6 65.0 24.3 1.0 0 3 33.3 66.7 0.0 0.03

Table 2: Multi-Target Tracking performance in different settings: with one, two, three moving targets.

Sequence and Method CLEAR MOT USC Metric
MOTA% MOTP% FN% FP% ID SW TR FR MT% PT% ML% FAF

Seq. #1 (1 target)
Our method in the image plane 79.9 70.6 15.1 4.9 0 3 100.0 0.0 0.0 0.05
Our method in world coordinates 88.2 66.7 10.9 0.7 0 3 100.0 0.0 0.0 0.01
Seq. #2 (2 targets)
Our method in the image plane 42.7 57.5 36.6 20.3 1 9 0.0 100.0 0.0 0.38
Our method in world coordinates 78.8 64.2 19.4 1.6 0 8 50.0 50.0 0.0 0.03
Seq. #3 (3 targets)
Our method in the image plane 59.5 62.5 31.8 8.5 0 7 0.0 100.0 0.0 0.25
Our method in world coordinates 74.6 65.0 24.3 1.0 0 3 33.3 66.7 0.0 0.03

Table 3: Multi-Target Tracking performance in the image plane and in world coordinates.

three targets. This is a dynamic condition, with both smooth
and abrupt scene changes. Multi-target tracking performance
was evaluated according to both the CLEAR MOT [5] and
USC metrics [38]. The CLEAR MOT metric measures track-
ing accuracy (MOTA):

MOTA = 1−
∑
t(FNt + FPt + ID SWt + TR FRt)∑

t nt
(18)

and precision (MOTP):

MOTP =

∑
i,t VOCi,t∑
t TPt

, (19)

where FNt and FPt are respectively the false negatives and
positives, ID SWt are the identity switches, TR FRt are the
track fragmentations, nt is the number of targets and VOCi,t
is the VOC score of the i-th target at time t. The USC met-
ric reports the ratio of the trajectories that were successfully
tracked for more than 80% (MT), the ratio of mostly lost
trajectories that were successfully tracked for less than 20%
(ML), the rest partially tracked (PT) and the average count
of false alarms per frame (FAF). We measured the perfor-
mance for the method with no scene map updating, with no
proximity checking and for the proposed method.

From Tab. 2 it is apparent that scene map updating has
a major influence on the number of false negatives and false

positives and therefore on the tracking accuracy. Proximity
checking has also a positive impact on the reduction of false
positives and determines an average increase of the accuracy
of about 10%.

Influence of tracking in world coordinates

To analyze the effect of using world coordinates we run our
method in image coordinates (not applying mapping in the
ground plane). In this case, the target scale could not be eval-
uated directly and was estimated within a range from the
scale at the previous frame. Tab. 3 reports the performance
of our multi-target tracking performed in the two cases.

It can be observed that tracking in world coordinates
lowers the number of false positives and contributes to a
sensible improvement in both accuracy and precision, with
respect to tracking in the image plane. This improvement
is even greater as the number of targets increases since the
tracker has to discriminate between them.

We compared our calibration and tracking against the
results reported by a few authors, namely [27], [6] and [7],
on the UBC Hockey sequence [27]. This is the only pub-
licly available dataset recorded from a PTZ camera. It is very
short and includes frames of a hockey game. All these au-
thors performed tracking in the image plane. For the sake
of completeness we have performed tracking on the image
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Sequence and Method CLEAR MOT USC Metric
MOTA% MOTP% FN% FP% ID SW TR FR MT% PT% ML% FAF

UBC Hockey (Okuma’s detector)
Okuma [27] 67.8 51.0 31.3 0.0 11 0 – – – –
Our method in the image plane 67.9 62.3 8.8 23.2 0 1 91.7 8.3 0 2.47
Our method in world coordinates 90.3 60.4 6.5 3.1 0 1 91.7 8.3 0 0.35
UBC Hockey (ISM [22] detector)
Breitenstein [6] 76.5 57.0 22.3 1.2 0 – – – – –
Brendel [7] 79.7 60.0 19.5 1.1 0 – – – – –
Our method in the image plane 72.6 61.0 18.7 8.6 0 1 58.3 33.3 8.3 0.93
Our method in world coordinates 83.6 63.8 14.5 1.9 0 0 75 16.7 8.3 0.21

Table 4: Multi-Target Tracking performance on UBC Hockey dataset.

plane and in world coordinates with our method. The scene
map was obtained by uniformly sampling the video sequence
every ten frames so to have a full coverage of the scene. For
a fair comparison, in a first experiment we compared our
method against [27] using the original detections provided
by Okuma. In a second experiment we compared with [6]
and [7] using the ISM detector [22]. The results are reported
in Tab. 4. As it is possible to observe, in the first experiment
our calibration and tracking in the image plane obtains com-
parable performance as [27], while tracking in world coordi-
nates has significantly superior performance. In the second
experiment, we observed that the ISM detector fails to de-
tect a target in the entire sequence and determines a large
number of false negatives in all the methods. Notwithstand-
ing calibration and tracking in world coordinates still reports
some improvement in performance with respect to the solu-
tions that perform tracking on the image plane.

Component Time fps
Camera Pose Estimation 88 ms 11
Scene Map Update 5 ms 200
Detection 43 ms 23
Tracking 35 ms 28
Total (Sequential) 171 ms 5
Total (Parallel) 83 ms (x2.4) 12

Table 5: Computational requirements per processing module on a Intel
Xeon Dual Quad-Core at 2.8GHz.

5.3 Operational Constraints and Computational
requirements

We analyzed the operational constraints and computational
requirements of our solution using a SONY SNC-RZ30P
PTZ camera and Intel Xeon Dual Quad-Core at 2.8GHz and
4GB of memory, with no GPU processing. From Tab. 5 we
can see that we perform real-time calibration and tracking
(in world coordinates) at 12 fps. The current implementation

of the method exploits multiple cores and was developed in
C/C++. Frame grabbing, camera calibration and scene map
updating are performed in one thread, detection and track-
ing are performed in a separate thread.

6 Conclusions

In this paper, we have presented an effective solution for on-
line PTZ camera calibration that supports real-time multiple
target tracking with high and stable degree of accuracy. Cal-
ibration is performed by exploiting the information in the
current frame and has proven to be robust to camera mo-
tion, changes of the environment due to illumination or mov-
ing objects and scales beyond thousands of landmarks. The
method directly derives the relationship between the posi-
tion of a target in the ground plane and the corresponding
scale and position in the image. This allows real-time track-
ing of multiple targets with high and stable degree of accu-
racy even at far distances and any zoom level.

Further investigation can be conducted to operate under
very large focal length such as in [37]. In these viewing con-
ditions PTZ cameras with poor mechanical quality may in-
troduce further challenges due to the non repeatability of
their mechanical actuators. The solution in [37] can cope for
such errors but is not suited to work in dynamic scenarios.
According to this, a combination of [37] with our method
can be investigated in order to deal with both repeatability
of the actuators and scene changes over time.
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