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Abstract
Automatic multiple target tracking with pan-tilt-zoom

(PTZ) cameras is a hard task, with few approaches in the lit-
erature, most of them proposing simplistic scenarios. In this
paper, we present a PTZ camera management framework
which lies on information theoretic principles: at each time
step, the next camera pose (pan, tilt, focal length) is chosen,
according to a policy which ensures maximum information
gain. The formulation takes into account occlusions, phys-
ical extension of targets, realistic pedestrian detectors and
the mechanical constraints of the camera. Convincing com-
parative results on synthetic data, realistic simulations and
the implementation on a real video surveillance camera val-
idate the effectiveness of the proposed method.

1. Introduction
The goal of wide area monitoring has opened new issues

in the tracking domain. For example, abnormal behavior
detection at a distance demands both trajectory analysis and
a proper image resolution to finely recognize human ges-
tures. Hence, a few approaches use pan-tilt-zoom (PTZ)
cameras to alternate between large and narrow fields of view
[7]. This paper presents a method to automatically select the
pose of a single camera (i.e. focal length and pan/tilt angles)
in a multi-target tracking scenario.

To date, PTZ sensor management methods for tracking
have been approached in a simplified way, discarding many
important aspects, such as potential tracking errors, the
presence of occlusions, the influence of object detector fail-
ures and the varying number of targets in the scene, besides
the limited displacement of the camera, due to mechanical
constraints. Here, we address such problem in a more re-
alistic and principled way. We suppose a tracking strategy,
where an extended Kalman filter works on top of a pedes-
trian detection module, like in [12]: in this context, our sys-
tem controls the camera parameters on the basis of target-
sâĂŹ trajectories estimation on the ground plane, account-
ing at the same time possible detection errors, occlusion ef-

Figure 1. (a) Synthetic scenario; (b) realistic simulation; (c-f) im-
plementation on a real video surveillance camera (best in colors).

fects and a variable number of subjects in the scene. All
these factors are embedded into a solid theoretical frame-
work: in essence, we want to maximize the information
gain produced by an observation on the state of the system,
by selecting the camera action which is most informative
among those physically plausible. Great attention has been
paid to the experimental trials, reaching an optimal com-
promise between repeatability and realism. Synthetic and
real simulations test the performances against occlusions,
tracking and detection errors. We conclude that the intro-
duction of the detector performance and the occlusion esti-
mation in the information theoretic based camera manage-
ment definitively improves the effectiveness of the camera
in tracking multiple targets. Finally, a real-time experiment
witnesses the suitability of our framework to real situations,
and shows how the proposed method, thanks to the hetero-
geneous aspects taken into account, implicitly produces an
effective behavior of the PTZ device. Fig. 1 shows a few
frames from the 3 sets of experiments.

The paper continues as follows. Related works are in
Sec. 2. The information theoretic formulation is reported in
Sec. 3, while our contributions are detailed in Sec. 4. Ex-
periments are presented in Sec. 5, and conclusions in Sec. 6.
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2. Related work
PTZ cameras have been studied from different points of

view in the past years. Due to the nature of the device, ge-
ometric properties related to the varying focal length and
positioning[5], and customized calibration techniques [21]
have been deeply analyzed.

These sensors are particularly useful for video surveil-
lance, thanks to their capability of both monitoring a wide
area and providing high resolution imagery [15]. The main
drawback when developing algorithms for PTZ cameras is
that it is not possible to work offline with recorded videos
since each frame depends on the way the camera moves,
[17]. To deal with this problem, in [16] a completely sim-
ulated environment is created through computer graphics
tools and different strategies for camera to target assign-
ments are proposed and compared. Such strategies are
mainly hand-crafted, and require precise information on the
targets’ position from other sensors. Managing PTZ cam-
eras in a network is, in fact, a typical challenge. A recent
novel solution appears in [10], where the authors propose a
game theoretic approach for camera to target assignment.

Principled information theoretic frameworks for control-
ling pose and focal length of active cameras are introduced
in [7, 8] and [20], exploiting the concept of information gain
for single object tracking. Later on, multi-target tracking is
addressed in [18]: notably, here target positions are evalu-
ated on the image plane only. Multiple zooming cameras
which give a 3D representation of target positions are con-
sidered in [9] for the single target, and for the multi-target
scenario [19]. Both in [18, 19] the evaluation method is
simplistic, since it assumes no errors in the detections and
data association.

A complete formulation of the planning under uncer-
tainty, mainly from a robotics perspective, can be found
in [2], where Markov decision processes (MDPs) are em-
ployed; such framework explicitly models the temporal evo-
lution of the targets’ states and designs a policy for the ac-
tions selection based on a reward function.

Our contribution improves substantially the state of the
art: we are actually furnishing a principled framework for a
single PTZ camera which simultaneously manages hetero-
geneous challenges, critical for a real implementation. We
propose to use a Markov decision process, using an infor-
mation theoretic reward which copes with different issues
in an original fashion. Summarizing, it deals with full-3D
positions and takes into account people height, contrarily
to [18]; the modeling of the detection noise enriches the
“ideal” formulation of [18, 19], at the same computational
cost of [18]. The management of the occlusions has no prior
in the related literature, and taking into account the mechan-
ical constraints is necessary for an effective implementation
on a real camera. Finally, instead of relying on ad-hoc met-
rics, [18, 19] we exploit standard tracking evaluation proto-

cols and figure of merits, easing future comparisons.

3. MDP with Information Gain Reward
The approach builds upon a multi-target tracking method,

and is based on a Markov decision process.

3.1. Basic algorithm for multi-target tracking
Following [18], we design a multi-target tracking system,

instantiating one extended Kalman filter (EKF) for each de-
tected target. A pedestrian detector [4] is run at each frame,
and the Hungarian algorithm [13] associates each observa-
tion to the corresponding filter, initializing a new filter in the
case of unassociated observations. Each target position on
the ground plane st=[xs

t , y
s
t ] is modeled as a Markov pro-

cess, while the estimation of the target state in the filter is
xt, containing its location on the ground plane and its speed:
xt = [xw

t , y
w
t , ẋ

w
t , ẏ

w
t ]

�. The observation ot = [ut, vt]
�,

i.e., the target location on the image plane in pixels, only
depends on the current state and on the action at, that is se-
lected in the set of the L possible actions A, and describes
the camera pose through the discrete finite parameter vec-
tor a = (φ, θ, f) ∈ A (the pan φ, tilt θ and focal length f
respectively). Formally, we have:

st = f(st−1) +mt, mt ∼ N (0,U)

ot = g(st, at) + nt, nt ∼ N (0,V)
(1)

where f(·) and g(·) are the dynamical and the observation
model, respectively, and U and V are the related covariance
matrices for the model and observation noise, respectively.
The observation function g(·) is the homography from the
ground plane to the image plane that obviously depends on
the camera parameters defined in the action at.

Let x−
t be the predicted state estimate at time t, i.e. be-

fore having made the observation at t, while x+
t incorpo-

rates the observation. The final estimate for the state at time
t, xt, is either x+

t or x−
t , depending whether the target is

observed or not (e.g., when the camera is not pointing at it,
or the detector misses it). P−

t ,P+
t and Pt are the covari-

ance matrices for x−
t ,x+

t and xt, respectively. If the target
is not observed, only x− and P− are considered. The EKF
equations are then:

x−
t = Fxt−1,

P−
t = F�Pt−1F+U,

Kt = P−
t Cx(at)(C

�
x (at)P

−
t Cx(at) +V)−1,

x+
t = x−

t +Kt(ot − g(x−
t , at)),

P+
t = (I−KtC

�
x (at))P

−
t ,

(2)

where Cx(at) = ∇xg(x,at)|x=x−
t

is the linearized ho-
mography g evaluated in x−

t and F is the 4×4 matrix that
models the system dynamics; importantly, Cx(at) depends
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Figure 2. Graphical representation of our approach.

on the action, so that diverse camera poses lead to different
observation matrices, and different estimations for x+

t and
P+

t . It is worth to highlight that also the zoom modifies
the linearized projection matrix Cx(at); in fact observing a
target with an higher magnification will produce a smaller
covariance P+

t [8].
Eqs. 2 can be seen as modeling the transition probabili-

ties in the MDP (see Fig. 2). To complete the MDP model,
we need the reward function R(x−

t , at), which tells how
informative is a given action at performed in the state x−

t :
notably, the reward must depend on x−

t (not on x+
t ), since

we want to select the action before performing the observa-
tion. Given the reward function, at each time step we can
evaluate its value for all the possible actions at ∈ A, choos-
ing the one which gives the maximal reward.

3.2. Information gain formulation: notes
In designing the reward function R(x−

t , at) we directly
relate it to the expected information gain I(xt;ot|at) be-
tween the state xt and the observation ot, for a given ac-
tion. In practice, it expresses the amount of information
shared between state and observation. Adopting the same
formulation of [7], we can write:

a�t = argmax
at

R(x−
t ; at) = argmax

at

I(xt;ot|at) = (3)

= argmax
at

H(x−
t )−H(xt|ot, at) = argmin

at

H(xt|ot, at).

where H(xt|ot, at) is the conditional entropy1. Thus, we
want to minimize:

H(xt|ot, at) = (4)

=−
∫

p(ot|at)
∫

p(xt|ot, at) log (p(xt|ot, at))dxtdot=

=

∫
Ωt

p(ot|at)dotH(x+
t ) +

∫
¬Ωt

p(ot|at)dotH(x−
t )=

= αt(at)H(x+
t ) + (1− αt(at))H(x−

t )

where we split the domain of integration for p(ot|at): Ωt

is the set of points in which the target is visible, ¬Ωt is the
1The conditional entropy for two random variables x and y is defined

as H(x|y) = − ∫ ∫
p(x, y) log p(x|y)dxdy.

set where it is not visible, i.e., it is out of the camera field
of view (FoV), is occluded, or is too small to be detected.
Assuming the distribution for xt as Gaussian and being the
system in Eqs. 2 linear, we can derive the entropy H(x+

t )
directly from the EKF equations. In fact, the entropy of a
Gaussian only depends on its covariance2 and Eqs. 2 pro-
vide P+

t in the case at allows to get the observation for the
target, and P−

t otherwise. For more details, see [7].
In conclusion, to ensure maximal expected information

gain I(xt;ot|at) we need only to consider how the term
α(at) varies for different actions at. Extending to K inde-
pendent targets amounts to sum up the information gains Ik
for each target k.

4. Realistic modeling of scene observation from
a PTZ camera

The formulation of α(at) in [7] is limited, ignoring many
aspects of a real scenario . In the next sections we will re-
define it, presenting two versions with four main contribu-
tions: in the first version, we introduce (a) the visibility con-
straint, accounting for the physical dimension of the target
in the limited camera FoV, and (b) a realistic detection mod-
eling, maintaining a Gaussian distribution that can be nu-
merically integrated in an efficient way, independently for
each target; in the second version, we introduce (c) an addi-
tional term that models the occlusions between the targets;
such term requires to consider the relative positions between
the targets and can be computed only through sampling. Fi-
nally, both versions take into account (d) the mechanical
limits on the camera motion. Dealing with the variability
of the number of targets is managed through the patrolling
term as in [18].

4.1. Modeling visibility and detection factors
Introducing the visibility constraint requires to define

properly the set Ωt in Eq. 4, while introducing the estima-
tion of the detector performance implies to modify p(ot|at).
Let dt be a binary variable which is 1 if the target is found
by the detector and 0 otherwise; in practice, dt tells us
whether the Kalman filter will be updated with a new ob-
servation or only the information from the previous predic-
tion will be considered. Hence, Eq. 4 can be updated by
considering this new variable:

H(xt|ot,dt, at) = −
∫ ∫

p(ot,dt|at) (5)
∫

p(xt|ot,dt, at) log (p(xt|ot,dt,at))dxtdotddt

Let us start by analyzing p(ot,dt|at) and introducing some
assumptions. First, p(ot|at) = p(o−

t |at), where o−
t =

2The entropy of a Gaussian distributed random vector x ∈ R
n with

x ∼ N (μ,Σ) is: H(x) = n
2
+ 1

2
log((2π)n‖Σ‖).
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g(x−
t , at), since the actual observation ot is yet not avail-

able when selecting the actual action at
3. Then, we assume

that the expected positions of the targets on the image plane
only depend on the prediction of the state and the action.
Second, we assume that the visibility of a target only de-
pends on its position on the image plane, being unaware of
obstacles or other occluders in the scene. Therefore, the
term p(ot,dt|at) in Eq. 5 factorizes as:

p(ot,dt|at) = p(ot|at)p(dt|ot, at). (6)

Being dt binary, Eq. 5 may be rearranged as:

H(xt|ot,dt, at) =

∫
¬Ωt

p(ot|at)dotH(x−
t )+

+

∫
Ωt

p(ot|at)p(dt=0|ot, at)dotH(x−
t )+

+

∫
Ωt

p(ot|at)p(dt=1|ot, at)dotH(x+
t ) =

=(1− α(at))H(x−
t ) + α(at)H(x+

t ), (7)

where we also suppose that a detection is possible only if
the observation is visible in the image. In conclusion, we
just need to compute for any possible action at the weight
α(at):

α(at) =

∫
Ωt

p(ot|at)p(dt=1|ot,at)dot. (8)

Now, to preserve the Gaussian distribution and therefore
the efficient integration for the weight α(at), the two pdfs in
Eq. 8 and the integration domain Ωt are defined as follows.

Observation distribution. p(ot|at) is the predicted dis-
tribution of the observation. Based on the prediction of the
state from Eq. 2, we have ot ∼ N (o−

t ,Σot
), where:

o−
t = Cx(at)x

−
t , Σot

= Cx(at)P
−C�

x (at) +V. (9)

Visibility domain. Ωt is the set of possible observa-
tions {ot} for which the target is fully visible in the camera
field of view, considering the limited size of the image plane
S ⊂ R

2. In defining such set, we originally extend the work
in [19], and consider the spatial dimension of the targets, as-
suming that objects are almost vertical on the ground plane
and that their projected height is known for at least one tar-
get. Since we know the extrinsic calibration parameters for
the camera, we can estimate the head position et(ot) on the
image plane for a target whose feet are in ot, through the
homology Wat

, as in [3]. The set Ωt is then defined as:

ot ∈ Ωt ⇔ ot ∈ S ∧ et(ot) ∈ S (10)

3In the remaining, for the sake of clarity, we omit the apex − from o−
t ,

if not otherwise specified.
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Figure 3. Left: Black curve is the function that we used to model
the pedestrian detection recall as the target size varies. Right:
HOG pedestrian detector performance for targets with different
occlusion ratios.

To integrate p(ot|at) on the set of points defined above
we linearize the homology through the Jacobian Jat

=
∇otWat |ot=o−

t
of Wat around o−

t . Therefore:

et ≈ ēt + Jat
(ot − o−

t ), ēt = Wat
(o−

t ) (11)

Assuming that people are vertical in the scene, and that the
image plane y-axis is vertical, we can discard the horizontal
component getting:

yet = yēt + Jat2,2
(yot − yo

−
t ), xe

t = xo
t (12)

In conclusion, the y coordinate for the et is linearly ob-
tained from the y of ot, thus the integration on the image
plane is still equivalent to integrating over a rectangle whose
sides are parallel to the x-y axis.

Detection probability. p(dt=1|ot, at) is the probabil-
ity that a target will actually be detected given its position
in the image plane. In practice, we consider the fact that the
performance of pedestrian detectors depends on the height
r of the target (in pixels). We estimate such a relation with
the function p(dt = 1) = 1 − e−Kd(r−r0)1(r − r0). The
two parameters Kd = 0.0098 and r0 = 21.29 are extrap-
olated from the performance of HOG pedestrian detector
on Caltech pedestrian dataset reported in [11]. Fig. 3 (left)
shows a comparison between the function we use and the
ones reported in [11].

The target height rt = |yet − yot | can be computed as a
function of the observation yot and the camera position at,
exploiting the above homology as in Eq. 12. Linearizing
the homology around the expected observation o−

t , we ob-
tain an exponential function, linear in ot. Therefore we can
write:

p(dt=1|ot, at) = 1− e−Kd(Dyo
t +d−r0), (13)

where the matrix D and vector d are constants depending
on the linearized homology, see Eq. 12 . The product of the
Gaussian distribution p(ot|at), Eq. 9, and the exponential
function in ot, Eq. 13, gives another Gaussian distribution.
Thus the weight α(at) in Eq. 8 can be numerically com-
puted as bounded integration of a Gaussian distribution.
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4.2. Handling Occlusions
Occlusions represent a serious problem for the selection

of the action. Actually, when a target is occluded, it is not
seen by the camera, failing to get the information gain, that
in the case of no occlusion one would expect.

Without any information on possible occluding obstacles
in the field of view, we can only keep into account inter-
occlusions among targets in the scene. To this aim, we intro-
duce a term that infers the percentage of area occluded in the
next frame, resembling the depth-sorting method of [14]. In
practice, we build a binary occlusion mask which indicates
the occluded pixels.

Formally, let ct ∈ [0, 1] be the ratio of the bounding box
of a target which is tracked at time t. We can now estimate
the relation between the probability of detecting the target
and its associated ckt , injecting this variable in Eq. 5:

H(xt|ot,dt, ct, at) =

∫
¬Ω

p(ot|at)dotH(x−
t )+

+

∫
Ωt

p(ot|at)
∫
p(dt=0|ot,at, ct)p(ct|ot, at)dctdotH(x−

t )+

+

∫
Ωt

p(ot|at)
∫
p(dt=1|ot, at, ct)p(ct|ot, at)dctdotH(x+

t ) =

= (1− α(at))H(x−
t ) + α(at)H(x+

t ) (14)

As for the previous case, we just need to compute for any
possible action at a modified version of the weight α(at):

α(at)=

∫
Ωt

p(ot|at)
∫

p(dt=1|ct,ot, at)p(ct|ot, at)dctdot,

(15)

which requires to define p(dt = 1|ct,ot, at) and
p(ct|ot, at).

Detection probability with occlusion term. We as-
sume that the effect of the occlusion ratio and the target
size on the detection performance are independent. This
leads to the following factorization: p(dt|ct,ot, at) =
p(dt|ot, at)p(dt|ct), where the first factor has been com-
puted in Sec. 4.1. To estimate p(dt|ct), i.e., the effect of the
occlusion on the detection performance, we use again the
Caltech pedestrian dataset [11], obtaining the plots shown
in Fig.3(right). We choose to approximate this relation as
linear: p(dt=1|ct) = 1− ct.

Computing occlusion ratio for each target.
p(ckt |ok

t , at) estimates the distribution of the occlu-
sion ratio, given the observation for the target k and the
camera position. This term also depends on the position of
the other targets in the scene (collectively indexed by ¬k,
{k} ∪ {¬k} = K), so we need to expand it as:

p(ckt |ok
t , at) =

∫
p(ckt |oK

t , at)p(o
K
t |at)do¬k (16)

The term p(ckt |oK
t , at) counts the ratio of visible versus oc-

cluded pixels:

p(ckt |oK
t , at) = δ(ckt − c̄kt ), c̄kt =

∫
δ(xk

t <
u
x¬k
t |at)du∫

δ(xk
t |at)du

,

(17)
where δ(xk

t <
u

x¬k
t |at) is a binary mask that takes value

1 if at pixel u a part of target k is observed, and 0 other-
wise. The other term

∫
δ(xk

t |at) measures the whole target
area. The main limitation of this formulation is that it is not
possible anymore to compute the information gain for each
target independently, since the relative position among tar-
gets is considered when estimating occlusion, and it is also
not possible to compute the p(ckt ) in closed form.

Therefore, at each possible camera pose we ap-
ply a Monte Carlo approach, and sample from
p(x−,1

t , . . . ,x−,k
t , . . . ,x−,K

t ) =
∏K

k=1 p(x
−,k
t ) get-

ting M sets of possible positions for all the targets{
x̃−,1
t,j , . . . , x̃−,k

t,j , . . . , x̃−,K
t,j

}
j=1...M

. Then, given a candi-

date action at, the corresponding weight α(at) is estimated
as follow: the related sets of observation predictions are
computed

{
õ1
t,j , . . . , õ

k
t,j , . . . , õ

K
t,j

}
j=1...M

according to
the model of Eq. 2; each of this set j is used to evaluate the
inner integral in Eq. 15:

d̃k
t,j =

∫
p(dt=1|ckt , õk

t,j ,at)p(c
k
t |õk

t,j , at)dc
k
t (18)

providing the detection probability of the target k in the
sample j. The final αk(at) for the target k is therefore com-
puted replacing the integral in Eq. 15 with a summation over
the samples:

αk(at) =
1

M

M∑
j=1

d̃k
t,j . (19)

The conditional entropy for that target is then computed ac-
cording to Eq. 7. Again, the sum of the contribution of each
target provides the information gain for all the targets.

4.3. Modeling the camera mechanics: action set
reduction

In this case, we want to model the mechanical constraints
that define the set of positions reachable from the current
pose, in a given time interval, of a real PTZ camera. Given
the set of all the possible camera actions A and the previous
action at−1 = (φt−1, θt−1, ft−1), an action (φ, θ, f) ∈ A
also belongs to the set of actions At reachable at the next
time t, if

|φ− φt−1| ≤ Δφ ∧ |θ − θt−1| ≤ Δφ ∧ |f − ft−1| ≤ Δf.

Δφ and Δθ are the maximum displacement allowed in
the unit of time for the pan and tilt angles and Δf is the
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maximum variation in the magnification factor, that can be
easily obtained combining the expected system frame rate
and the camera specifications.

4.4. Patrolling term for new target detection
To take into account possible new targets occurring in the

scene, the PTZ has to randomly patrol, looking for new ev-
idence. To model this factor we get inspiration from [18],
where an additional information gain Ip(bt|at) related to
the patrolling around the scene is defined. Such factor esti-
mates the information gain that could be obtained perform-
ing an action at due to the detection of a new target bt.

When combining the information gain on target position
uncertainty and on exploration of the scene we obtain:

It =

K∑
k=1

I(xk
t ;o

k
t |at) + βIp(bt|at) (20)

where β is the weight that mixes the two quantities.
With this last element we complete the definition of the

MDP process formed by the EKF equations plus the reward
function. Eq.8 and Eq.15 characterize the two proposed ver-
sions, the first more efficient and the second one more com-
plex, which also takes into account the occlusions.

5. Experiments
Experimenting PTZ tracking solutions is a classic prob-

lem in computer vision: the current protocols span between
being quantitative and perfectly repeatable with a low re-
alism, and considering real scenarios, where each test is
qualitative and cannot be repeated. Here, we consider both
the cases, providing a synthetic and a realistic experimental
benchmark, which are quantitative and repeatable, conclud-
ing with a real experiment where our approach has been
implemented in a real-time surveillance platform.

To ease future comparisons, we adopt standard multi-
target tracking metrics: the MOTA (the higher the better)
which tells how reliable the tracks are: false detections,
missed targets and identity switches penalize it; the MOTP
(the lower the better) [1], which measures the error in local-
izing the tracked targets on the ground plane.

In addition, we calculate the average height of targets as
detected in the image, analogously to [18]: the bigger a tar-
get appears on the screen, the more information could be ex-
tracted for higher level tasks (recognition, re-identification
etc.). Important parameters for appreciating our perfor-
mance are the number of detections on the whole sequence
(# Dets) and the average zoom value for the camera (Zoom).

We use three comparative control strategies: ’fix’, keep-
ing the camera fixed at the lowest zoom (1x), ’patrol’, scan-
ning the field of regard according to a preset sequence, ’ran-
dom’, performing actions randomly chosen from the set A.

Table 1. Synth. data, IDEAL detector: comparison among stan-
dard strategies and the information theoretic strategy, with and
without the sampling (M=100) to cope wiht occlusions.

Strategy ’fix’ ’patrol’ ’rnd’
MDP

intg smpl
MOTA 94.6 % 87.6% 79.7% 89.9% 97.0%

MOTP [m] 0.26 0.35 0.45 0.23 0.21
Height [pix] 49.1 102.6 64.4 91.4 89.0

# Dets 278.3 75.8 55.5 186.3 214.2
Zoom [x] 1.00 2.54 2.53 2.05 2.00

Table 2. Synth. data, REALISTIC detector: comparison among
standard strategies and the information theoretic strategy, with and
without the sampling (M=100) to cope wiht occlusions.

Strategy ’fix’ ’patrol’ ’rnd’
MDP

intg smpl
MOTA 56.6 % 58.8% 14.0% 67.2% 72.8%

MOTP [m] 0.46 0.47 0.67 0.33 0.29
Height [pix] 57.7 106.4 84.5 121.6 122.3

# Dets 54.5 38.3.8 15.0 80.0 89.8
Zoom [x] 1.00 2.54 2.46 2.64 2.61

5.1. Synthetic Experiments
The synthetic scenario consists in a 15× 15m area, with

7 targets following random trajectories mimicking human
motion, Fig. 1 (a). The targets are always in the scene, thus
the exploration term Ip in Eq. 20 is not considered. We run
12 different sequences, each 50 frames long, with diverse
target trajectories, and compute the final scores averaging
the per-sequence results: in each sequence, we manage 350
target instances, which have to be detected and associated
in tracks. The action set has 4 steps for the zoom, 7 for
pan angle and 10 for tilt angle (i.e., 280 different actions).
To model the mechanic the camera can move by a maxi-
mum displacement of 2 steps for the angles and 1 for the
zoom. We exploit the occlusion term of Eq 20, comparing
the Gaussian integral solution of Eq. 8, namely ’intg’, with
the sampling strategy of Eq. 19, namely ’smpl’.

A first session considers a perfect detector, whose per-
formance do not decay for smaller targets, but still worsens
when the target gets occluded; results are in Tab. 1. The fol-
lowing observations can be made: (1) both the ’intg’ and
’smpl’ approaches outperform the competing PTZ strate-
gies ’patrol’, ’rnd’, both in terms of MOTA and MOTP;
(2) the ’fix’ policy is the best among the competitors: ac-
tually, it detects a large number of targets (see # Dets),
even when they are small, due to the perfect detector; (3)
the improvements of our approaches are mainly due to the
zooming on the targets (see Zoom [x]), which both create
more reliable tracks (higher MOTA) and better localization
(lower MOTP); (4) the sampling approach, which prevents
the camera from observing targets which may be occluded,
outperforms the ’intg’ approach. Note that using an ideal
detector and the ’intg’ version, which discards the occlu-
sions, our method slightly differs from the approach in [18].
In fact in this case ours only considers the mechanical con-
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straints of the camera and the physical extension of the tar-
gets as additional elements. Hence, results also show a clear
improvement with respect to [18].

In the second session, we consider Eq. 13, substituting
the ideal detector with a realistic one, which simulates the
HOG performance, i.e., it works worse at small resolutions.
Results are in Tab. 2, leading to considerations similar to
the previous test. In addition, the presence of a realistic de-
tector brings in general to worse MOTA and MOTP scores;
the #Dets in the ’fix’ case decreases dramatically (it cannot
zoom to increment the number of detections), and, in gen-
eral, both the proposed approaches are better in this respect:
in fact, our strategies know that they need to zoom more
(see the Zoom values) to possibly get a detection. Again,
the advantage of keeping into account the occlusion term is
evident.

5.2. Realistic Experiment
As compromise between repeatability and realism, we

consider here the PETS 2009 (S2-L1-View1) benchmark,
Fig 1b , where intrinsic calibration matrix Kc and the ex-
trinsic calibration information are provided. For reproduc-
ing the PTZ zoom 1, we reduce the 576×768 resolution to
120×160. The homography Gptz for this virtual camera to
the 3D plane is Gptz = KcRptzK

−1
ptz , where Kptz and Rptz are

the intrinsic and the rotation PTZ matrices (defined empiri-
cally). The original extrinsic calibration data allow to map
the ground plane to the original sequence image plane and
then, through the Hptz , to the virtual PTZ image plane. The
action sets is made of 140 different actions, 4 steps for the
zoom, 7 for pan angle and 5 for tilt angle. The mechanical
constraint on the camera is implemented as for the synthetic
experiments. The sequence is 795 frames long; we sub-
sample it every 2 frames. Globally, there are 19 different
targets, for a total of 2322 true detections.

In a first test, whose results are in Table 3, we employ
the ideal detector, extracting the bounding box from the
ground-truth and removing the occluded ones. Since in
this sequence people are entering and leaving the scene,
we include the exploration term (Eq.20), testing two differ-
ent values for β. Considerations: (1) the sampling strategy
gives better results for both values of β, in terms of MOTA,
MOTP, and Height; (2) since we have all the detections,
MOTA is high also for the fixed strategy. MOTP is higher
with our policies, due to the possibility of zooming. (3) re-
ducing β encourages to focus on the targets already presents
(i.e., lower MOTP) instead of capturing new items. The best
value for β should be a compromise between tracking accu-
racy and the capability of capturing novel targets.

In the second test, we introduce a real implementation of
the HOG detector, enriching the realism of the simulation,
and therefore introduce the term in Eq. 13 in the implemen-
tation. Results are in Tab. 4 and in general are dramatically
lower than in Tab. 3 because of the many false positives and

Table 3. PETS dataset. Ideal detector. Integral solution vs sam-
pling with occlusion management.

Strategy ’fix’ ’patrol’ ’rnd’
β = 9 β = 1

intg smpl intg smpl
MOTA 80.6% 50.7% 30.6% 75.2% 76.5% 64.8% 81.1%

MOTP [m] 0.20 0.29 0.39 0.22 0.22 0.18 0.17
Height [pix] 19.9 38.5 29.3 37.5 39.2 31.8 36.4

# Dets 2160 414 567 998 895 1524 1513
Zoom [x] 1.00 2.00 1.55 1.97 2.08 1.63 1.87

Table 4. PETS dataset. HOG detector. Integral solution vs sam-
pling with occlusion management.

Strategy ’fix’ ’patrol’ ’rnd’
β = 9 β = 1

intg smpl intg smpl
MOTA 21.6% 19.0% 0.0% 28.3% 28.3% 31.6% 36.4%

MOTP [m] 0.36 0.52 0.52 0.49 0.48 0.39 0.38
Height [pix] 19.5 37.7 28.5 42.7 42.8 48.4 50.6

# Dets 1886 370 581 435 440 714 716
Zoom [x] 1.00 2.00 1.48 2.94 2.33 2.58 2.70

missed detections from the HOG detector. The improve-
ment of the ’smpl’ method with respect to the competitor
strategies is evident considering MOTA, this is due to term
in Eq. 13 that pushes the camera to increase the zoom with
respect to the previous case of the ideal detector (2.7 vs
1.87). The MOTP is slightly better for the ’fix’ strategy
but this is due to the fact that it is computed only for the tar-
gets correctly tracked, much less than for the ’smpl’ case.
The whole framework has been implemented in MATLAB
and it works at 10 fps for the ’intg’ formulation and 0.3 fps
for the ’smpl’. However it is easily parallelizable both in
the sampling stage and in evaluating Eq. 5 for the various
actions.

5.3. Real Trials
We also apply our system to a real-time off-the shelf IP

PTZ camera, Sony SNC-RZ30P. In order to estimate the
calibration parameters of the PTZ camera while moving we
use a method similar to [6]. The action set A is made of
462 actions corresponding to the following grid: 14 val-
ues for pan × 11 tilt × 3 zoom. The step between two
pan angles is 10.4°, for the tilt is 4.3°, and the zoom val-
ues are 1x, 6x and 9x. We set β = 0.667 and used the
’intg’ approach, due to the real-time constraints, and the
whole system works online at about 15 fps for the tracker
and 3 fps for the action selection. Some frames (video:
http://youtu.be/QvRa8_d2vs8) are shown in Fig. 4 with a
detailed description. The method we presented produces
a camera which is able to fully autonomous move in the
scene, according to the utility cost, and resulting in a ’rea-
sonable’ behavior without any supervision from a human
operator or other sensors. Effective implementations of
computer vision algorithm on PTZ camera are really few,
and as far as we know it is the first time a sophisticated
algorithm is successfully applied to a stand alone PTZ cam-
era.
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Figure 4. An illustration of camera management with two targets. Targets are marked with their 3D bounding box, the covariance spread
of the filter estimate is given by the ellipse. The camera chooses the position automatically, according to the reward function defined in the
paper. The resulting behavior produces the following patterns: (1-8) The camera ’jumps’ between the targets to maximize their localization
precision; (9-12) Once the two targets are well localized, the camera widens its field of view to search for novel targets (best in colors).

6. Conclusions
In this paper we propose a novel solution to sensor man-

agement for multiple target tracking using a PTZ camera.
The approach is built upon a information theoretic frame-
work, enriched in a way to mimic real working PTZ condi-
tions, that have never been jointly considered so far. In spe-
cific, the formulation takes into account occlusions, phys-
ical extension of targets, realistic pedestrian detectors and
the mechanical constraints of the camera.

We analyze the characteristics and demonstrate the ef-
fectiveness of our approach through synthetic experiments,
realistic simulations and an implementation on a real video
surveillance camera.
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