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Abstract

Automatic image annotation is among the fundamental problems in com-
puter vision and pattern recognition, and it is becoming increasingly im-
portant in order to develop algorithms that are able to search and browse
large-scale image collections. In this paper, we propose a label propagation
framework based on Kernel Canonical Correlation Analysis (KCCA), which
builds a latent semantic space where correlation of visual and textual fea-
tures are well preserved into a semantic embedding. The proposed approach
is robust and can work either when the training set is well annotated by
experts, as well as when it is noisy such as in the case of user-generated
tags in social media. We report extensive results on four popular datasets.
Our results show that our KCCA-based framework can be applied to several
state-of-the-art label transfer methods to obtain significant improvements.
Our approach works even with the noisy tags of social users, provided that
appropriate denoising is performed. Experiments on a large scale setting
show that our method can provide some benefits even when the semantic
space is estimated on a subset of training images.
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1. Introduction

A lot of modern applications require image annotation to search, access
and navigate the huge amount of visual data stored in personal collections
or shared online. Whenever you want to retrieve photos from a particular
concert, recall that pleasant summer day in which you napped on your com-
fortable hammock or look up a person, it is automatic image annotation that
enables a plethora of useful applications. The exponential growth of media
on sharing platforms, such as Flickr or Facebook, has led to the availability
of a huge quantity of images that are enjoyed by millions of people. In such
a huge sea of data, it is indispensable to teach computers to correctly label
the visual content and help us search and browse image collections.

In this paper, we tackle the challenging task of automatic image annota-
tion. Given an image, we want to assign a set of relevant labels by taking
into account image appearance and eventually some prior knowledge on the
joint distribution of visual features and labels. Due to its importance, this is
a very active subject of research [1, 2, 3, 4, 5, 6, 7, 8]. Previous work typically
use images and associated labels to build classifiers and then assign relevant
labels to novel images. The early works usually rely on images labeled by
domain experts [9, 2, 3, 10, 11], while recently several approaches use weak
labels such as user-generated tags in social networks [12, 13, 14, 15] or query
terms in search engines [16, 17].

Despite the source of the labeling, non-parametric models which rely on
a nearest-neighbor based voting scheme have received a lot of attention for
image annotation [18, 10, 19, 20, 21]. The main reason is that these methods
have the ability to adapt to complex patterns of data as more training data
become available. To annotate a new image, they apply a common strategy:
first, they retrieve similar images in the training set, and second, they rank
labels according to their frequency in the retrieval set. Automatic image an-
notation is thus achieved by transferring the most frequent labels to the test
image. In contrast, discriminative models such as support vector machines
[22, 23, 24, 25] or fully supervised end-to-end deep networks [8], require to
define in advance the vocabulary of labels. Thus they do not scale well in a
large-scale scenario in which you may have thousands of labels that may also
change or increase over time.

Several issues may arise in a nearest-neighbor approach. The set of re-
trieved images may contain many incorrect labels, mostly because of the
so-called semantic gap [26]. This happens since visual features may not be
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Figure 1: Labels associated to the images can be used to re-arrange the visual features and
induce the semantics not caught by the original features. For instance, the sunset images
with the red border should be closer to images of clouds and sea, according to the text
space. A projection Φ(v; t) is learned to satisfy correlations in visual and textual space.

powerful enough in abstracting the visual content of the image. Thus the
proposed algorithms tend to retrieve just the images whose features are very
close in the visual space, but the semantic content is not well preserved. Re-
searchers tried to cope with this issue by improving visual features. To this
end, the most significant improvement has been the shift from handcrafting
features to end-to-end feature learning, leading to current state-of-the art
convolutional neural network representations [27, 28, 29]. Nearest neighbors
methods may also suffer when images are not paired with enough label infor-
mation, leading to a poor statistical quality of the retrieved neighborhood.
This is mostly due to the fact that label frequencies are usually unbalanced.
Modern methods address this issue by introducing label penalties and metric
learning [10, 19, 7].

The image representation can be improved also by shifting to a completely
different perspective, namely moving towards a multimodal representation.
A way of bridging the semantic gap might be by designing representations
that account not just for the image pixels, but also for its textual represen-
tation. Here we follow this approach by constructing a framework in which
the correlation between visual features and labels is maximized. To this end,
we present an automatic image annotation approach that relies on Kernel
Canonical Correlation Analysis (KCCA) [30]. Our approach strives to create
a semantic embedding through the connection of visual and textual modal-
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ities. This embedding lives in a latent space that we refer to as semantic
space. Images are mapped to this space by jointly considering the visual
similarity between images in the original visual space, and label similari-
ties. The projected images are then used to annotate new images by using a
nearest-neighbor technique or other standard classifiers. Figure 1 illustrates
our pipeline. The main take-home message is that, as illustrated in the figure,
images associated with the same label (e.g. “sunset”) will be closer in the
semantic space than in the original visual space (see for example the images
with the red border).

1.1. Main Contributions

(1) The key contribution of our work is to improve image representations
using a simple multimodal embedding based on KCCA. This approach has
several advantages over parametric supervised learning. First, by combining
a visual and textual view of the data, we reduce the semantic gap. Thus we
can obtain higher similarities for images which are also semantically similar,
according to their textual representation. Second, we are free from prede-
termining the vocabulary of labels. This makes the approach well suited for
nearest neighbor methods, which for the specific task of image annotation are
more robust to label noise. A slight disadvantage of our method is its inher-
ent batch nature. Although, as shown in our experimental results, learning
the semantic projection is also possible on a subset of the training data.

(2) Previous works that learn multimodal representations from language
and imagery exist, including prior uses of CCA and KCCA [30, 31, 32, 33, 34].
However, we are the first to propose a framework that combines the two
modalities into a joint semantic space which is better exploitable by state-of-
the-art nearest neighbor models. Interestingly enough, in our framework the
textual information is only needed at training time, thus allowing to predict
labels also for unlabeled images.

(3) We provide extensive experimental validations. The method is tested
on medium and large scale datasets, i.e. IAPR-TC12 [35], ESP-GAME [36],
MIRFlickr-25k [37] and NUS-WIDE [38]. We show that our framework is
able to leverage recently developed CNN features in order to improve the
performance even further. Additionally, we introduce a tag denoising step
that allows KCCA to effectively learn the semantic projections also from user-
generated tags, which are available at no cost in a social media scenario. The
scalability of the method is also validated with subsampling experiments.
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This paper builds on our previous contribution on cross-modal image
representations [39] and improves in many ways. First, the coverage of related
work and the description of our method have been significantly extended.
Second, we provide more insights on the semantic space learning and present
a unified description of different label transfer algorithms.

2. Related Work

2.1. Automatic Image Annotation: Ideas and Main Trends

Automatic image annotation is a long standing area of research in com-
puter vision, multimedia and information retrieval [15]. Early works often
used mixture models to define a joint distribution over image features and
labels [1, 40, 3]. In these models, training images are used as non-parametric
density estimators over the co-occurrence of labels and images. Other pop-
ular probabilistic methods employed topic models, such as pLSA or LDA,
to represent the joint distribution of visual and textual features [41, 2, 42].
They are generative models, thus they maximize the generative data likeli-
hood. They are usually expensive or require simplifying assumptions that
can be suboptimal for predictive performance. Discriminative models such as
support vector machines (SVM) have also been used extensively [23, 24, 25].
In these works, each label is considered separately and a specific model is
trained on a per-label basis. In testing, they are used to predict whether a
new image should be labeled with the corresponding label. While they are
very effective, a major drawback is that they require to define in advance the
vocabulary of labels. Thus, these approaches do not handle well large-scale
scenarios in which you may have thousands of labels and the vocabulary may
shift over time.

Despite their simplicity, a class of approaches that has gained a lot of
attention is that of nearest-neighbor based methods [18, 10, 7, 43, 21]. Their
underlying intuition is that similar images are likely to share common labels.
Many of these methods start by retrieving a set of visually similar images
and then they implement a label transfer procedure to propagate the most
common training labels to the test image. The most recent works usually im-
plement also a refinement procedure, such as metric learning [10, 7] or graph
learning [44, 45, 46, 47], in order to differently weight rare and common la-
bels or to capture the semantic correlation between labels. They are usually
computationally intensive and do not model the intermodal correlation be-
tween visual features and labels. In contrast, we introduce a framework in
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which textual and visual data are mapped to a common semantic space in
which labels can be transferred more effectively.

2.2. Towards More Powerful Visual Representations

The most recent breakthrough in computer vision came from end-to-end
feature learning through convolutional neural networks. In their seminal
paper, Krizhevsky et al. [27] demonstrated unprecedented improvement in
large-scale image classification on ImageNet [48] using CNNs. These net-
works are composed of a hierarchy of layers, alternating convolutions and
subsampling. They require high quality supervision with minimal noise in
labeling. Since then, many researchers have applied deep learning to other
visual recognition tasks such as object detection and image parsing [49].
Deeper architectures have been recently proposed, showing further gain in
image classification accuracy (e.g. [28]).

Another interesting property of these architectures is that they have the
ability to learn powerful representations that can be transferred and reused
in many other tasks, such as attribute prediction and image retrieval [50].
Convolutional neural networks have been also recently applied to automatic
image annotation [8, 51], showing significant improvement in terms of preci-
sion and recall. On top of these powerful features, recent works proposed to
learn embeddings in order to improve feature generalization. VLAD encod-
ing is used in [52] to pool multi-scale CNN features computed on different
windows, while Yoo et al. [53] proposed to apply Fisher Vector encoding
to dense multi-scale CNN activations. This has been also improved in [54]
by applying Fisher Vector to sparse boxes, selected by objectness or random
selection. However, all these approaches only focus on the visual modality.

2.3. Cross-media and Multimodal Representations

We note that previous use of CCA and its variants exists, particularly
for the task of cross-modal image retrieval [30, 31, 32, 33, 34]. Hardoon et
al. were the first to apply KCCA to image retrieval with textual query [30].
Successively, Rasiwasia et al. proposed to employ LDA and CCA to perform
cross modal retrieval on text and images [31] obtaining improved results on
single modalities. In [32], a method to learn importance of textual object
is proposed. They show that features such as word frequency, relative and
absolute label rank are helpful to evaluate importance of textual information.
A three-way CCA is proposed in [33] to address the limited expressiveness of
CCA. They show that adding a third view representing categories or clustered

6



labels can improve retrieval performance. Habibian et al. proposed a data
driven approach to discover vocabulary concepts and align them to textual
information without any human annotation effort [34]. They show that their
approach reaches improved performance versus predefined vocabularies on
both captioned images and videos. However, most of these extensions deal
with the problem of using unpaired images and labels as training data. In
[55], a scalable approximate extension of CCA is proposed where multiple
pairings across the two modalities are automatically discovered. Similarly,
Kang et al. [56] perform text to image retrieval with an approach based
on partial least squares, where unpaired data can be added to improve the
common space.

Differently from prior work, we tackle the specific problem of image an-
notation. For this task, only visual features are available at test time. Thus,
our approach exploits labels only at training time. To this end, we learn a
re-organization of the visual space to that of a semantic space where images
that share similar labels are closer. Moreover, when combined to a nearest-
neighbors scheme, our approach can predict labels that were not available at
training time, when the projections have been learned.

3. Approach

Our key intuition is that the semantic gap of visual features can be re-
duced by constructing a semantic space that comprises the fusion of visual
and textual information. To this end, we learn a transformation that embeds
textual and visual features into a common multimodal representation. The
transformation is learned using KCCA [30]. This algorithm strives to pro-
vide a common representation for two views of the same data. Similarly to
[30, 32], we use KCCA to connect visual and textual modalities into a com-
mon semantic space, but differently from them, which focus on cross-modal
retrieval, our framework is designed to effectively tackle the particular prob-
lem of image annotation. Moreover, we are able to construct the semantic
space even exploiting noisy labels, such as the user tags. Advanced nearest
neighbors methods are then used to perform label transfer. An overview of
the approach is shown in Fig. 2.

Throughout the paper, we use the term labels when we refer to generic
textual information. We explicitly use the terminology expert labels and user
tags when we refer only to the expert provided labels or the tags provided
by users in social network, respectively.
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Figure 2: Overview of our approach. Image and textual features are projected onto a
common semantic space in which nearest-neighbor voting is used to perform label transfer.

3.1. Visual and Textual Views

We now proceed in detailing the visual and textual representation, how
KCCA is used to build the semantic space, and finally we describe our label
transfer procedures.

3.1.1. Visual Features

We use a deep convolutional neural network pre-trained on ImageNet [48]
with the VGG-Net architecture presented in [28] (using 16 layers)1. We use
the activations of the last fully connected layer as image features. Such rep-
resentation proved to be good for several visual recognition and classification
tasks [50, 49].

Given an image Ii, we first warp it to 224×224 in order to fit the network
architecture and subtract the training images mean. We use this normalized
image to extract the activations of the first fully connected layer. Let φV (Ii)
be the extracted feature of Ii. We use the ArcCosine kernel:

KV
n (φV (Ii), φ

V (Ij)) =
1

π
||φV (Ii)||n||φV (Ij)||nJn(θ) (1)

where Jn is defined according to the selected order of the kernel. Following
[57], we set n = 2 which gives us:

J2(θ) = 3 sin θ cos θ + (π − θ)(1 + 2 cos2 θ) (2)

1In our preliminary experiments we found that this configuration gives the best results
on all our datasets, although other networks gave similar results.
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where θ is the angle between the inputs φV (Ii), φ
V (Ij). This kernel provides a

representation that is better suited to neural networks activations and gives
better results. We also tried other kernels such as linear and radial basis
function, obtaining a slightly inferior performance (∼1%).

3.1.2. Textual Features

Depending on how labels are generated, i.e. expert labels or user-generated
tags, we should use different approaches. While expert labels can be natu-
rally trusted, user-generated tags are very noisy and require a more robust
representation.

For expert labels, we use simple binary indicator vectors as textual fea-
tures. Let D be the vocabulary size, i.e. the number of labels used for an-
notation. We map each label set of a particular image Ii to a D-dimensional
feature vector φT (Ii) = [wi,1, · · · , wi,D], where wk is 0 or 1 if that image has
been annotated with the corresponding k-th label. This results in a highly
sparse representation. Then we use a linear kernel which corresponds to
counting the number of labels in common between two images:

KT (φT (Ii), φ
T (Ij)) =

D∑
k=1

wi,kwj,k. (3)

The basic idea is that we are considering the cooccurrences of labels in order
to measure the similarity between two images.

For user-generated tags, we should first reduce the labeling noise. To this
end, we perform a “pre-propagation” step based on visual similarity. The goal
is to obtain a cleaner tag feature-vector φ̂T (Ii) = [ŵi,1, · · · , ŵi,D] and then
compute the final textual kernel KT . We start from the same representation
φT used for the expert labels, but this time using tags. For each image Ii we
consider the R = 100 most similar images, according to the visual kernel KV

(the same pre-computed in Eq. 1), and compute the new tag vector:

φ̂T (Ii) =

∑R
k=1 xkφ

T (Ik)∑R
k=1 xk

(4)

where xk = exp(− ||φ
V (Ii)−φV (Ik)||2

σ
) is an exponentially decreasing weight com-

puted from image similarities. We set σ to the mean of the distances. This
improved tag vector can be seen as an approximation of the probability mass
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(a) CNN Features (b) KCCA + Expert Labels (c) KCCA + User Tags

Figure 3: t-SNE visualization of images on MIRFlickr-25K with different features. Each
color corresponds to a different label.

function of tags among its nearest neighbor images. We use the exp-χ2 kernel:

KT (φ̂T (Ii), φ̂
T (Ij)) = exp

(
− 1

2C

D∑
k=1

(ŵi,k − ŵj,k)2

(ŵi,k + ŵj,k)

)
(5)

where C is set to the mean of the χ2 distances. This kernel is designed
to match histograms and indeed showed good performance on bag-of-words
representations [58].

3.2. Kernel Canonical Correlation Analysis

Given two views of the data, such as the ones provided by visual and
textual features, we can construct a common multimodal representation. We
first briefly describe CCA and then move to explain the extended KCCA
algorithm. CCA seeks to utilize data consisting of paired views to simul-
taneously find projections from each feature space so that the correlation
between the projected representations is maximized.

More formally, given N training pairs of visual and textual features
{(φV (I1), φ

T (I1)), . . . , (φ
V (IN), φT (IN))}, the goal is to simultaneously find

directions z∗V and z∗T that maximize the correlation of the projections of φV

onto z∗V and φT onto z∗T . This is expressed as:

z∗V , z
∗
T = arg max

zV ,zT

E[〈φV , zV 〉〈φT , zT 〉]√
E[〈φV , zV 〉2]E[〈φT , zT 〉2]

= arg max
zV ,zT

zᵀVCvtzT√
zᵀVCvvzV z

ᵀ
TCttzT

where E[·] denotes the empirical expectation, while Cvv and Ctt respectively
denote the auto-covariance matrices for φV and φT , and Cvt denotes the
between-sets covariance matrix.
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The CCA algorithm can only model linear relationships. As a result,
KCCA has been introduced to allow projecting the data into a higher-
dimensional feature space by using the kernel trick [30]. Thus, the problem
is now to search for solutions of z∗V and z∗T that lie in the span of the N
training instances φV (Ii) and φT (Ii):

z∗V =
N∑
i=1

αiφ
V (Ii), z∗T =

N∑
i=1

βiφ
T (Ii). (6)

The objective of KCCA is to identify the weights α, β ∈ RN that maximize:

α∗, β∗ = arg max
α,β

αᵀKVKTβ√
αᵀ(KV )2αβᵀ(KT )2β

(7)

where KV and KT denote the N×N kernel matrices over a sample of N pairs.
As shown by Hardoon et al. [30], learning should be regularized in order to
avoid trivial solutions. Hence, we penalize the norms of the projection vectors
and obtain the generalized eigenvalue problem:

(KV + κI)−1KT (KT + κI)−1KV α = λ2α (8)

where κ ∈ [0, 1]. The top M eigenvectors of this problem yield bases
A = [α1 . . . αM ] and B = [β1 . . . βM ] that we use to compute the seman-
tic projections of training and test kernels. For each pair (αj, βj) of the given
bases, the corresponding eigenvalue rj measures the correlation between pro-
jected input pairs. Higher rj is associated with higher correlation, thus it
is convenient to weight more the dimensions of higher energy. According to
this principle, we obtain the final features as:

ψ(I) = (KVA)R (9)

where R = diag([r1, . . . , rM ]). Note that ψ has no dependency on the textual
space. Thus, projecting new test images requires only their visual features
ΦV , making our approach suitable for automatic image annotation.

In Figure 3 we show t-SNE embeddings [59] of the CNN features and
their projection into the semantic space. These plots qualitatively show that
KCCA improves the separation of the classes, both in case of expert labels
and user-generated tags. This leads to a more accurate manifold recon-
struction and, as our experiments will confirm, a significant improvement in
performance.
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(a) Baseline (b) Our Method

Figure 4: Nearest neighbors found with baseline representation (a) and with our proposed
method (b) for a water image (first highlighted in blue in both figures) from the MIRFlickr-
25K dataset. Training images with ground truth label water are highlighted with a green
border. Nearest neighbors are sorted by decreasing similarity.

3.3. Label Transfer

The constructed semantic space assures that similar images, in visual
space or in textual space, have also similar features. This property is espe-
cially useful for the class of nearest-neighbor methods, since they rely on the
intuition that similar images share common labels. We show examples of
this property in Figure 4. We compare the neighbors retrieved for the same
query using the baseline visual features and the semantic space features from
our method. The query, depicted in a blue box, is an image of water where
green and red lights produce a fascinating visual effect. The other images are
the most similar images retrieved by one of the two settings. We put a box
in green on images that have the correct label “water” associated. We see
that neighbors retrieved in the baseline space share some visual similarity:
they mostly have green and red colors, some line or dotted patterns that
mimic the query image. However only one image is really about water. Our
method, instead, successfully retrieves 8 of 11 images with the label water,
even if they are quite dissimilar in the visual space. Indeed, it is impossible
with the images in Figure 4(a) to obtain a meaningful neighborhood since
the correct label “water” is not frequent enough to be relevant in the final
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labels rank.
Following this key idea, we have used four nearest-neighbor voting al-

gorithms in our semantic space in order to automatically annotate images.
Nevertheless, we expect that other general class of learning algorithms may
take advantage of the semantic space. To this end, we also consider the off-
the-shelf SVM classifier. Given an image and a vocabulary of labels, each
algorithm performs automatic image annotation by applying a particular
relevance function [15], as defined in the following.

3.3.1. Nearest-Neighbor Voting

The most straightforward approach is to project the test image onto the
semantic space, and then identify its K nearest-neighbors. Here we rank the
vocabulary labels according to the their frequency in the retrieval set. Thus,
the relevance function is defined as:

fKNN(I, t) := kt (10)

where kt is the number of images labeled as t in the neighborhood of I.

3.3.2. Tag Relevance

Li et al. [19] proposed a relevance measure based on the consideration
that if several people label visually similar images using the same labels,
then these labels are more likely to reflect objective aspects of the visual
content. Following this idea it can be assumed that, given a query image,
the more frequently the tag occurs in the neighbor set, the more relevant
it might be. However, some frequently occurring labels are unlikely to be
relevant to the majority of images. To account for this fact, the proposed
tag relevance measurement takes into account both the number of images
with tag t in the visual neighborhood of I (namely kt) and in the entire
collection:

fTagV ote(I, t) := kt − k
nt
|S|

(11)

where nt is the number of images labeled with t in the entire collection S.

3.3.3. TagProp

Guillaumin et al. [10] proposed an image annotation algorithm in which
the main idea is to learn a weighted nearest neighbor model, to automati-
cally find the optimal metric that maximizes the likelihood of a probabilistic
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model. The method can learn rank-based or distance-based weights:

fTagProp(I, t) :=
k∑
j

πj · I(Ij, t) (12)

where I is the indicator function that returns 1 if Ij is labeled with t, and 0
otherwise; πj is a learned weight that accounts for the importance of the j-th
neighbor Ij. In addition the model can be extended with a logistic per-tag
model to promote rare labels and suppress the frequent ones.

3.3.4. 2PKNN

Verma and Jawahar [7] formulated the problem as a probabilistic frame-
work and proposed a two-phase approach: given a test image, a first phase is
employed to construct a balanced neighborhood. Then, a second phase uses
image distances to perform the actual estimation of the tag relevance. Given
a test image I and a vocabulary of D labels, the first phase collects a set of
neighborhoods N (I) composed of the nearest M training images annotated
with each t in D. On the second phase, the balanced neighborhood is used
to estimate the tag relevance of t to I:

f2PKNN(I, t) :=
∑

Ij∈N (I)

exp(−d(I, Ij)) · I(Ij, t) (13)

where d(I, Ij) is a distance function between image I and Ij. Since the
distance function is parametrized with a trainable weight for each dimen-
sion, the algorithm presented in [7] also performs metric learning similarly
to TagProp (we refer to the complete algorithm as to 2PKNN-ML). We only
consider the version without metric learning, since our implementation of
2PKNN-ML performs worse than 2PKNN.

3.3.5. SVM

For each label, a binary linear SVM classifier is trained using the L2-
regularized least square regression, similarly to [60]. Independently from the
source of labels, be it expert labels or user tags, the images with the label
are treated as positive samples while the others as negative samples. To
efficiently train our classifier we use stochastic gradient descent (SGD). The
relevance function is thus:

fSVM(I, t) := b+ 〈wt, ψ(I)〉, (14)

where wt are the weights learned for label t and b is the intercept.
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Table 1: Datasets Statistics.

Dataset Images Labels Expert Labels User Tags

IAPR-TC12 19,627 291 X -
ESP-GAME 20,770 268 X -

MIRFlickr-25k 25,000 18 X X
NUS-WIDE 269,648 81 X X

4. Experiments

4.1. Datasets

Automatic image annotation with expert labels has been historically
benchmarked with three datasets: Corel5K, ESP-GAME and IAPR-TC12.
We follow previous work but discard Corel5K since it is outdated and not
available publicly. Note that these datasets have poor quality images and
they lack metadata as well as user tags. Thus, we additionally consider two
popular datasets collected from Flickr, i.e. MIRFlickr-25k and NUS-WIDE.
Dataset statistics are summarized in Table 1, while detailed information are
reported below.

ESP-GAME. The ESP-GAME dataset [36] was built through an online
game. Two players, not communicating with each other, describe images
through labels and obtain points when they agree on the same terms. Since
the image is the only media the players see, they are pushed to propose
visually meaningful labels. Following previous work, we used the same split
of [10] consisting of 18, 689 images for training and 2, 081 for test. There is
an average of 4.68 annotated labels per image out of 268 total candidates.

IAPR-TC12. This dataset was introduced in [35] for cross-language in-
formation retrieval. It is a collection of 19, 627 images comprised of natural
scenes such as sports, people, animals, cities or other contemporary scenes.
Like previous work, we used the same setting as in [10]. It consists of 17, 665
training images and 1, 962 testing images. Each image is annotated with an
average of 5.7 labels out of 291 candidates.

MIRFlickr-25K. The MIRFlickr-25K dataset [37] has been introduced
to evaluate keyword-based image retrieval. It contains 25, 000 images down-
loaded from Flickr, 12, 500 images for training and the same amount for
testing. For each image, the presence of 18 labels are available as expert
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labels as well as user tags (we consider the same labels as in [60]). They are
annotated with an average of respectively 2.78 and 0.26 labels. Note that
tags are very scarce in this dataset. Beside tag annotations, EXIF informa-
tion and other metadata such as GPS are available. While the ground-truth
labels are exact, the user tags are weak, noisy and overly personalized. More-
over, not all of them are relevant to the image content. We used the same
training and test sets as in previous work [60].

NUS-WIDE. The NUS-WIDE dataset [38] is composed of 269, 648 im-
ages retrieved from Flickr. Similarly to MIRFlickr, 81 labels are provided as
expert labels as well as user tags. Images are annotated with an average of
2.40 and 1.04 labels, respectively. NUS-WIDE is one of the largest datasets
of images collected from social media. The scarcity of labels and user tags is
one of the main challenges in exploiting this dataset as a training set. More-
over the distribution of labels is unbalanced with few concepts being present
in almost 80% of the images: “sky”, “clouds”, “person” and “water”. Fol-
lowing previous work, we discard images without any expert label [8], leaving
us with 209, 347 images that we further split into ∼125K for training and
∼80K for testing, by using the split provided by the authors of the dataset.

4.2. Evaluation Measures

The performance of automatic image annotation on these datasets has
been measured with different metrics. Therefore, for each dataset, we care-
fully follow previous work protocols. We employ four popular metrics to
assess the performance of our algorithm and compare to existing approaches.

Image annotation is usually addressed by predicting a fixed number of
labels, n, per image (e.g. n = 3, n = 5). We compute precision (Prec@n) and
recall (Rec@n) by averaging these two metrics over all the labels. Considering
that image ground-truth labels may be less or more than n, and we are
constrained by this setup to predict n labels, perfect precision and recall
can not be obtained. We also report results using Mean Average Precision
(MAP), which takes into account all labels for every image, and evaluates
the full ranking. First, we rank all test images according to the predicted
relevance to compute AP for each label, then we report the mean value of
AP over all labels. Finally we report N+ which is often used to denote the
number of labels with non-zero recall. N+ is an interesting metric when
the set of labels has a moderate to high cardinality, otherwise it tends to
saturate easily not providing adequate information on a method. It has to
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be noted that each metric evaluates very different properties of each method.
Therefore a method hardly dominates over the competition on every metric.
Some methods, by design, provide better Recall or Precision than others.

For IAPR-TC12 and ESP-GAME, the standard protocol is to report
Prec@5, Rec@5 and N+ [9, 18]. For completeness we report MAP on these
two datasets although, as can be seen in Table 2, few previous work also
report this metric.

For MIRFlickr, considering that annotated labels are used to perform im-
age retrieval, the few existing works report only the MAP [60]. We also report
Prec@5 and Rec@5. Considering the low cardinality of the tag vocabulary
(18), N+ is not reported for this dataset.

For NUS-WIDE, performances are usually reported either as MAP or
precision and recall. Since NUS-WIDE has a lower average number of labels
per image than IAPR-TC12 and ESP-GAME, we report results with n = 3
labels, as in [8, 14].

4.3. Implementation Details and Baselines

In order to avoid degeneracy with non-invertible Gram matrices and to
increase computational efficiency, we approximate the Gram matrices using
the Partial Gram-Schmidt Orthogonalization (PGSO) algorithm provided
by Hardoon et al. [30]. In all the experiments we have empirically fixed
κ = 0.5 (see Eq. 8) since it gave the best performance in early experiments
on IAPR-TC12. We use approximate kernel matrices given by the PGSO
algorithm, where we consider at most 4, 096 dimensions (i.e. the dimension
of the semantic space). Thus the dimensionality of ψ(I) in Eq. 9 is 4, 096. In
this case, the distance between two images is defined as the cosine distance
between ψ features.

Since our approach is based on semantic space built from visual data
and the available labels, we consider as baselines the label transfer methods
trained on the bare visual features. The distance between two images Iq
and Ii is defined as d(Iq, Ii) = 1−KV (Iq, Ii), where KV is the visual kernel
described in Eq. 1, normalized with values in [0, 1].

The number of nearest neighbors K and the C of SVM were fixed by
performing a 3-fold cross-validation on the training set for each dataset.

4.4. Experiment 1: Measuring Performance with Expert Labels

As a first experiment we analyze the performance of our method when the
semantic space is built from expert labels. In Tables 2, 3 and 4 we report the
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Table 3: Results of our method compared to the state of the art on the dataset MIRFlickr-
25K, using expert labels.

MIRFlickr-25K

Methods Visual Feat MAP Prec@5 Rec@5

State of the art:

SVM [60] HC 52.3 - -
TagProp [60] HC 46.5 - -

Baselines:

NNvot VGG16 69.9 44.7 69.2
TagRel VGG16 68.9 41.5 72.1
TagProp VGG16 70.8 45.5 70.1
2PKNN VGG16 66.5 46.4 70.9
SVM VGG16 72.7 38.8 72.4

Our Approach:

KCCA + NNvot VGG16 72.9 46.1 73.1
KCCA + TagRel VGG16 70.7 45.2 72.6
KCCA + TagProp VGG16 73.0 44.6 74.1
KCCA + 2PKNN VGG16 67.7 47.3 74.6
KCCA + SVM VGG16 73.0 38.9 75.0

performance of the state of the art, the five methods ran in the visual feature
space and in the semantic space, respectively. Our best result is superior to
the state of the art on NUS-WIDE and MIRFlickr-25K while it is comparable
to more tailored methods on IAPR-TC12 and ESP-GAME.

Table 2 shows the performance of the state of the art methods, the base-
lines and our approach on IAPR-TC12 and ESP-GAME. We first note that
the majority of previous works report results with 15 handcrafted features
(HC) [10] while we use the more recent VGG16 CNN activations, the same as
[51]. By exploiting this feature, simple nearest neighbor methods like NNvot
and TagRel reach a higher Prec@5 and Rec@5 compared to the similar JEC-
15 [18] which uses a combination of HC features. Our baseline TagProp has
a slight inferior performance to that reported in [10], probably due to the
lower number of learnable parameters, having only one single feature versus
15. Comparing our approach versus the baselines, we observe that all met-
rics consistently report higher values when label transfer is applied in the
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Table 4: Results on the NUS-WIDE dataset using expert labels.

NUS-WIDE

Methods Visual Feat MAP Prec@3 Rec@3

State of the art:

CNN + SoftMax [8] RGB - 31.7 31.2
CNN + WARP [8] RGB - 31.7 35.6
CNN + NNvot [14] BLVC 44.0 44.4 30.8
CNN + logistic [14] BLVC 45.8 40.9 43.1
MIE Ranking [63] BLVC - 37.9 38.9
MIE Full Model [63] BLVC - 37.8 40.2

Baselines:

NNvot VGG16 49.3 39.6 44.0
TagRel VGG16 49.2 32.1 50.3
TagProp VGG16 50.9 41.3 44.6
2PKNN VGG16 48.0 39.7 52.2
SVM VGG16 50.2 34.6 60.6

Our Approach:

KCCA + NNvot VGG16 51.7 40.2 50.5
KCCA + TagRel VGG16 51.4 34.4 57.2
KCCA + TagProp VGG16 52.2 45.2 49.2
KCCA + 2PKNN VGG16 50.7 53.0 47.0
KCCA + SVM VGG16 51.8 43.3 48.4

semantic space. This suggests that classes in the semantic space are eas-
ier to separate. We reach our best result on IAPR-TC12 and ESP-GAME
with KCCA + 2PKNN, still inferior to 2PKNN-ML [7] that is additionally
applying metric learning.

Table 3 shows our results on the MIRFlickr-25k dataset. Again, we first
note that by simply switching from HC features to VGG16, a large boost
of MAP is obtained. Focusing on TagProp and SVM baselines, which are
directly comparable with previous work [60], MAP increases from 52.3 to
72.7 and from 46.5 to 70.7, respectively. This is consistent with recent litera-
ture that suggests CNN activations are way more powerful than handcrafted
features. Applying our technique to the five methods results in a generalized
improvement of all metrics, especially on the four nearest neighbor schemes.
The best MAP is obtained by KCCA + SVM that reaches a score of 73.0,
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higher than the best baseline. Interestingly, KCCA + NNvot and KCCA +
TagProp reach a score of 72.9, that is higher than the best baseline SVM.
We can observe that our semantic space improves both Rec@5 and Prec@5,
specifically an average increase of 3.1 for Rec@5 and of 2.1 of Prec@5 can be
measured for all 5 baseline methods.

We report in Table 4 the results of the comparison on the large-scale
NUS-WIDE dataset. Previous works used BLVC (Caffe reference model)
features (e.g. [14]) while we use VGG16, but this does not provide significant
differences in performance. Moreover Gong et al. [8] attempted to train the
network from scratch, obtaining an inferior performance with respect to pre-
trained features on ImageNet[14, 8]. A higher score of Rec@3 is observed in
all our experiments with respect to the state of the art. This suggests that
our approach is able to work with unbalanced distribution of labels, and
improves recall of rare labels. KCCA + TagProp is the overall best method
on this dataset, even superior to SVM that is commonly recognized as better
than kNN-based methods for classification.

In summary, our framework is always able to improve performance in all
datasets with every metric. This is an important result since each particular
metric captures different properties. On smaller datasets, such as IAPR-
TC12 and ESP-GAME, metric learning based approaches [7, 10] take more
advantage from using 15 different but weaker features then a single, stronger
one, as we do. Although on larger and more challenging datasets, such as
MIRFlickr and NUS-WIDE, this effect is largely moderated. Finally, Figure 5
shows the difference of MAP between the semantic space and their baseline,
for all the five methods. We highlight that the improvement is generally
higher on IAPR-TC12 and ESP-GAME, where fewer training examples are
available. In particular, SVM has the largest gain followed by the simpler
NNvot and TagRel. This might be because these methods suffer on rare
concepts due to sample insufficiency.

4.5. Experiment 2: Measuring Performance with User Tags

We now turn our attention to the more difficult setting of noisy user
tags. Instead of using expert labels, we rely on user tags as training labels
and repeat the same experiments of Section 4.4. Only MIRFlickr-25k and
NUS-WIDE provide user tags, therefore we report results on these datasets.

Table 5 shows the performance of the state of the art, the baselines and
our approach on MIRFlickr-25k. As previously noted, changing the features
from HC to VGG16 has a strong positive impact. Comparing the methods
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Figure 5: MAP difference of the four methods trained with KCCA on ESPGame, IAPR-
TC12, MIRFlickr-25k and NUS-WIDE. KCCA is trained using expert labels.

ran in the semantic space to the baselines ran on the bare visual feature, we
observe that every metric is generally improved.

Table 6 shows the results on NUS-WIDE. Here we compare our approach
with the baselines and FisherBoxes [54]. FisherBoxes [54] uses improved fea-
tures with the same TagProp algorithm, as our baseline. Since our TagProp
MAP is higher than FisherBoxes, this suggests that VGG16 features alone
are more powerful than the combinations of VGG128 boxes. Similarly to
MIRFlickr-25k, SVM is inferior to nearest neighbor techniques in terms of
MAP while having comparable precision and recall. Consistently to expert
labels results, 2PKNN performs poorly on this dataset. In the first phase
few images per label are selected, thus reducing its power to address the high
visual variability of images with frequent labels. We also note that all scores
are lower than those reported with expert labels in Table 3 and Table 4. In
particular SVM MAP is the most hampered. This is expected given the noise
in user tags, and was also noted in previous work [60].

In Figure 6 we report the relative MAP difference of the five methods with
our technique and the baselines. We observe that largest gains are obtained
with 2PKNN and SVM. We believe this is due to the fact that 2PKNN and
SVM have numerous learning parameters that are likely to generate complex
boundaries with label noise. In contrast, the other three schemes have few
or no parameters at all. This suggests that features in the semantic space
have also some robustness to tag noise.

22



Table 5: Results on the MIRFlickr-25k dataset using user tags.

MIRFlickr-25k

Methods Visual Feat MAP Prec@5 Rec@5

State of the art:

SVM v [60] HC 35.4 - -
SVM v+t [60] HC 37.9 - -
TagProp [60] HC 38.4 - -
FisherBoxes [54] VGG128 54.8 - -

Baselines:

NNVot VGG16 59.3 34.2 67.1
TagRel VGG16 59.2 34.8 68.0
TagProp VGG16 58.1 33.5 66.0
2PKNN VGG16 51.4 35.9 67.1
SVM VGG16 43.8 40.0 50.8

Our Approach:

KCCA + NNvot VGG16 60.6 35.4 68.8
KCCA + TagRel VGG16 59.8 37.2 68.5
KCCA + TagProp VGG16 59.7 33.6 67.4
KCCA + 2PKNN VGG16 56.8 42.9 65.4
KCCA + SVM VGG16 47.1 37.5 56.5

4.6. Experiment 3: Measuring Performance by Varying the Size of Neigh-
borhood

Nearest neighbor methods proved to be well performing on all settings we
considered. Although they are simple and do not require much training, they
still depend on choosing the right number K of nearest neighbors. Thus, we
conduct an evaluation of how K affect the performance for both our approach
and the baselines. Since SVM does not use neighbors, we only perform this
evaluation on NNvot, TagRel, TagProp and 2PKNN.

We report in Figures 7 and 8 the MAP scores when using the expert labels
and the user tags, respectively. As can be seen from both figures, the KCCA
variant of the nearest neighbor methods (solid lines) have systematically
better MAP than baselines, for any number of neighbors used. As expected,
MAP scores are lower when using user tags (Figure 8). Nevertheless, a gain
is observed for each method with any number of neighbors selected. This
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Table 6: Results on the NUS-WIDE dataset using user tags.

NUS-WIDE

Methods Visual Feat MAP Prec@3 Rec@3

State of the art:

FisherBoxes [54] VGG128 39.7 - -

Baselines:

NNvot VGG16 43.1 30.1 46.3
TagRel VGG16 42.5 27.9 49.7
TagProp VGG16 42.8 28.4 50.2
2PKNN VGG16 41.2 37.5 43.7
SVM VGG16 35.5 30.4 45.2

Our Approach:

KCCA + NNvot VGG16 43.7 36.3 48.0
KCCA + TagRel VGG16 43.5 29.0 55.1
KCCA + TagProp VGG16 42.9 29.3 51.3
KCCA + 2PKNN VGG16 42.0 56.9 34.0
KCCA + SVM VGG16 41.6 37.9 47.6

again confirms that features in the semantic space are better re-arranged,
since images with similar semantics are closer in this space.

4.7. Experiment 4: Scaling by Subsampling the Training Set

One key issue with KCCA is that it can be onerous to scale the training
over millions of images. The most expensive effort is carried out in the
training phase where the projection vectors are estimated. At test time, the
computational cost is negligible since it is only given by the multiplication
of the features with the estimated projection vectors.

As also noted by Hardoon et al. [30], big training sets with large kernel
matrices can lead to computational problems. Two main issues arise: i) high
computational cost to compute the generalized eigenvalues problem, and ii)
the memory footprint of handling large kernel matrices.

For the first issue, we compute only a reduced number of dimensions in the
semantic space by using partial Gram-Schmidt orthogonalization (PGSO),
i.e. we solve the generalized eigenvalues with an incomplete Cholesky factor-
ization of the kernel matrices. This is a reasonable approximation because
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methods.

the projection is built up as the span of a subset of independent projections,
and it reconstructs a limited amount of energy.

For the second issue, the memory footprint increases quadratically with
the number of training images. In this section we explore the possibility of
using a subsample of the training set to manage also this problem. To this
end, we randomly select a subset of size M from the original training set used
to train KCCA, and obtain the projections. Then we use them to project the
full training set and test the methods in this approximate semantic space.
We run the experiment only on NUS-WIDE since it has the highest number
of images. The whole experiment is repeated with five different splits in the
two settings of using expert labels or user tags. Note that this setting is
different from the one used in Sect. 4.4 and Sect. 4.5 for NUS-WIDE, where
we used the split provided by the authors of the dataset.

Figure 10 shows the MAP scores obtained with a subset of the training
data. We report results by increasing M from 100 to the full training set size
(with exponential steps). Using more training data, we expect the quality of
the projections to be improved. Either with expert labels or user tags, more
the training data, the better the projections obtained. We note that a min-
imum quantity of data is required to obtain a performance higher than the
baseline; this corresponds to the point in the figure in which the correspond-
ing dashed and solid lines intersect each other. The specific subset of training
data depends on the method and on the quality of the annotations. When
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Figure 11: Timing of our approach varying the number of samples employed for learn-
ing KCCA. We report separately the time for visual kernel, textual kernel and KCCA
computation. The time is dominated by the visual kernel computation.

expert labels are available, NNvot and TagRel obtains an improvement even
with a very small amount of training images. In contrast, TagProp requires
more data to gain MAP because of its rank learning phase. This means that
our approach can provide some improvements even when very few labeled
images are available, but more data may be needed with advanced nearest
neighbors schemes. Considering the scenario of user tags, the three methods
show similar performance with similar numbers of training images. This sug-
gests that differently from expert labels, the noise in user tags is responsible
for the hampered performance and more data is needed to reliably estimate
good projections.

We evaluate the additional computational cost of our approach, by timing
the run of KCCA on NUS-WIDE on our sub-sampling experiment. It can
be noted from Fig. 11 that the overall computation is dominated by the
visual kernel computation. Since we approximated the kernel matrices with
GSD to a fixed rank value, the running time required to compute the KCCA
projections can only increase up to a fixed maximum value, independently
from the number of samples.

4.8. Qualitative Analysis

Figure 9 shows four examples of annotations produced by our method on
the IAPR-TC12 dataset. It can be seen that TagProp and TagRel perform
better for both baseline representation and the proposed semantic space.
Thanks to the integration of labels into the semantic space, our technique
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allows nearest neighbor methods to distinguish between visually similar but
semantically different images. Look for instance at the first example: a salt
desert. Baseline approaches wrongly predict that this might be a “beach”
image, since the salt visually resembles sand. Differently, our semantic space
dismisses beach images and allows NN methods to find samples with “desert”
and “salt”, thus obtaining a correct image labeling.

Moreover, our method can also deal with information that was missing
in the visual space. A good example is given by the second picture shown
in Figure 9. This image depicts two people and an “hammock”. Since the
label “hammock” is not in the 1K concepts used to train the VGG16 network,
similar hammock images are difficult to be retrieved for the baseline methods.
In contrast, our method has integrated this missing information into the
semantic space, allowing TagRel and TagProp to find semantically similar
images and predict the presence of the hammock correctly.

The third and fourth images demonstrate that our technique is able to
bring closer images with fine-grained labels. For instance, the third image is
a close-up of a person wearing several well visible clothing. Baseline methods
correctly found easy concepts like “man”, “cap” or “hair”, while label transfer
methods operating in the semantic space can also predict more specific labels
such as “shirt”, “polo” and “portrait”. Finally, the fourth image depicts a
statue portrayed from below, in contrast with the blue sky. This image
is correctly annotated with the difficult labels “man” and “view” only by
TagProp when trained on the semantic space.

5. Conclusion

This paper presents a novel automatic image annotation framework based
on KCCA. Our work shows that it is indeed useful to integrate textual and
visual information into a semantic space that is able to preserve correlation
with the respective original features. Our method does not require the textual
information at test time, and it is therefore suitable for label prediction on
unlabeled images. We additionally propose a label denoising algorithm that
allows to exploit user tags in place of expert labels. This scenario is of
extreme interest given the abundance of images with user tags that can be
extracted from social media. Finally, we show that semantic projections can
be learned also with a subset of the training set, making it possible to obtain
some benefits even on large-scale datasets.
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We report extensive experimental results on all the classic automatic im-
age annotation datasets, as well as more recent datasets collected from Flickr.
Our experiments show that label transfer in the semantic space allows con-
sistent improvement over standard schemes that rely only on visual features.
All the best performing image annotation methods have shown to be able to
exploit the proposed embedding. We believe that our framework will provide
a strong baseline to compare and better understand future automatic image
annotation algorithms.
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