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In this paper, we introduce a method to overcome one of the main challenges of person re-identification

in multi-camera networks, namely cross-view appearance changes. The proposed solution addresses the

extreme variability of person appearance in different camera views by exploiting multiple feature represen-

tations. For each feature, Kernel Canonical Correlation Analysis (KCCA) with different kernels is employed

to learn several projection spaces in which the appearance correlation between samples of the same person

observed from different cameras is maximized. An iterative logistic regression is finally used to select and

weight the contributions of each projection and perform the matching between the two views. Experimental

evaluation shows that the proposed solution obtains comparable performance on the VIPeR and PRID 450s

datasets and improves on the PRID and CUHK01 datasets with respect to the state-of-the-art.
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1. INTRODUCTION
Video surveillance systems are now ubiquitous in public areas such as airports, train

stations or even city wide. These systems are typically implemented in the form of cam-

era networks and cover very large areas, with limited or no overlap between different

camera views. They should be able to track a person throughout the network, matching

detections of the same person in different camera views, irrespectively of view and illu-

mination changes, as well as pose and scale variations of the person. Matching person

detections across a camera network is typically referred as re-identification.

In this paper, we propose a solution for person re-identification that grounds on the

idea of addressing the extreme variability of person appearance in different camera

views through a multiplicity of representations. In particular, several color and tex-

ture features are extracted from a coarse segmentation of the person image to account

for viewpoint and illumination changes. For each feature, we learn several projection
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spaces where features computed on images of the same person observed in two dif-

ferent cameras correlate. These projection spaces are learned using Kernel Canonical

Correlation Analysis (KCCA) with different kernels. Finally, matching between images

from two cameras is performed by applying an iterative logistic regression procedure

that enables selecting and weighting the contributions of the distances computed in

each projection space.

1.1. Related works
Re-identification has been an active subject of research for several years, as recently

surveyed in [Bedagkar-Gala and Shah 2014]. We review the most important works

in the following. The approaches proposed in literature can be categorized in four

categories: defining hand-crafted person descriptors, deep learning for person re-

identification, learning discriminative models for person re-identification and learning

a common space for person re-identification.

1.1.1. Hand-crafted person descriptors. These methods concentrate on the definition of

descriptors that are able to capture as much as possible the variability of person ap-

pearance in different views. Approaches in this category often rely on the definition

of regions of the image that should correspond to the different body parts of a person.

Each region is usually encoded with color histograms or by the aggregation of local

feature descriptors. Among the best performing proposals in this class, the Symmetry-

Driven Accumulation of Local Features (SDALF) descriptor [Farenzena et al. 2010]

takes into account image segments of physical parts of the human body such as the

head, torso, and legs, obtained from the computation of axis symmetry and asymme-

try and background modeling. For each segment, color information is represented by

weighted HSV color histograms and Maximally Stable Color Regions (MSCR), and tex-

ture information is encoded as recurrent highly-structured patches. In [Cheng et al.

2011] the same authors proposed to fit a Custom Pictorial Structure (CPS) model on

a person detection estimating the head, chest, thighs and legs positions. Each part is

then described by a HSV color histogram and MSCR.

Many descriptor-based methods proposed in the literature are discussed in the sur-

vey [Doretto et al. 2011]. Furthermore, the authors of [Vezzani et al. 2013] review a

large body of the research on re-identification with a focus on 2D and 3D model based

approaches. However, most of the descriptor-based approaches in the literature rely on

part-based models, and while performing well for ideal capture conditions, they have

poor performance in real scenarios. This is due to the fact that image quality is often

low and it is hard to precisely detect body parts.

1.1.2. Deep learning for person re-identification. As opposed to the design of hand-crafted

features, some authors have exploited Deep Convolutional Neural Networks (CNN) to

build a representation that captures the variability of person appearance across views.

One of the first re-identification works in this class was [Yi et al. 2014a]. Successively,

in [Yi et al. 2014b], the same authors improved their solution by employing a CNN

in a “siamese” configuration to jointly learn the color feature, texture feature and the

distance function in a unified framework (Improved DML). Ahmed et al. [Ahmed et al.

2015] proposed a siamese deep network architecture, similar to [Yi et al. 2014b], that

learns jointly the feature representation and to discriminate between pairs of target

in a same/not-same fashion (Siamese CNN) with a logistic regression loss. Finally, Li

et al. [Li et al. 2014] used a novel filter pairing neural network (FPNN) with six-layers

to jointly handle photometric and geometric transforms.

While deep learning has had a big impact on general image recognition and recently

on face recognition [Taigman et al. 2014], the use of Deep Network-based representa-

tions for re-identification is negatively affected by low resolution images that usually

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 0, No. 0, Article 0, Publication date: 0.



Multi Channel-Kernel Canonical Correlation Analysis for Cross-View Person Re-Identification 0:3

occur in re-identification contexts and requires the availability of a huge number of

person image pairs from different cameras to train a discriminative model.

1.1.3. Learning discriminative models for person re-identification. This class of methods is the

most populated and grounds on the idea of learning classifiers and metrics to rec-

ognize persons across views. They currently score the state-of-the-art performance

of re-identification. In [K¨ostinger et al. 2012] the authors proposed a Mahalanobis

based distance learning that exploits equivalence constraints derived from target la-

bels (KISSME). The authors of [Hirzer et al. 2012a] proposed an impostor-based met-

ric learning method (EIML), based on a modified version of the Large Margin Nearest

Neighbor (LMNN) [Weinberger and Saul 2009] algorithm. The method in [Xiong et al.

2014] combined Regularized Pairwise Constrained Component Analysis, Kernel Lo-

cal Fisher Discriminant Analysis, Marginal Fisher Analysis and a Ranking Ensemble

Voting Scheme with linear, �2
and RBF-�2

kernels to extensively evaluate person re-

identification performances (KLMM). Similarly to [Xiong et al. 2014], the approach

in [Wang et al. 2016] introduced an explicit non-linear transformation for the original

feature space and learned a linear similarity projection matrix (SLTRL) by maximiz-

ing the top-heavy ranking loss instead of a loss defined by the Area Under the Curve.

Remarkable performance has been also obtained by [Paisitkriangkrai et al. 2015; Liu

et al. 2015b]. The former combined an ensemble of different distance metric learning

approaches, minimizing different objective functions, while the latter proposed a novel

ensemble model (ECM) that combines different color descriptors through metric learn-

ing. The authors of [Liu et al. 2015a] proposed the Kernelized Relaxed Margin Com-

ponents Analysis (KRMCA) approach that learns a metric exploiting both the nearest

true neighbors and impostors during training.

The methods proposed in [Rui Zhao 2013; Zhao et al. 2013; Zhao et al. 2014] rely

mainly on dense correspondences and unsupervised learning of features. In [Rui Zhao

2013], a novel method (eSDC) was proposed that applies adjacency-constrained patch

matching to build dense correspondences between image pairs through a saliency

learning method in a unsupervised fashion. The authors of [Zhao et al. 2013] extended

this method by penalizing patches with inconsistent saliency in order to handle mis-

alignment problems (SalMatch). Finally, instead of relying on hand-crafted features,

Zhao et al. [Zhao et al. 2014] proposed to learn mid-level filters (mFilters). Dense

patches are clustered together in order to create a hierarchical tree, then the patches

inside a node of the tree are used to train a linear SVM that discriminates patches

of the two views. Here, the mFilters are represented by the set of SVM weights and

biases learned over the nodes. Differently from [Zhao et al. 2014], the method in [Shen

et al. 2015] introduced a structure to encode cross-view pattern correspondences (CSL)

that are used jointly with global constraints to exclude spatial misalignments.

The method in [de Carvalho Prates and Schwartz 2015] used salient samples from

the probe and the gallery to build a set of prototypes. These prototypes are used to

weight the features according to their discriminative power by using Partial Least

Square (PLS). The final recognition is performed by fusing different rank results.

In [Yang et al. 2014] the authors proposed to encode color using color naming. In partic-

ular, color distributions over color names in different color spaces are fused to generate

the final feature representation (SCNCD). This method employs the KISSME metric

learning framework to perform matching. The work [Shi et al. 2015] proposed to ad-

dress the person re-identification problem by leveraging semantic attributes. The main

underlying idea is that attributes may provide a strong invariant cue for recognition.

Instead of relying on manually labeled attributes, the model is trained on fashion pho-

tography data. The attributes are learned as latent variables on top of a superpixel rep-
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resentation. The authors also transferred the learned model to the video-surveillance

setting without requiring any surveillance domain supervision.

1.1.4. Learning a common space for person re-identification. Even though the key problem

in re-identification is to mitigate the strong appearance variations a subject undergoes

across cameras, there are only few methods that tackle directly this issue. In partic-

ular, techniques that deal with cross-view matching by learning a common feature

space to remove appearance changes across views were proposed in [An et al. 2013;

Lisanti et al. 2014; An et al. 2015; An et al. 2016; Li and Wang 2013; Liao et al. 2015].

These methods are the closest to our approach since they learn feature projections to

better perform matching between images of the same person captured from different

cameras.

In [An et al. 2013], the authors were the first to apply CCA (Canonical Correla-

tion Analysis) successfully to the re-identification problem. In particular, they apply

regularized CCA offline between the gallery set and a reference set. Probes are then

projected into the same common space and matched using cosine similarity. Succes-

sively, in [Lisanti et al. 2014], the authors extended CCA into its kernelized version

and obtained remarkable results. In [An et al. 2015] linear CCA with a robust estima-

tion of the covariance matrix is used to deal with small training sets (ROCCA). This

solution leads to better accuracy compared to the regular CCA. The same authors ex-

tended their method in [An et al. 2016] to incorporate a reference set for each camera

view, instead of applying the CCA to the gallery set only. The reference set is a group

of disjoint persons from the test sets, that is used as outside data to compare probe

and gallery. In [Li and Wang 2013] the authors proposed to use the similarity of cross-

view transformations to partition the image spaces of two camera views into different

configurations. Then, the visual features of an image pair from different views are

projected into a common feature space and matched with softly assigned metrics. A

discriminative metric is also learned to better discriminate between subjects. The au-

thors of [Liao et al. 2015] defined the LOMO feature which is composed by HSV color

histograms over stripes along with a texture descriptor which improves over the clas-

sic LBP. Their approach revised the KISSME metric learning [K¨ostinger et al. 2012]

in order to deal with cross-view matching problem as well. The final proposed metric

is named XQDA.

1.2. Contributions and Distinctive Features
Our approach grounds on many person descriptors proposed in the literature [Prosser

et al. 2010; Karaman and Bagdanov 2012; Lisanti et al. 2015; Karaman et al. 2014;

Liao et al. 2015] which used a coarse spatial segmentation of the image into consecu-

tive regions at different heights. Each region is represented by multiple features to cap-

ture the variety of a person appearance. Our work largely differs from the widespread

effort in the community employing linear [Li and Wang 2013; Liao et al. 2015] and

also non-linear metric-learning [Liu et al. 2015a]. Indeed, the core of our approach is

to learn multiple representations through non-linear CCA for each feature, while other

works used its linear version [An et al. 2013; An et al. 2015] on a single descriptor.

Considering this, the two major novel contributions of the proposed work are the

following:

— For each feature, we learn a set of projection spaces with different kernels, such that

images of the same person coming from different cameras are more easily matched.

This differs from the approaches of [Li and Wang 2013; Lisanti et al. 2014; Liao et al.

2015] where a single projection space was learned and from [An et al. 2013; An et al.

2015] that are based on linear CCA.
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Fig. 1. Illustration of our feature descriptor extraction process. We extract color (HS, RGB and Lab) and

texture (HOG and LBP) features from the full image and from the upper, middle and lower regions of the

image.

— We derive an iterative selection procedure, based on logistic regression, where less

significant features are dropped out and distinguishing features contribute more

to the re-identification. This allows us to improve the re-identification performance

while reducing the computational cost at test time.

In addition to those contributions, we also publicly release our code

1

to promote the

reproducibility of our results and enable the community to further build upon our

work.

In the rest of the paper, we expound our person representation in Sect. 2, and dis-

cuss in detail the method in Sect. 3 and 4. In Sect. 5, we compare performance for

re-identification using KCCA with multiple kernels with respect to methods learning

a common space or using metric learning. We also give an overview of the performance

of our method with respect to the state-of-the-art on person re-identification. Finally,

we show the contribution of each feature and kernel used in our solution, we give some

insights on our iterative selection procedure and discuss the computational cost of our

method.

2. PERSON REPRESENTATION
In order to account for spatial distribution of the person appearance, our representa-

tion model considers four components: the full person image and a coarse segmentation

into upper, middle and lower regions. Color information is extracted from each compo-

nent and modeled by histograms in the Hue Saturation, RGB and Lab color spaces,

in order to account for differences in illumination due to different viewpoints. Texture

features are also extracted for each component and represented with HOG [Dalal and

Triggs 2005] and Local Binary Pattern (LBP) histograms. Therefore, for each com-

ponent we extract multiple features, namely: HSp, RGBp, Labp, HOGp, LBPp, where

the suffix p stands for the full (f ), upper (u), middle (m) and lower (l) components of our

representation. Later on, we dub a feature extracted in one component as a channel

and denote C the set of channels.

The features extraction process goes as follows, the person images are first resized

to the resolution of 126⇥ 64 pixels. For color features, the contribution of each pixel to

each histogram bin is weighted through a non-isotropic Gaussian kernel to decrease

background pixels influence without requiring an explicit background segmentation.

Furthermore, a segmentation into overlapping stripes of 14 pixels is considered for

each component (see Fig. 1). For one component, each color histogram is computed for

each stripe using 64 bins and concatenated across stripes. The HSf , RGBf and Labf
have thus a dimensionality of 1088 (17 ⇥ 64), while color features for each upper, mid-

1
https://github.com/glisanti/MCK-CCA
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dle and lower regions have 320 dimensions (5⇥ 64). Regarding these color descriptors,

the parameters used to process a person image are mostly derived from [Lisanti et al.

2015], except for some minor variations in the stripes configuration and the additional

Lab color space we introduce in this work. For texture channels, we remove 6 pixels

from the image border and compute the HOG descriptor using 4 bins for the gradient

orientations. The HOGf has 1040 dimensions while each region feature has 320 dimen-

sions. Differently from [Lisanti et al. 2015], we also added another texture descriptor

based on LBP using the standard quantization of LBP histograms proposed in [Ojala

et al. 2002]. More precisely, the LBP features are computed on a grid with cells of 16

pixels using 58 bins. The LBPf has 1218 dimensions while each region feature has 348

dimensions.

3. MULTI CHANNEL-KERNEL CANONICAL CORRELATION ANALYSIS
Matching two images of the same person coming from two different cameras can be

difficult due to illumination changes and pose variations. As different features and

component of the image can be affected differently, we propose to learn a common pro-

jection space for each channel (one feature extracted in one component) separately. To

learn these common projection spaces, we employ KCCA [Hardoon et al. 2004] which

has been shown to be effective when applied to a whole image descriptor, as in [Lisanti

et al. 2014].

We introduce the following notation. Given a feature channel c 2 C, let us denote

Fa(c) the set of feature vectors fa(c) and Fb(c) the set of feature vectors fb(c), respec-

tively for camera a and b, and using camera a for gallery and camera b for probe, we

define:

Fa(c) =
⇥
FT

a (c) | FG
a (c)

⇤
(1)

Fb(c) =
⇥
FT

b (c) | FP
b (c)

⇤
(2)

where FT
a (c) and FT

b (c) are the training sets for the two cameras, FG
a (c) is the gallery

set of camera a and FP
b (c) is the probe set for camera b. The re-identification task is to

rank all individuals in the gallery of known targets in terms of similarity to the probe.

In the following, for the clarity of exposition, we will omit in the notations the refer-

ence to the channel c.

3.1. Training KCCA
KCCA constructs the subspace that maximizes the correlation between pairs of vari-

ables. Feature mapping into a higher-dimensional space is performed by exploiting the

kernel trick.

In our case, given corresponding feature vectors from a camera pair, for each chan-

nel, we denote KTT
a and KTT

b the kernel matrices of pairs from the training sets, KGT
a

the kernel matrix of pairs from the gallery and training sets, and KPT
b the kernel

matrix of pairs from training and probe sets.

The objective of KCCA is then to identify the projection weights ↵,� by solving:

argmax

↵,�

↵0KTT
a KTT

b �q
↵0KTT

a
2↵�0KTT

b
2
�
. (3)

The norms of the projection vectors ↵ and � are regularized in order to avoid trivial

solutions according to [Hardoon et al. 2004].
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Fig. 2. An illustrative figure of our multi-channel, multi-kernel CCA (MCK-CCA) approach. Each feature

channel is fed to different kernels: for the sake of clarity we show a single channel HSf in the figure. For

each of these combinations, we learn a specific KCCA projection and then use the learned projection to map

each channel-kernel into its common subspace. Cosine distance is used to perform matching given a channel-

kernel pair. Finally, distances coming from all the combinations are stacked together to form the distance

vector. This distance vector is the input of an iterative logistic regression that performs the re-identification.

The top M eigenvectors of the standard eigenvalue problem obtained after regular-

ization can then be applied as follows to project the gallery and probe data:

F̃G
a = KGT↵ · � (4)

F̃P
b = KPT� · � (5)

where

↵ =

h
↵(1) . . .↵(M)

i
,� =

h
�(1) . . .�(M)

i

are the learned projections and � is the vector of eigenvalues obtained from KCCA.

Weighting the learned projections with � gives more relevance to those dimensions in

the projected space that have higher eigenvalues, so improving the overall matching

performance.

In order to improve re-identification, as a satisfactory common projection space for

a channel and a camera pair may be obtained using a linear kernel or may require

more complex kernel functions, we propose to learn multiple KCCA projections with

four different kernels for each channel. Namely, we use a linear kernel, a Gaussian

radial basis function kernel (RBF), a �2
kernel and an exponential �2

kernel and we

denote K the set of kernels. We choose these kernels as they are commonly used but

our method is not limited to those and can be easily extended to other kernels.

4. SELECTION OF THE OPTIMAL CHANNEL-KERNEL COMBINATIONS
According to our person representation, for each image pair, a distance vector of 80

values (four components with five features each, and four distinct kernels for KCCA)

is defined. Our goal is hence to combine all the feature channels and kernels such that

their combination results into the most effective re-identification. The overall process

is represented in Fig. 2 and referred to as multi-channel, multi-kernel canonical corre-

lation analysis (MCK-CCA).
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In this section we detail how we formulate the matching process, how we weight

each channel-kernel contribution, and how we select the best set of channel-kernel

combinations.

4.1. Matching with logistic regression
We propose to formulate the matching probability of two samples using the logistic

regression. Considering the feature vector f̃Gai
(from camera a) and the feature vector

˜fPbj (from camera b), we define as dGP
ij the distance vector between these two feature

vectors after KCCA projection concatenated with a bias term. The probability p̂(i, j) of

these two features to represent the same person is calculated as:

p̂(i, j) =
1

1 + exp(�r0dGP
ij )

, (6)

where r is the weights vector.

4.2. Learning the logistic regression weights
Considering the training sets FT

a and FT
b from camera a and b respectively, the weights

vector r in Eq. (6) are learned through the optimization of the logistic regression func-

tion:

min

r

1

2

r0r+ C
X

i

X

j

log(1 + exp(�yijr
0dTT

ij )) (7)

where dTT
ij is the distance vector between the feature vector f̃Tai

(sample i from camera

a) and the feature vector

˜fTbj (sample j from camera b) after KCCA projection concate-

nated with a bias term; yij = {�1, 1} accounts for the fact that the two features corre-

spond to the same person in the two views, and C is a penalty parameter. The bias and

the C parameter are selected using a two-fold cross-validation over the training sets

FT
a and FT

b , more details are given in Sect. 5.1. Note that the final model is trained

over the whole training set using the best bias and C values from the cross-validation

procedure.

4.3. Iterative learning of logistic regression weights
Positive weights indicate a non reliable distance obtained from a combination of a

feature channel and a kernel. Let us denote dGP
ij (c, k) the distance for one channel

c 2 C and one kernel k 2 K and r(c, k) its corresponding weight in the logistic regres-

sion. The vector multiplication r0dGP
ij in Eq. (6) can be written as the sum of products

r(c, k) · dGP
ij (c, k) over all channels c 2 C and kernels k 2 K. One can observe that a big

distance value (that should correspond to a non matching pair) combined with a pos-

itive weight would actually lead to a lower denominator and thus a higher matching

probability.

According to this observation, we derive an iterative filtering procedure to progres-

sively drop out any channel-kernel that have positive weights. In particular, given

a set of distances computed from the channel-kernels, we learn a logistic regression

model. Channel-kernels that have a positive weights are removed and the remaining

subset of distances is used to learn a new logistic regression model. This procedure is

applied until there are no positive weights, and experimentally it never needed more

than three iterations to reach that condition. That is, after at most three iterations all

weights were negative, and thus the iterative procedure stopped.
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5. EXPERIMENTS
We run our experiments on four standard publicly available datasets for re-

identification that are VIPeR [Gray and Tao 2008], PRID [Hirzer et al. 2012b], PRID

450s [Roth et al. 2014] and CUHK01 [Li et al. 2013].

VIPeR [Gray and Tao 2008] presents illumination variations and pose changes be-

tween pairs of views. We split the whole set of 632 image pairs randomly into two sets

of 316 image pairs, one for training and the other one for testing. The testing set is fur-

ther split into a gallery and a probe set. A single image from the probe set is selected

and matched with all the images from the gallery set. The process is repeated for all

images of the probe set and the evaluation procedure is run on the 10 splits publicly

available from [Farenzena et al. 2010].

The PRID dataset [Hirzer et al. 2012b] is generally considered being more challeng-

ing than VIPeR. It includes distractors as well as strong illumination changes across

cameras. Differently from VIPeR, in this dataset the person images are acquired from

above with similar poses. Camera view a contains 385 persons, camera view b contains

749 persons, 200 appearing in both views. These image pairs are randomly split into a

training and a test set of equal size. For the evaluation, camera a is used as probe and

camera b is used as gallery. Thus, each of the 100 persons in the probe set is searched

in a gallery set of 649 persons (where 549 are distractors).

The PRID 450s [Roth et al. 2014] has almost the same characteristics of PRID but

does not include distractors. Therefore, despite of the differences in appearance, the

experimental setting for this dataset is similar to the one of VIPeR. This dataset con-

tains 450 person image pairs captured by two cameras and image pairs are split in 225

for training and 225 for test.

The CUHK01 [Li et al. 2013] dataset, also known as CUHK Campus dataset, was

captured with two cameras in a campus environment. Differently from the previous

datasets, CUHK01 images have high resolution. It contains 971 persons, and each per-

son has two images in each camera view. Persons are mostly captured in a frontal pose

from camera a, and in a profile pose in the camera b with low illumination variations.

The person identities are split into 485 for training and 486 for test. This datasets pro-

vides two evaluation modalities: single-shot, with one sample per subject (SvsS) and

also multi-shot with, two samples per subject (MvsM N=2).

The evaluations for VIPeR, PRID and PRID 450s are conducted following a single-

shot protocol. While on CUHK01 we perform both single- and multi-shot experiments.

All the experiments are averaged over 10 trials.

5.1. Parameter settings
In our experiments, for the RBF and the exponential �2

kernels the normalization pa-

rameter � has been estimated taking the median of all distances in the training set.

As regards the KCCA, we set the reconstruction error of the Partial Gram-Schmidt Or-

thogonalization (PGSO) as ⌘ = 1 while we set the regularisation parameter as  = 0.5,

as in [Lisanti et al. 2014]. Finally, for the logistic regression we performed a two fold

cross validation for both the penalty parameter C and the bias term to estimate their

optimal values, in the range {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100} and [1, . . . , 500] respec-

tively.

5.2. Comparison with techniques learning a common space
In Tab. I we report a comparison with the approaches that, similarly to our solution,

learn a common space between two views in order to ease the re-identification problem.

In this table we also highlight if a method learns a common space using deep learning

(DL), if it uses a discriminative metric learning approach (ML) and if it uses non-linearity
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Table I. Comparison with approaches learning a common subspace between views (the most similar to our
approach). Techniques used in each approach (DL, deep learning; ML, metric learning; NL, non-linearity).

Dataset Main Techniques VIPeR CHUK single-shot CHUK multi-shot

Rank DL ML NL 1 10 20 1 10 20 1 10 20

Li et al. [Li and Wang 2013] 5 3 5 29.6 69.3 85 – – – – – –

ROCCA [An et al. 2015] 5 5 5 30.4 75.6 86.6 29.8 66.0 76.8 – – –

RCCA+Ref. Set [An et al. 2013] 5 5 5 30.3 74.7 86.8 30.0 67.8 77.0 – – –

RCCA+2 Ref. Set [An et al. 2016] 5 5 5 33.3 78.4 88.5 31.1 68.6 79.2 – – –

LOMO+XQDA [Liao et al. 2015] 5 3 5 – – – – – – 63.2 90 93

Siamese CNN [Ahmed et al. 2015] 3 5 3 34.8 75 – 47.5 80 – – –

KCCA e�
2

[Lisanti et al. 2014] 5 5 3 36.8 84.5 92.3 38.1 74.2 82.4 47.7 84.3 90.8

MCK-CCA with filteredLR 5 5 3 47.2 87.3 94.7 57.0 86.8 92.2 69.5 93.6 96.3

(NL). It is immediately clear that the use of non-linearity per se already matches the

accuracy of other techniques that use reference sets [An et al. 2016; An et al. 2013]

or Robust CCA (ROCCA) [An et al. 2015]. Non linearity is provided by the e�
2

kernel

in the work [Lisanti et al. 2014] or is obtained by training a deep CNN as in [Ahmed

et al. 2015]. A single non-linear KCCA is more effective even than [Li and Wang 2013]

which uses also metric learning. However, state-of-the-art performance among this

type of methods is achieved by the interplay of different channels and kernels obtained

with the proposed MCK-CCA, despite no metric learning is used in our approach. The

proposed method indeed largely improves over the single kernel baseline and also over

very recent methods [Liao et al. 2015; Ahmed et al. 2015].

5.3. Comparison with metric learning techniques
In this experiment we compare our strategy of learning common projection spaces

against metric learning, both applied to our person representation. In particular, we

compare the Large Margin Nearest Neighbor (LMNN) [Weinberger and Saul 2009]

and the Logistic Discriminant-based Metric Learning (LDML) [Guillaumin et al. 2009]

techniques with our multi-channel, multi-kernel CCA (MCK-CCA). The experimen-

tal setting is the following: in all the methods we employ our person representation

composed of five features with four components; then, for each channel as defined in

Sect. 2, we compute the LMNN, LDML and KCCA projections. We finally use the pro-

posed iterative logistic regression to fuse all the distances together. This experiment is

conducted on the VIPeR dataset and the performance is averaged over ten trials. We

report the performance of our MCK-CCA obtained using only the linear kernel (MC-
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Fig. 3. Comparison of MCK-CCA with metric learning methods LMNN and LDML on the VIPeR dataset.
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Table II. Comparative performance analysis at ranks {1,10,20,50,100} with respect to the state-of-the-art
on VIPeR.

Dataset VIPeR

Rank 1 10 20 50 100

EIML [Hirzer et al. 2012a] 22 63 78 93 98

KRMCA [Liu et al. 2015a] 23.2 72.2 85.8 – –

RPLM [Hirzer et al. 2012b] 27 69 83 95 99

eSDC [Rui Zhao 2013] 27 62 76 – –

KLMM [Xiong et al. 2014] 28 76 88 – –

Li et al. [Li and Wang 2013] 29.6 69.3 85 95 –

SalMatch [Zhao et al. 2013] 30.1 65 – – –

PLS+prototype [de Carvalho Prates and Schwartz 2015] 33 78 87 96 –

Siamese CNN [Ahmed et al. 2015] 34.8 75 – – –

CSL [Shen et al. 2015] 34.8 82.3 91.8 96.2 –

Improved DML [Yi et al. 2014b] 34.4 75.9 87.2 96.5 –

ECM [Liu et al. 2015b] 38.9 78.4 88.9 96.0 –

SLTRL [Wang et al. 2016] 39.6 78.3 87.9 – –

LOMO+XQDA [Liao et al. 2015] 40.00 80.5 91.1 – –

Semantic-Attribute [Shi et al. 2015] 41.6 86.2 95.1 – –

mFilter [Zhao et al. 2014] 29.11 65 80 – –

mFilter + LADF 43.4 82 95 – –

Ensemble Metrics [Paisitkriangkrai et al. 2015] 45.9 88.9 95.8 99.5 100

KCCA e�
2

[Lisanti et al. 2014] 36.8 84.5 92.3 98.6 99.8

MCK-CCA with LR 46.0 86.3 93.7 98.9 99.9

MCK-CCA with sparseLR 44.3 86.0 93.4 99.0 99.9

MCK-CCA with filteredLR 47.2 87.3 94.7 99.1 99.9

Linear KCCA) and all the kernels (MCK-CCA). In Fig. 3 we can see how MCK-CCA

with the linear kernel only, improves over the two metric learning methods, under the

same setting. The MCK-CCA with all the kernels achieves even higher performance.

This experiment demonstrates that learning two projections, one for each camera, to

map the data in a common space where features of the same person are highly cor-

related is more effective than learning a single metric [Weinberger and Saul 2009;

Guillaumin et al. 2009]. Moreover, this observation is also supported by other recent

methods which also propose the idea of learning both a metric and a common space to

handle cross-view matching [Liao et al. 2015].

5.4. Comparison with the state-of-the-art
We now compare the performance of our approach with state-of-the-art methods. In

particular we provide a side-by-side comparison of the proposed multi-channel, multi-

kernel CCA (MCK-CCA) with recent state-of-the-art techniques such as: EIML [Hirzer

et al. 2012a], RPLM [Hirzer et al. 2012b], eSDC [Rui Zhao 2013], SalMatch [Zhao et al.

2013], Li et al. [Li and Wang 2013], KLMM [Xiong et al. 2014], Improved DML [Yi et al.

2014b], mFilter [Zhao et al. 2014], PLS+prototype [de Carvalho Prates and Schwartz

2015], Siamese CNN [Ahmed et al. 2015], CSL [Shen et al. 2015], ECM [Liu et al.

2015b], LOMO [Liao et al. 2015], Ensemble Metrics [Paisitkriangkrai et al. 2015], SC-

NCD [Yang et al. 2014], KRMCA [Liu et al. 2015a], Semantic-Attribute [Shi et al.

2015], SLTRL [Wang et al. 2016]. For our method we both consider the case in which

Logistic Regression with and without iterative filtering of the channel-kernels is used

(“MCK-CCA with LR” and “MCK-CCA with filteredLR”, respectively). Furthermore,

we compare the performance of our proposed iterative filtering procedure with results

obtained using a logistic regression model with a L1 constraint on the weights to en-

force sparsity, that we dub “MCK-CCA with sparseLR”. Results on all datasets show

that our proposed iterative filtering method is a more effective way to select the best

channel-kernels.
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Table III. Comparative performance analysis at ranks {1,10,20,50,100} with respect to the
state-of-the-art on PRID.

Dataset PRID (with distractors)

Rank 1 10 20 50 100

EIML [Hirzer et al. 2012a] 15 38 50 67 80

RPLM [Hirzer et al. 2012b] 15 42 54 70 80

Improved DML [Yi et al. 2014b] 17.9 45.9 55.4 71.4 –

Ensemble Metrics [Paisitkriangkrai et al. 2015] 17.9 50 62 – –

KCCA e�
2

[Lisanti et al. 2014] 16.6 49.3 61.0 78.6 89.9

MCK-CCA with LR 25.6 61.5 72.9 86.9 93.8

MCK-CCA with sparseLR 25.8 59.4 70.8 84.8 93.1

MCK-CCA with filteredLR 26.9 62.3 73.6 87.9 94.2

Table IV. Comparative performance analysis at ranks {1,10,20,50,100} with respect to the state-of-the-art
on PRID 450s.

Dataset PRID 450s

Rank 1 10 20 50 100

SCNCD [Yang et al. 2014] 26.9 64.2 74.9 87.3 –

PLS+prototype [de Carvalho Prates and Schwartz 2015] 28 63 75 89 –

ECM [Liu et al. 2015b] 41.9 76.9 84.9 94.9 –

Semantic-Attribute [Shi et al. 2015] 44.9 77.5 86.7 – –

CSL [Shen et al. 2015] 44.4 82.2 89.8 96.0 –

LOMO+XQDA [Liao et al. 2015] 58.2 90.1 97.8 – –

SLTRL [Wang et al. 2016] 59.4 88.7 94.7 – –

KCCA e�
2

[Lisanti et al. 2014] 38.1 81.3 90.4 97.9 99.7

MCK-CCA with LR 55.5 90.4 95.2 98.5 99.9

MCK-CCA with sparseLR 55.6 90.3 94.8 98.6 99.9

MCK-CCA with filteredLR 55.6 90.8 95.4 98.6 100.0

In Tab. II we report the results on the VIPeR dataset. It is worth noticing that the

Ensemble Metrics and our method, learning multiple metrics and projections respec-

tively, to cope with the variations of pose and illumination of this dataset, score the best

results. It appears that our MCK-CCA improves of few percentage points at rank-1

with respect to the Ensemble Metrics. The LOMO+XQDA [Liao et al. 2015] method

exploits metric learning and performs feature projection into a common space between

the two views as in our solution, although with a different method, but has a much

lower performance. Finally, among the CNN-based methods the Siamese CNN [Ahmed

et al. 2015] has the best performance but does not achieve a state-of-the-art result.

In Tab. III we show the recognition rate at various ranks on the PRID dataset. Our

MCK-CCA outperforms all the other methods by a large margin. The use of multiple

color features and multiple common projection spaces for each of them, permits dealing

with the strong illumination differences between the views. All the solutions using

a single representation appear to be less robust. Ensemble Metrics achieves 17.9%

recognition rate at rank-1, less than our method by about 10%. It is worth to notice that

our previous method [Lisanti et al. 2014] using a single feature and KCCA projection

with a single kernel has comparable performance with Ensemble Metrics.

In Tab. IV we report the results on the PRID 450s dataset. On this dataset our

MCK-CCA has a similar performance trend and comparable scores with SLTRL [Wang

et al. 2016] and LOMO+XQDA [Liao et al. 2015]. Both methods aim at learning a

transformation of the input to cope with appearance and pose variations. The SLTRL

and LOMO+XQDA methods outperform our method at rank-1, but our method obtains

the best performance at rank-10. This is likely to be caused by the fact that PRID

450s has appearance variations that challenge our person representation by making

it less discriminative than LOMO: indeed, differently from other datasets, PRID 450s
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Table V. Comparative performance analysis at ranks {1,10,20,50,100} with respect to the state-
of-the-art on CUHK01 single-shot. (*) Method not directly comparable because it uses 100
subject for test and 871 for training.

Dataset CUHK01 single-shot (SvsS)

Rank 1 10 20 50 100

DeepReId (FPNN) [Li et al. 2014](*) 27.8 73 89 95 –

Semantic-Attribute [Shi et al. 2015] 31.5 65.8 77.6 – –

Siamese CNN [Ahmed et al. 2015] 47.5 80 – – –

Ensemble Metrics [Paisitkriangkrai et al. 2015] 51.9 83.0 89.4 95.9 98.6

KCCA e�
2

[Lisanti et al. 2014] 38.1 74.2 82.4 92.0 95.8

MCK-CCA with LR 55.9 86.1 91.7 96.4 98.4

MCK-CCA with sparseLR 55.8 86.0 91.5 96.3 98.6

MCK-CCA with filteredLR 57.0 86.8 92.2 96.8 98.7

Table VI. Comparative performance analysis at ranks {1,10,20,50,100} with
respect to the state-of-the-art on CUHK01 multi-shot.

Dataset CUHK01 multi-shot (MvsM N=2)

Rank 1 10 20 50 100

mFilter [Zhao et al. 2014] 34.3 65 74 – –

SLTRL [Wang et al. 2016] 61.6 90.2 94.4 – 99

LOMO+XQDA [Liao et al. 2015] 63.2 90 93 – 99

KCCA e�
2

[Lisanti et al. 2014] 47.7 84.3 90.8 96.3 98.4

MCK-CCA with LR 65.7 91.9 95.8 98.7 99.7

MCK-CCA with sparseLR 65.5 91.5 95.9 98.7 99.7

MCK-CCA with filteredLR 69.5 93.6 96.3 98.5 99.6

presents unique characteristics such that pedestrians are observed from a top view

and have slightly different scales between the two cameras.

On the CUHK01 dataset we performed comparisons for single-shot (SvsS) and multi-

shot (MvsM N=2) modalities. Results are presented in Tab. V and Tab. VI, respectively.

For both protocols the MCK-CCA outperforms the state-of-the-art by a significant mar-

gin. The capability of our MCK-CCA to correlate different representations into com-

mon projection spaces is very effective on this dataset.

5.5. Contribution of each channel-kernel
In Fig. 4 we show the contribution of each color space and texture feature employed

in our person representation, separately for each kernel. For these experiments, the

full person image is considered for feature extraction while upper, middle and lower

regions are discarded to ease the analysis. The CUHK01 dataset has been used for

this experiments since it is the largest dataset available among the ones used in our

tests. The plots show the performance of each feature separately, the combination of

all color spaces and the complete combination also including texture features. While

it is evident that color histograms in the different color spaces contribute the most,

nevertheless it is worth to note that the use of texture features allows obtaining even

higher performance, e.g. from 30% to 40% at rank-1 for the linear and RBF kernels.

This improvement is maintained across all the kernels we used. Finally, the combina-

tion of all channel-kernels in our iterative logistic regression pushes the recognition

rate at rank-1 to 57%, as shown in Table V in Sect. 5.4.

In Fig. 5 we report the contribution of each component in our person representation

for each color space histogram and texture feature, using a linear kernel, as well as

their combination. For color features, it is possible to observe that each component per-

forms differently. The full component outperforms the others in the 3 color spaces, nev-

ertheless the combination of all components largely improves the performance. Texture

features on the other hand are less effective for recognition, in particular when com-
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Fig. 4. Contribution of each color space histogram and texture feature, for the Linear, RBF, �2
and e�

2

kernels, respectively, expressed in terms of CMC curves. Results are calculated considering only the feature

extracted on the full person image.

puted on the lower region. This explains why our iterative logistic regression mostly

drops this latter channel, as it will be shown in Sect. 5.6.

5.6. Analysis of iterative logistic regression
In this section, we analyze the performance of our iterative fusion scheme by giving

insights on how each channel and kernel combination is filtered out by our iterative

logistic regression. Additionally, we show the difference in performance between our

MCK-CCA fusion scheme with respect to an early fusion KCCA baseline [Lisanti et al.

2014].

Each plot in Fig. 6 shows the probability of weight filtering per dataset: on the y-

axes we report the channels, whereas on the x-axes we report the kernels. Moreover,

for each figure, on the right part of the matrix, we show how many times a given

channel is removed across all the kernels; instead, at the bottom, we show how many

times a kernel is removed, across all the channels. We can see that MCK-CCA makes
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Fig. 5. Contribution of each component in our person representation for each color space (top) histogram

and texture feature (bottom). Results are calculated considering only the linear kernel.

an extensive use of the iterative logistic regression filtering on all the datasets. VIPeR

may be seen as an exception as most of the channel-kernels are often maintained.

Our analysis on VIPeR shows that weak channels are represented by HOG

l

, LBP

f

and

LBP

m

. These channels correspond to texture features that may be noisy on VIPeR due

to the low image resolution.

Regarding PRID, PRID 450s and CUHK01, we can observe that in general for tex-

ture features, the less relevant components are the full and lower region. Especially,

the LBP

f

and HOG

l

are often filtered out. For color features, instead, these three

datasets have in common that the channel Lab

f

is removed with high probability, while

is often maintained on VIPeR. It is also possible to see that, despite being largely used

in literature, the RBF kernel is dropped out more frequently in general than the other

kernels. This is reasonable since �2
kernels are usually better suited for histograms,

which are used in our features.

Finally, considering all the results presented in Tables II, III, IV, V, VI, we can

see that our late fusion outperforms, by a significant margin, a single KCCA learned

over the stacked features, as proposed in [Lisanti et al. 2014]. This is mainly because a

late fusion scheme allows maximizing the discriminative power of each channel-kernel

combination. Moreover in most of the cases the iterative logistic regression scheme

is able to select the most important channel-kernel combination and weight them in

order to give more importance to the most discriminative ones.

5.7. Computational Complexity
Our approach makes extensive use of the kernel trick and multiple applications of

KCCA. Even though this requires a computational effort at training time, the method

remains still efficient with a moderate computational burden at test time. Moreover,
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Fig. 6. Filtering analysis for each feature channel and kernel combination on the VIPeR, PRID 450s, PRID

and CUHK01 datasets. Rows show channels, whereas columns show kernel. Each plot report also the sum-

mation over kernel (bottom) and the summation over channels (right).

thanks to the iterative logistic regressor, the method is able to discard some useless

channel-kernel combinations to further speed-up the matching. Below, we separate the

discussion on complexity regarding training and testing. These experiments are car-

ried out on the CUHK01 dataset, as it is the largest dataset available among the ones

that we used, providing a statistically significant test for the computational cost eval-

uation. Experiments are conducted on a workstation with 20 cores Intel Xeon@2.6GhZ

and 256GB of RAM.

5.7.1. Computational effort at training time. The baseline complexity of KCCA depends on

the number of training samples that are used. Assuming that we have NT training

samples to solve Eq. (3), then the complexity for solving a eigenvalue problem would

be O(N3
T ). Although this complexity can seem prohibitive to be used for large amount

of training samples, our method was able to perform the learning step of Sect. 3.1

seamlessly for the datasets we processed. Our approach learns offline 80 KCCA projec-

tions given by the combination of 20 channels times 4 kernels; the number of channels

is given by 5 features times 4 components. Note that some of the KCCA projections

that are learned are then discarded by the selection of the optimal channel-kernel

combination (Sect. 4). This selection is then used at test time.

The timings for our learning part are shown in Fig 7(a) in function of the number of

training samples NT = {100, 200, 300, 400, 485}. Our approach can kernelize the train-

ing and gallery sets, learn the KCCA projections and estimate the logistic regression

weights in 200s (⇠ 3 min) in the worst case. This also accounts for the time spent

applying our iterative filtering procedure to select the most useful channel-kernels.

As a side note, our approach could still be applied even in those cases in which the re-

identification application requires working at a large scale: approaches to learn KCCA

at scale are based on random projections, a low-dimensional random feature space

that approximates kernel evaluations [Rahimi and Recht 2007], or more recently, on
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Fig. 7. (a) Computational effort at training time in function of the training size; (b) Average re-identification

at test time in function of the number of training samples used. Overall computational effort using all

channel-kernel combination (MCK-CCA) or dropping out some combinations of them (MCK-CCA filtered

LR). In the bottom part: percentage of weights dropped by the iterative logistic regression in function of

training samples.

the use of stochastic optimization in order to approximate KCCA [Wang and Livescu

2016].

5.7.2. Computational effort at test time. Much more important than the training time is

the effort at test time. In this case the computational complexity of MCK-CCA remains

quite efficient: the method needs to kernelize the probe with respect to the training set

and then compute 80 linear projections using the learned KCCA basis; finally it per-

forms normalized inner product comparison with the projected gallery. Moreover, the

amount of KCCA projections used is reduced a priori by selecting the optimal channel-

kernel combinations for each dataset. Fig. 7(b) shows the average re-identification time

in seconds in function of the training samples used NT . We can see the computational

complexity for MCK-CCA when it uses all the channel-kernel combinations: the red-

dashed curve shows how that does depend on the size of the training set used when we

kernelize the probe. Moreover, we also broke down the complexity for each kernel and

confirmed that the linear kernel is mostly invariant to the training samples. Interest-

ingly, we can see how the proposed iterative logistic regression helps in speeding-up

the performance: not only dropping logistic regression weights improves accuracy but

decreases the computational effort of a noticeable amount. Fig. 7(b), at the bottom,

reports also the percentage of weights that are dropped, when we apply our proposed

method (MCK-CCA with filtered LR).

Considering these timings, our testing phase remains still applicable in real-time

since we can perform re-identifcation in average at 0.03s (⇠33Hz).

6. CONCLUSION
We have presented a method to overcome one of the main challenges of cross-view re-

identification, that is dealing with drastic appearance changes. MCK-CCA grounds on

the idea of addressing the extreme variability of person appearance in different cam-

era views through multiple representations. These representations are projected onto

multiple spaces that emphasize appearance correlation using KCCA and different ker-

nels. Finally, our solution learns the most appropriate combinations for the observed

pair through an iterative logistic regression, producing compelling results on stan-

dard re-identification benchmarks without impairing the computational complexity.

The proposed technique showed also to be competitive with respect to state-of-the-art

methods that learn a common subspace or use metric-learning. Investigating the pos-
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sibility of directly incorporating metric-learning into our approach could represent an

interesting line of research for future works.
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