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ABSTRACT
Matching people across views is still an open problem in
computer vision and in video surveillance systems. In this
paper we address the problem of person re-identification
across disjoint cameras by proposing an efficient but robust
kernel descriptor to encode the appearance of a person. The
matching is then improved by applying a learning technique
based on Kernel Canonical Correlation Analysis (KCCA)
which finds a common subspace between the proposed de-
scriptors extracted from disjoint cameras, projecting them
into a new description space. This common description
space is then used to identify a person from one camera
to another with a standard nearest-neighbor voting method.
We evaluate our approach on two publicly available datasets
for re-identification (VIPeR and PRID), demonstrating that
our method yields state-of-the-art performance with respect
to recent techniques proposed for the re-identification task.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing

General Terms
Algorithms, Experimentation, Measurement

Keywords
Person re-identification, KCCA

1. INTRODUCTION
Nowadays with the proliferation of cameras in airports

and cities, a key component in modern and distributed surveil-
lance systems is how to organize and search for soft bio-
metrics of people. A soft biometric characteristic, that has
recently emerged in computer vision, is the whole imaged
body of the person. For this reason, a system that is able
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Figure 1: Person re-identification scenario: given
an unlabeled probe image of a person pB taken
from camera B, find the corresponding person in the
gallery set GA, containing people framed from cam-
era A. The matched person is highlighted in green.
Images are taken from the VIPeR dataset.

to search over a large database of people imagery1 captured
from different, non-overlapping distributed cameras, could
be an helpful toolkit in the task of searching for an indi-
vidual in a tangle of networked cameras of an airport. An
algorithm to match people across camera views could be
used in modern AOCC (Airport Operation Control Center).
For example, it could be useful when an operator is asked to
search for the identity in a gallery of hundreds of thousands
of persons. This scenario is represented in Fig. 1, where the
task is to assign a label to the probe image pB considering
all the gallery labels present in GA.

However, two non overlapping cameras usually contain
a viewpoint change and a stark difference in illumination,
background and camera characteristics that render the task
of re-identification very challenging. The problem is even
harder if we consider that we can have just one still image
to describe an individual. This case is also known as Single
versus Single modality (SvsS). Assuming that a training set
is available, the aim of the paper is that of overcoming these
issues in the single-shot modality in order to build a method
that helps in tedious task of manually sifting through all the
person imagery. Considering these issues, the main contri-
butions of the paper are the following:

• we address the problem of person re-identification by

1In the rest of the paper, we will refer to person imagery as
the whole imaged body silhouette, like the ones in Fig. 1



proposing an efficient but robust descriptor to encode
the appearance of a person and by computing an ex-
ponential χ2 kernel on top of this;

• the matching is improved by exploiting Kernel Canon-
ical Correlation Analysis (KCCA) to find a common
subspace between the proposed descriptors extracted
from two disjoint cameras;

• to the best of our knowledge, we are the first to propose
the use of Canonical Correlation Analysis to solve the
ambiguity of representing people from different, dis-
joint cameras; in particular, usually CCA in literature
is used to merge multi-modal data such as visual, text
or tags [3, 18]; in this work, we show that KCCA could
also be used to solve the camera transfer learning prob-
lem;

• despite the efficiency and compactness of our person
representation, that is convenient for distributed cam-
eras, our approach obtain state of the art performance
compared to recent methods on two publicly available
datasets widely used in literature, namely VIPeR [8]
and PRID [12].

The paper is organized as follows: in Sec. 2 we review the
most recent papers mainly focusing on the methods that
address the re-identification as a metric learning problem;
while in Sec. 3 we briefly give an overview of our method.
In Sec. 3.1 we describe our descriptor and the kernels used;
then in Sec. 3.3, we show how to use the KCCA in the re-
identification problem. Finally in Sec. 4 we evaluate our
method, based on KCCA, with respect to regular baselines
such as standard nearest neighbor in the descriptor space
(NN) and nearest neighbor in a linear space learned with
CCA (CCA). Then we also compare our result with the
most recent supervised techniques [22, 10, 11, 2, 12] and
unsupervised ones [19, 21].

2. RELATED WORK
Recent works to solve the re-identification problem have

moved from proposing hand-engineered features, that prop-
erly represent the appearance, to the task of camera trans-
fer learning. Despite the effort of descriptor-based methods,
lately, person re-identification has been casted as a met-
ric learning problem usually parametrised as Mahalanobis
distance. In fact, authors in [6] employ a metric learning
algorithm to compute a robust Mahalanobis matrix using
Large Margin Nearest Neighbor classification with Rejec-
tion (LMNN-R). The first authors to show that the person
re-identification can be interpreted as a ranking problem are
those in [17]: Prosser et al. reformulate the task as a ranking
problem by learning, similar to us, a subspace where the po-
tential true positive is given highest ranking rather than any
direct distance measure such as `2 norm or similar. They
develop an novel Ensemble RankSVM that maintains high-
level performance and is able to overcome the scalability
problems suffered by existing SVM-based ranking methods
or SVM “one versus all” procedure. A recent generic met-
ric learning approach is that proposed by [15] which also
learns a Mahalanobis distance from equivalence constraints
in a simple and straightforward manner that scales better
to large dataset. The Probabilistic Distance Comparison
(PRDC) approach [22] introduces a novel comparison model

for people that maximizes the probability of a pair of cor-
rectly matched images to have a smaller distance than that
of an incorrectly matched pair. They show that the pro-
posed model is more tolerant to intra/inter-class variations
that typically occur with multi-dimensional features.

Recently camera transfer approaches have been proposed
to learn a metric parametrised differently than a Maha-
lanobis one [12] or using implicit learning [2]. The method
in [12] encodes the person appearance extracting color (HSV
and Lab) and texture information (LBP). This method, that
shares some aspects of our approach, shows that when a lin-
ear metric has been learned properly, even a simple near-
est neighbor classification technique can achieve compelling
performance. A different framework proposed in [2], mod-
els camera transfer learning implicitly by learning a binary
non-linear classifier with concatenations of pairs of vectors.
The first pair describes an instance associated with camera
A, and the second an instance associated with camera B.
The classifier is learned in a supervised fashion constructing
positive and negative labels considering the available train-
ing set. Similarly to [2], Martinel et al. [16] propose an
approach that exploits pairwise dissimilarities between fea-
ture vectors to perform the re-identification in a supervised
learning framework. The authors extract multiple features
from two different cameras, compare them using standard
distance metrics to obtain a distance feature vector (DFV)
given a pair of descriptors. Then they learn the set of pos-
itive and negative distance feature vectors using random-
forest tree and perform the re-identification by classifying
the distance feature vector.

In contrast to supervised metric learning techniques, lately
also unsupervised methods have been considered in litera-
ture. In [19] R. Zhao et al. employ saliency in the problem of
matching people across views. First, they apply adjacency
constrained patch matching to build dense correspondence
between image pairs, being able to handle misalignment er-
rors caused by large viewpoint and pose variations. Then
they learn human salience in an unsupervised manner. The
same method has been extended in [21] to better handle the
misalignment problem by exploiting the fact that matching
patches with inconsistent salience brings penalty. In this
latter work, images of the same person are recognized by
minimizing the salience matching cost. Conditional Random
Fields have been exploited in [14] relying on a nearest neigh-
bors topology between all the images of a dataset. The same
authors also proposed a semi-supervised techniques where
the data cost potential is estimated from SVM scores [13].

3. PROBLEM FORMULATION
Our approach consists of three steps that can be summa-

rized in the following. Firstly we encode all the individuals
using the descriptor proposed in Sec. 3.1. These descrip-
tors are mapped through an exponential χ2 kernel. Then
we use the training data provided by each dataset to learn
a common representation of the kernel descriptors from dif-
ferent cameras. Finally the projected kernel descriptors are
evaluated in a common subspace using cosine distance. The
whole process is shown in Fig. 2.

3.1 Person Representation
Considering an input image I(x, y) containing a person,

we resize the image to width and height respectively of
w = 64 and h = 128 pixels. Then our approach slices the



Feature Space!

Camera A!

Camera B!

KCCA !

KCCA Common Subspace!KCCA Common Subspace

Kernel Trick!

�(·)

Reprojection!

↵,�

Figure 2: Overview of our method: feature descriptors in Euclidean space are mapped with the kernel trick
in a higher dimensional space; then a common representation for the two cameras is learned on a training
set through Kernel Canonical Correlation Analysis.

image in parts defined with horizontal stripes. From each
stripe we extract three weighted color histograms in the Hue
Saturation domain (discarding the Value information), in
the RGB color space and in a color-opponent color space
(Lab). The contribution of each pixel to each histogram bin
is weighted through a non-isotropic Gaussian kernel centered
in the image in order to decrease background pixel influence,
such as:

N (µ,Σ) ∼ exp
(
−

(x− µx

σ2
x

+
y − µy

σ2
y

))
. (1)

We set the parameters of this kernel as µ = [µx, µy] =
[w/2, h/2], where w, h are respectively the width and height
of the image. We found good experimental results by setting
σx, σy as w/4 and h/4 pixels.
Each color histogram is concatenated to form the first part

of the descriptor. At the end of this, we firstly add a HOG
descriptor [4] quantizing the gradient orientations in 4 bin
instead of 8 and, secondly, a texture analysis based on Local
Binary Pattern (LBP) extracted both on a reduced region of
the image centred on the torso and legs. LBP are extracted
using the approach in [1], sampling LBP histogram on a
grid with cell size egual to 16 pixels. Each LBP histogram
is quantized in 58 bins, where two bins account for non-
uniform binary patterns and the remaining count the term
frequency of each uniform pattern.

This descriptor is extracted for all the available images of
both camera A and camera B, such as:

DA =
[
d1
A d2

A · · · dN
A

]
︸ ︷︷ ︸
views from camera A

,DB =
[
d1
B d2

B · · · dN
B

]
︸ ︷︷ ︸
views from camera B

where N is the number of subjects in the dataset. For each
trial the two set DA and DB are randomly splitted into four
subsets, two for each camera:

DA = [TAGA] ,KB = [TBPB ] (2)

where:

TA =
[
t1A t2A · · · tNT

A

]
,TB =

[
t1B t2B · · · tNT

B

]

represent the two training set from the two cameras, while:

GA =
[
g1
A g2

A · · · gNG
A

]
,PB =

[
p1
B p2

B · · · pNP
B

]

represent respectively the gallery GA and the probe set PB .

3.2 Kernel Representation
We exploit the kernel trick to map our descriptor into a

higher-dimensional feature space: K(di,dj) = φ(di)′φ(dj).
In particular, we use the χ2 exponential kernel as:

Kχ2

(di,dj) = exp

(
− 1

2C

∑
k

(di − dj)2

(di + dj)

)
, (3)

where C is the median of the χ2 distances among all the
examples and the summation runs over the dimensionality
of our feature descriptor d. After applying the kernel trick
we have,

KA =

[
KTT

A KTG
A

KGT
A KGG

A

]
,KB =

[
KTT

B KTP
B

KPT
B KPP

B

]
, (4)

where the sub-matrices KTT
A and KTT

B represent the kernel
version of our descriptor for the two training sets while the
sub-matrices KGT

A and KPT
A represent the kernel version for

the gallery and probe sets respectively, as defined in Eq. (2).

3.3 Matching People using KCCA
Given the two views of the data projected as described in

Sec. 3.2 we can construct a common representation exploit-
ing the labeled training data.

3.3.1 Canonical Correlation Analysis
The Canonical Correlation Analysis (CCA) constructs the

subspace that maximizes the correlation between two paired
variables. More formally, given NT training samples from a
paired dataset, that in our case are the views of the data
from two different non-overlapping cameras:

T =
{
(t1A, t

1
B), (t

2
A, t

2
B), ..., (t

NT
A , tNT

B )
}

(5)

the aim is to solve:

ρ = max
wA,wB

corr(wATA,wBTB) (6)

in order to maximize the correlation between the two pro-
jected sets of points, wATA and wBTB .

3.3.2 Kernel Canonical Correlation Analysis
The Kernel Canonical Correlation Analysis (KCCA) per-

forms as CCA but on data projected through an opportune
kernel. As defined in Sec. 3.2, the kernel computed over TA



and TB can be also expressed as:

Kχ2

(tiA, t
j
A) = φ(tiA)′φ(tjA), (7)

Kχ2

(tiB , t
j
B) = φ(tiB)′φ(tjB). (8)

Since wA and wB lie in the span of the NT training in-
stances, such as wA ∈ span(φ(TA)) and wB ∈ span(φ(TB)),
we can re-write it for the KCCA as:

wA =
∑
i

αiφA(tiA),

wB =
∑
i

βiφB(tiB),

where i ∈ [1, . . . , NT ]. The objective of KCCA is thus to
identify the weights α,β that maximize:

arg max
α,β

α′KTT
A KTT

B β√
α′KTT

A KTT
A αβ′KTT

B KTT
B β

, (9)

where KTT
A and KTT

B denote the NT × NT kernel matrices
of the NT sample pairs from the training set. As shown by
Hardoon [9], learning may need to be regularized in order
to avoid trivial solutions. Hence, we penalize the norms of
the projection vectors and obtain the standard eigenvalue
problem:

(KTT
A + κId)−1KTT

B (KTT
B + κId)−1KTT

A α = λ2α. (10)

The top M eigenvectors of this problem yield:

α =
[
α(1) . . .α(M)

]
,β =

[
β(1) . . .β(M)

]
that represent the semantic projections that will be used for
both gallery and probe data.

3.3.3 Re-identification in the common subspace
At test time, we project the probe samples with α and

the gallery samples with β:

Gα = KGTα, (11)

Pβ = KPTβ (12)

Then we compute the cosine distance between the projected
descriptors of the gallery and probe and we perform a simple
Nearest Neighbor (NN) classification, such that:

id(pβ) = arg min
i

( giαpβ

||giα||2||pβ||2

)
(13)

where i represent the identity of the i-th gallery sample.

4. EXPERIMENTAL RESULTS
In this section we evaluate our method with respect to two

regular baselines such as standard nearest neighbor in the
descriptor space using `2 norm (NN) and nearest neighbor
in a subspace learned with CCA using cosine distance (Lin-
ear CCA). Then we also compare our result with the most
recent supervised techniques such as PRDC [22], DDC [10],
EIML [11], ICT [2], RPLM [12] and unsupervised ones like
SalMatch [21] and eSDC [19]. We carry out our experi-
ments on two widely used dataset for re-identification that
are VIPeR [8] and PRID [12] considering CMC (Cumulative
Matching Characteristic) curves.

We use the code provided by Hardoon et al. [9] as CCA
and KCCA implementations. In our experiments we set the
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Figure 3: (a) CMC curves varying the number of
pairs NT in the training set. (b) CMC curves vary-
ing features components.

reconstruction error of the Partial Gram-Schmidt Orthogo-
nalization (PGSO) as η = 1 while we set the regularisation
parameter used in Eq. (10) as κ = 0.5 for both VIPeR and
PRID datasets. These settings were carried out by dividing
the training set in two parts, one for training and one for
validation to estimate the best settings. Then we re-trained
the KCCA on the whole training data using the best val-
ues of η and κ. The source code of our method is publicly
available online2.

4.1 VIPeR dataset
VIPeR dataset is the most challenging dataset currently

available for person re-identification. It is composed by
632 image pairs of people captured outdoor (thus 1264 im-
ages in total), from two different, non-overlapping camera
views. The challenges in VIPeR are mainly due to view-
point and illumination variations, which cause severe ap-
pearance changes. We use the experimental protocol widely
used in literature for metric learning techniques: the set of
632 image pairs is randomly split into two sets of 316 image
pairs, one for training and one for testing. A single image
from the probe set is then selected and matched with all
the images from the gallery set. This process is repeated
for all images in the probe set independently. The whole
evaluation procedure is carried out on the 10 splits publicly
available from [7]. Table 1 gives an overview of the recog-
nition rate at various ranks of our approach compared with
recent methods. We report an increment of 7% at first rank
with respect to the SalMatch approach [21] that currently
holds state-of-the-art performance. Considering supervised
method, the best result is obtained by RPML [12]. How-
ever, we outperform RPLM and the others supervised ap-
proaches [22, 10, 11, 2] at all ranks on the VIPeR dataset.
This performance arises from the combination of an efficient
and robust descriptor that is additionally exploited by lifting
the feature in a higher dimensional space using kernel trick
and solving the camera transfer ambiguity via KCCA. Our
approach saturates earlier than recent methods by reaching
93% of recognition rate at rank 20 while the other techniques
report results in the range of 70−80%. Fig. 4(a) shines more
light on this and demonstrates the steep trend of our CMC
curve w.r.t the baselines.

Our approach with KCCA using the kernel of Eq. (3)

2http://www.micc.unifi.it/lisanti/source-code/

http://www.micc.unifi.it/lisanti/source-code/


VIPeR PRID
Rank: 1 10 20 50 100 1 10 20 50 100

LMNN [20] 17 54 69 88 96 – – – – –
ITML [5] 13 53 71 90 97 – – – – –
PRDC [22] 16 54 70 87 97 – – – – –
DDC [10] – – – – – 4 24 37 56 70
EIML [11] 22 63 78 93 98 15 38 50 67 80
ICT [2] 14 60 78 – – – – – – –
RPLM [12] 27 69 83 95 99 15 42 54 70 80
eSDC [19] 27 62 76 – – – – – – –
SalMatch [21] 30 65 – – – – – – – –
Proposed 37 85 93 98 100 15 47 60 75 87

Table 1: Comparative performance analysis at rank-
1 with respect to baseline (first two rows) and
the state-of-the-art on VIPeR and PRID datasets.
Recognition rates in percentage.

NT=100 NT=200 NT=316
Rank: 1 10 20 1 10 20 1 10 20

PRDC [22] 11 38 52 20 56 71 16 54 79
RPLM [12] 9 34 49 13 47 63 27 69 83
Proposed 20 66 80 31 78 89 37 85 93

Table 2: Recognition Rate in function of the number
of pairs NT in the training set.

outperforms both Nearest Neighbor classification in the fea-
tures space (NN) and the linear version of Canonical Cor-
relation Analysis (Linear CCA). It is possible also to see
that employing the base descriptor with NN provides de-
cent performance but is not achieving state-of-the-art re-
sults, especially at high ranks. Linear CCA slightly improves
the recognition rate with respect to NN. On the VIPeR
dataset we evaluate also how our method is sensitive to the
number of training samples NT , and we compare it with
RPLM [12] and PRDC [22]. Table 2 shows the recognition
rate across ranks with a different number of training samples
NT ∈ {100, 200, 316}. From these experiments, it is worth
to notice that our approach is less sensitive to the number of
training images with respect to [12] and [22] (see Fig. 3(a)).
We also show in Fig. 3(b) the contribution of each compo-
nent of the person representation proposed in Sect. 3.1. Here
it is possible to appreciate that the performance is almost
dominated by HS and RGB components while the others
slightly improve the first rank recognition rate.

Finally, to show the effectiveness of the proposed approach
with respect to metric learning ones, in Table 3 we give a
comparison with two state of the art techniques [22, 15], by
employing their descriptors in our method. We used these
two metric learning methods since their descriptors are pub-
licly available.

4.2 PRID dataset
The Person Re-ID (PRID) dataset consists of images ex-

tracted from multiple person trajectories recorded from two
different, static surveillance cameras. This dataset was firstly
introduced by [10] and is different from the other available
datasets in that the number of gallery identities is higher
than the probes ones. This means that the dataset has
some distractors in the gallery set that are not associated

VIPeR
Rank: 1 10 20 50 100

PRDC [22] 16 54 70 87 97
Proposed (PRDC descriptor) 20 64 78 91 96

KISSME [15] 20 62 81 92 –
Proposed (KISSME descriptor) 22 67 80 93 98

Table 3: Performance comparison with metric learn-
ing approaches obtained by employing their descrip-
tors in our method.

with probe individuals. In particular, while the view A has
framed 385 persons, the view B has 749 persons. Consid-
ering these identities only the first 200 persons appear in
both cameras. In our experiments we used the single-shot
version of the dataset as in [12]. Considering this scenario,
100 identities are randomly chosen from the 200 present in
both camera views for the training set while the remaining
100 of the first camera are used as probe set, and the 649
of the second view are used as gallery. The whole evalua-
tion procedure is carried out on 10 splits. Since the dataset
is more recent than VIPeR, we compare our method with
the following approaches [10, 11, 12]. Table 1 summarizes
the trend of the CMC curves at some selected ranks. Our
approach obtains the same performance of RPLM [12] at
rank-1 while at higher ranks starts to outperform all the
other techniques. PRID dataset is more challenging than
VIPeR for the presence of distractors and for the different
viewpoint of the cameras. In fact, it is possible to observe
in Fig. 4(b) that the performance largely improves while
considering only 100 individuals in the gallery (without dis-
tractors) instead of considering all the 649 identities.

5. CONCLUSION
In this paper we have proposed a method to match people

across views by learning a common subspace that reduces
the ambiguity when descriptor are extracted from different
disjoint cameras. Our method exploits Kernel Canonical
Correlation Analysis (KCCA) to solve the camera transfer
learning problem. Our approach demonstrates compelling
performance in the re-identification task on two reference
datasets used in literature.
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