Matching People across Camera Views using Kernel Canonical Correlation Analysis

Giuseppe Lisanti, Iacopo Masi, Alberto Del Bimbo
{giuseppe.lisanti,iacopo.masi,alberto.delbimbo}@unifi.it
Media Integration and Communication Center (MICC), Università degli Studi di Firenze
Viale Morgagni 65 - 50134 Firenze, Italy

ABSTRACT
Matching people across views is still an open problem in computer vision and in video surveillance systems. In this paper we address the problem of person re-identification across disjoint cameras by proposing an efficient but robust kernel descriptor to encode the appearance of a person. The matching is then improved by applying a learning technique based on Kernel Canonical Correlation Analysis (KCCA) which finds a common subspace between the proposed descriptors extracted from disjoint cameras, projecting them into a new description space. This common description space is then used to identify a person from one camera to another with a standard nearest-neighbor voting method.

We evaluate our approach on two publicly available datasets for re-identification (VIPeR and PRID), demonstrating that our method yields state-of-the-art performance with respect to recent techniques proposed for the re-identification task.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Understanding

General Terms
Algorithms, Experimentation, Measurement

Keywords
Person re-identification, KCCA

1. INTRODUCTION
Nowadays with the proliferation of cameras in airports and cities, a key component in modern and distributed surveillance systems is how to organize and search for soft biometrics of people. A soft biometric characteristic, that has recently emerged in computer vision, is the whole imaged body of the person. For this reason, a system that is able
to search over a large database of people imagery\(^1\) captured from different, non-overlapping distributed cameras, could be an helpful toolkit in the task of searching for an individual in a tangle of networked cameras of an airport. An algorithm to match people across camera views could be used in modern AOCC (Airport Operation Control Center).

For example, it could be useful when an operator is asked to search for the identity in a gallery of hundreds of thousands of persons. This scenario is represented in Fig. 1, where the task is to assign a label to the probe image \(p_B\) considering all the gallery labels present in \(G_A\).

However, two non overlapping cameras usually contain a viewpoint change and a stark difference in illumination, background and camera characteristics that render the task of re-identification very challenging. The problem is even harder if we consider that we can have just one still image to describe an individual. This case is also known as Single versus Single modality (SvsS). Assuming that a training set is available, the aim of the paper is that of overcoming these issues in the single-shot modality in order to build a method that helps in tedious task of manually sifting through all the person imagery. Considering these issues, the main contributions of the paper are the following:

- we address the problem of person re-identification by

\(^1\)In the rest of the paper, we will refer to person imagery as the whole imaged body silhouette, like the ones in Fig. 1
proposing an efficient but robust descriptor to encode the appearance of a person and by computing an exponential χ^2 kernel on top of this;

- the matching is improved by exploiting Kernel Canonical Correlation Analysis (KCCA) to find a common subspace between the proposed descriptors extracted from two disjoint cameras;

- to the best of our knowledge, we are the first to propose the use of Canonical Correlation Analysis to solve the ambiguity of representing people from different, disjoint cameras; in particular, usually CCA in literature is used to merge multi-modal data such as visual, text or tags [3, 18]; in this work, we show that KCCA could also be used to solve the camera transfer learning problem;

- despite the efficiency and compactness of our person representation, that is convenient for distributed cameras, our approach obtain state of the art performance compared to recent methods on two publicly available datasets widely used in literature, namely VIPeR [8] and PRID [12].

The paper is organized as follows: in Sec. 2 we review the most recent papers mainly focusing on the methods that address the re-identification as a metric learning problem; while in Sec. 3 we briefly give an overview of our method. In Sec. 3.1 we describe our descriptor and the kernels used; then in Sec. 3.3, we show how to use the KCCA in the re-identification problem. Finally in Sec. 4 we evaluate our method, based on KCCA, with respect to regular baselines such as standard nearest neighbor in the descriptor space (NN) and nearest neighbor in a linear space learned with CCA (CCA). Then we also compare our result with the most recent supervised techniques [22, 10, 11, 2, 12] and unsupervised ones [19, 21].

2. RELATED WORK

Recent works to solve the re-identification problem have moved from proposing hand-engineered features, that properly represent the appearance, to the task of camera transfer learning. Despite the effort of descriptor-based methods, lately, person re-identification has been casted as a metric learning problem usually parametrised as Mahalanobis distance. In fact, authors in [6] employ a metric learning algorithm to compute a robust Mahalanobis matrix using Large Margin Nearest Neighbor classification with Rejection (LMNN-R). The first authors to show that the person re-identification can be interpreted as a ranking problem are those in [17]: Prosser et al. reformulate the task as a ranking problem by learning, similar to us, a subspace where the potential true positive is given highest ranking rather than any direct distance measure such as ℓ_2 norm or similar. They develop an novel Ensemble RankSVM that maintains high-level performance and is able to overcome the scalability problems suffered by existing SVM-based ranking methods or SVM “one versus all” procedure. A recent generic metric learning approach is that proposed by [15] which also learns a Mahalanobis distance from equivalence constraints in a simple and straightforward manner that scales better to large dataset. The Probabilistic Distance Comparison (PRDC) approach [22] introduces a novel comparison model for people that maximizes the probability of a pair of correctly matched images to have a smaller distance than that of an incorrectly matched pair. They show that the proposed model is more tolerant to intra/inter-class variations that typically occur with multi-dimensional features.

Recently camera transfer approaches have been proposed to learn a metric parametrised differently than a Mahalanobis one [12] or using implicit learning [2]. The method in [12] encodes the person appearance extracting color (HSV and Lab) and texture information (LBP). This method, that shares some aspects of our approach, shows that when a linear metric has been learned properly, even a simple nearest-neighbor classification technique can achieve compelling performance. A different framework proposed in [2], models camera transfer learning implicitly by learning a binary non-linear classifier with concatenations of pairs of vectors. The first pair describes an instance associated with camera A, and the second an instance associated with camera B. The classifier is learned in a supervised fashion constructing positive and negative labels considering the available training set. Similarly to [2], Martinel et al. [16] propose an approach that exploits pairwise dissimilarities between feature vectors to perform the re-identification in a supervised learning framework. The authors extract multiple features from two different cameras, compare them using standard distance metrics to obtain a distance feature vector (DFV) given a pair of descriptors. Then they learn the set of positive and negative distance feature vectors using random-forest tree and perform the re-identification by classifying the distance feature vector.

In contrast to supervised metric learning techniques, lately also unsupervised methods have been considered in literature. In [19] R. Zhao et al. employ saliency in the problem of matching people across views. First, they apply adjacency constrained patch matching to build dense correspondence between image pairs, being able to handle misalignment errors caused by large viewpoint and pose variations. Then they learn human salience in an unsupervised manner. The same method has been extended in [21] to better handle the misalignment problem by exploiting the fact that matching patches with inconsistent salience brings penalty. In this latter work, images of the same person are recognized by minimizing the salience matching cost. Conditional Random Fields have been exploited in [14] relying on a nearest neighbors topology between all the images of a dataset. The same authors also proposed a semi-supervised techniques where the data cost potential is estimated from SVM scores [13].

3. PROBLEM FORMULATION

Our approach consists of three steps that can be summarized in the following. Firstly we encode all the individuals using the descriptor proposed in Sec. 3.1. These descriptors are mapped through an exponential χ^2 kernel. Then we use the training data provided by each dataset to learn a common representation of the kernel descriptors from different cameras. Finally the projected kernel descriptors are evaluated in a common subspace using cosine distance. The whole process is shown in Fig. 2.

3.1 Person Representation

Considering an input image $I(x, y)$ containing a person, we resize the image to width and height respectively of $w = 64$ and $h = 128$ pixels. Then our approach slices the
We set the parameters of this kernel as \(\mu \) uniform binary patterns and the remaining count the term is quantized in 58 bins, where two bins account for non-
the image centred on the torso and legs. LBP are extracted
instead of 8 and, secondly, a texture analysis based on Local
descriptor [4] quantizing the gradient orientations in 4 bin
where \(N \) such as:

\[
\mathcal{N}(\mu, \Sigma) \sim \exp \left(-\frac{x - \mu_x}{\sigma_x^2} + \frac{y - \mu_y}{\sigma_y^2} \right). \tag{1}
\]

We set the parameters of this kernel as \(\mu = [\mu_x, \mu_y] = [w/2, h/2] \), where \(w, h \) are respectively the width and height of the image. We found good experimental results by setting \(\sigma_x, \sigma_y \) as \(w/4 \) and \(h/4 \) pixels.

Each color histogram is concatenated to form the first part of the descriptor. At the end of this, we firstly add a HOG
descriptor [4] quantizing the gradient orientations in 4 bin
instead of 8 and, secondly, a texture analysis based on Local
Binary Pattern (LBP) extracted both on a reduced region of
the image centred on the torso and legs. LBP are extracted
using the approach in [1], sampling LBP histogram on a
grid with cell size equal to 16 pixels. Each LBP histogram
is quantized in 58 bins, where two bins account for non-
uniform binary patterns and the remaining count the term
frequency of each uniform pattern.

This descriptor is extracted for all the available images of
both camera A and camera B, such as:

\[
\begin{align*}
D_A & = \left[\begin{array}{c} d_A^1 \ d_A^2 \ \cdots \ d_A^N \end{array} \right], & D_B & = \left[\begin{array}{c} d_B^1 \ d_B^2 \ \cdots \ d_B^N \end{array} \right] \\
\text{views from camera A} & & \text{views from camera B}
\end{align*}
\]

where \(N \) is the number of subjects in the dataset. For each
trial the two set \(D_A \) and \(D_B \) are randomly splitted into four
subsets, two for each camera:

\[
D_A = [T_A G_A], \quad K_B = [T_B P_B] \tag{2}
\]

where:

\[
T_A = \left[t_A^1 \ t_A^2 \ \cdots \ t_A^{N_T} \right], \quad T_B = \left[t_B^1 \ t_B^2 \ \cdots \ t_B^{N_T} \right]
\]

represent the two training set from the two cameras, while:

\[
G_A = \left[g_A^1 \ g_A^2 \ \cdots \ g_A^{N_G} \right], \quad P_B = \left[p_B^1 \ p_B^2 \ \cdots \ p_B^{N_P} \right]
\]

represent respectively the gallery \(G_A \) and the probe set \(P_B \).

3.2 Kernel Representation

We exploit the kernel trick to map our descriptor into a
higher-dimensional feature space: \(K(d^i, d^j) = \phi(d^i)^T \phi(d^j) \). In particular, we use the \(\chi^2 \) exponential kernel as:

\[
K^{\chi^2}(d^i, d^j) = \exp \left(-\frac{1}{2C} \sum_k (d_{i,k} - d_{j,k})^2 \right), \tag{3}
\]

where \(C \) is the median of the \(\chi^2 \) distances among all the
examples and the sumation runs over the dimensionality
of our feature descriptor \(d \). After applying the kernel trick we have,

\[
K_A = \begin{bmatrix} K_A^{TT} & K_A^{TG} \\ K_A^{GT} & K_A^{GG} \end{bmatrix}, \quad K_B = \begin{bmatrix} K_B^{TT} & K_B^{TP} \\ K_B^{PT} & K_B^{PP} \end{bmatrix}, \tag{4}
\]

where the sub-matrices \(K_A^{TT} \) and \(K_B^{PP} \) represent the kernel
version of our descriptor for the two training sets while the sub-matrices \(K_A^{GT} \) and \(K_B^{TP} \) represent the kernel version
for the gallery and probe sets respectively, as defined in Eq. (2).

3.3 Matching People using KCCA

Given the two views of the data projected as described in
Sec. 3.2 we can construct a common representation exploiting
the labeled training data.

3.3.1 Canonical Correlation Analysis

The Canonical Correlation Analysis (CCA) constructs the
subspace that maximizes the correlation between two paired
variables. More formally, given \(N_T \) training samples from a
paired dataset, that in our case are the views of the data
from two different non-overlapping cameras:

\[
T = \{(t_A^1, t_B^1), (t_A^2, t_B^2), \ldots, (t_A^{N_T}, t_B^{N_T})\} \tag{5}
\]

the aim is to solve:

\[
\rho = \max_{w_A, w_B} \text{corr}(w_A T_A, w_B T_B) \tag{6}
\]

in order to maximize the correlation between the two pro-
jected sets of points, \(w_A T_A \) and \(w_B T_B \).

3.3.2 Kernel Canonical Correlation Analysis

The Kernel Canonical Correlation Analysis (KCCA) per-
forms as CCA but on data projected through an opportune
kernel. As defined in Sec. 3.2, the kernel computed over \(T_A \)
and \mathbf{T}_B can be also expressed as:

\[
K^\top_i(x_i, x_j) = \phi(x_i)\phi(x_j), \quad (7)
\]
\[
K^\top_i(x_i, y_j) = \phi(x_i)\phi(y_j), \quad (8)
\]

Since w_A and w_B lie in the span of the N_T training instances, such as $w_A \in \text{span}(\phi(T_A))$ and $w_B \in \text{span}(\phi(T_B))$, we can write it for the KCCA as:

\[
w_A = \sum_i \alpha_i \phi_A(t_i),
\]
\[
w_B = \sum_i \beta_i \phi_B(t_i),
\]

where $i \in [1, \ldots, N_T]$. The objective of KCCA is thus to identify the weights α, β that maximize:

\[
\arg \max_{\alpha, \beta} \frac{\alpha^\top K_A^{TT} K_B^{TT} \beta}{\sqrt{\alpha^\top K_A^{TT} \alpha \beta^\top K_B^{TT} \beta}},
\]

where K_A^{TT} and K_B^{TT} denote the $N_T \times N_T$ kernel matrices of the N_T sample pairs from the training set. As shown by Hardoon [9], learning may need to be regularized in order to avoid trivial solutions. Hence, we penalize the norms of the projection vectors and obtain the standard eigenvalue problem:

\[
(K_A^{TT} + \kappa \text{Id})^{-1}K_B^{TT} K_B^{TT} (K_B^{TT} + \kappa \text{Id})^{-1}K_A^{TT} \alpha = \lambda^2 \alpha. \quad (10)
\]

The top M eigenvectors of this problem yield:

\[
\alpha = [\alpha^{(1)} \ldots \alpha^{(M)}], \beta = [\beta^{(1)} \ldots \beta^{(M)}]
\]

that represent the semantic projections that will be used for both gallery and probe data.

3.3.3 Re-identification in the common subspace

At test time, we project the probe samples with α and the gallery samples with β:

\[
\mathbf{G}_\alpha = \mathbf{K}^{TT} \alpha, \quad (11)
\]
\[
\mathbf{P}_\beta = \mathbf{K}^{TT} \beta, \quad (12)
\]

Then we compute the cosine distance between the projected descriptors of the gallery and probe and we perform a simple Nearest Neighbor (NN) classification, such that:

\[
\text{id}(p_A) = \arg \min_i \left(\frac{g_i^\top p_A}{\|g_i\|_2 \|p_A\|_2} \right),
\]

where i represent the identity of the i-th gallery sample.

4. EXPERIMENTAL RESULTS

In this section we evaluate our method with respect to two regular baselines such as standard nearest neighbor in the descriptor space using L_2 norm (NN) and nearest neighbor in a subspace learned with CCA using cosine distance (Linear CCA). Then we also compare our result with the most recent supervised techniques such as PRDC [22], DDC [10], EIML [11], ICT [2], RPLM [12] and unsupervised ones like SalMatch [21] and eSDC [19]. We carry out our experiments on two widely used dataset for re-identification that are VIPeR [8] and PRID datasets. These settings were carried out by dividing the training set in two parts, one for training and one for validation to estimate the best settings. Then we re-trained the KCCA on the whole training data using the best values of η and κ. The source code of our method is publicly available online.

4.1 VIPeR dataset

VIPeR dataset is the most challenging dataset currently available for person re-identification. It is composed by 632 image pairs of people captured outdoor (thus 1264 images in total), from two different, non-overlapping camera views. The challenges in VIPeR are mainly due to viewpoint and illumination variations, which cause severe appearance changes. We use the experimental protocol widely used in literature for metric learning techniques: the set of 632 image pairs is randomly split into two sets of 316 image pairs, one for training and one for testing. A single image from the probe set is then selected and matched with all the images from the gallery set. This process is repeated for all images in the probe set independently. The whole evaluation procedure is carried out on the 10 splits publicly available from [7]. Table 1 gives an overview of the recognition rate at various ranks of our approach compared with recent methods. We report an increment of 7% at first rank with respect to the SalMatch approach [21] that currently holds state-of-the-art performance. Considering supervised method, the best result is obtained by RPLM [12]. However, we outperform RPLM and the others supervised approaches [22, 10, 11, 2] at all ranks on the VIPeR dataset. This performance arises from the combination of an efficient and robust descriptor that is additionally exploited by lifting the feature in a higher dimensional space using kernel trick and solving the camera transfer ambiguity via KCCA. Our approach saturates earlier than recent methods by reaching 93% of recognition rate at rank 20 while the other techniques report results in the range of 70–80%. Fig. 4(a) shines more light on this and demonstrates the steep trend of our CMC curve w.r.t the baselines.

Our approach with KCCA using the kernel of Eq. (3) reconstruction error of the Partial Gram-Schmidt Orthogonalization (PGSO) as $\eta = 1$ while we set the regularisation parameter used in Eq. (10) as $\kappa = 0.5$ for both VIPeR and PRID datasets. These settings were carried out by dividing the training set in two parts, one for training and one for validation to estimate the best settings. Then we re-trained the KCCA on the whole training data using the best values of η and κ. The source code of our method is publicly available online.}

\[\text{http://www.micc.unifi.it/lisanti/source-code/}\]
training images with respect to [12] and [22] (see Fig. 3(a)). To notice that our approach is less sensitive to the number of training samples with a different number of training samples RPLM [12] and PRDC [22]. Table 2 shows the recognition rate across ranks with a different number of training samples. This is more recent than VIPeR, we compare our method with the following approaches [10, 11, 12]. Table 1 summarizes the trend of the CMC curves at some selected ranks. Our approach obtains the same performance of RPLM [12] at rank-1 while at higher ranks starts to outperform all the other techniques. PRID dataset is more challenging than VIPeR for the presence of distractors and for the different viewpoint of the cameras. In fact, it is possible to observe in Fig. 4(b) that the performance largely improves while considering only 100 individuals in the gallery (without distractors) instead of considering all the 649 identities.

5. CONCLUSION

In this paper we have proposed a method to match people across views by learning a common subspace that reduces the ambiguity when descriptor are extracted from different disjoint cameras. Our method exploits Kernel Canonical Correlation Analysis (KCCA) to solve the camera transfer learning problem. Our approach demonstrates compelling performance in the re-identification task on two reference datasets used in literature.

Acknowledgments

This work is partially supported by Thales Italia. We want to thank Tiberio Uricchio for his fruitful discussion and advices.

6. REFERENCES

Figure 4: Baseline Comparison on VIPeR and PRID dataset: figures show the CMC of nearest neighbor in the feature space (green), in the space learned by CCA (red) and by the proposed KCCA (blue).