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In this paper, we investigate the contribution of dynamic evolution of 3D faces to identity recognition.
To this end, we adopt a subspace representation of the flow of curvature-maps computed on 3D facial
frames of a sequence, after normalizing their pose. Such representation allows us to embody the shape as
well as its temporal evolution within the same subspace representation. Dictionary learning and sparse
coding over the space of fixed-dimensional subspaces, called Grassmann manifold, have been used
to perform face recognition. We have conducted extensive experiments on the BU-4DFE dataset. The
obtained results of the proposed approach provide promising results.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years automatic face analysis has attracted increasing
interest in the field of computer vision and pattern recognition
due to its inherent challenges and its potential in a wide spectrum
of applications, including security surveillance [1,2] and diagnostic
of facial pathology [3]. Despite the great progress, 2D face analysis
approaches that depend on color or gray-scale image analysis, still
suffer from illumination and pose variations, which often occur in
real-world conditions. With the rapid innovation of 3D cameras,
the 3D shape is regarded as a promising alternative to achieve
robust face analysis [4,5]. Very recently, the advent of 4D imaging
systems capable of acquiring temporal sequences of 3D scans (i.e.,
4D is regarded as 3D over the time) made possible comprehensive
face analysis by introducing the temporal dimension, where the
temporal behavior of 3D faces is captured by adjacent frames [6,7].
Note that such temporal information is crucial for analyzing the
facial deformations. Despite the large amount of work on static
and dynamic 3D facial scans analysis, temporal modeling is still
almost unexplored for identity recognition. Moving from shape
analysis of static 3D faces to dynamic faces (4D faces) gives rise to
new challenges related to the nature of the data and the proces-
sing time – which static and dynamic shape representations are
most suited to 4D face analysis? How the temporal dimension can
contribute to face analysis? Is it possible to compute statistical
summaries on dynamic 3D faces? From a perspective of face
classification, which relevant features and classification algorithms
can be used?

In this paper, we aim to answer the above questions by pro-
posing a comprehensive framework for modeling and analyzing
3D facial sequences (4D faces), with an experimental illustration in
face recognition from 4D sequences.

Recently, works addressing face analysis from temporal
sequences of 3D scans start to appear in the literature, encouraged
by the advancement in 3D sensors’ technology, with some of them
restricted to RGB-D Kinect-like sensors. In [8], Berretti et al.
investigated the impact of 3D facial scans’ resolution on the
recognition rate by building super resolution 3D models from
consumer depth camera frames. Experimental studies using the
new 3D super resolution method validate the increase of recog-
nition performance with the reconstructed higher resolution
models. Hsu et al. [9] showed that incorporating depth images of
the subjects in the gallery can improve the recognition rate,
especially in the case of pose variations, even though there are
only 2D still images in the testing. In the last few years, some
works addressed face recognition from dynamic sequences of 3D
face scans as well like in [6], where Sun et al. proposed a 4D-HMM
based approach. In this work, a 3D dynamic spatio-temporal face
recognition framework is derived by computing a local descriptor
based on the curvature values at vertices of 3D faces. Spatial and
temporal HMM are used for the recognition process, using 22
landmarks manually annotated and tracked over time. As an
important achievement of this work, it is also evidenced that 3D
face dynamics provides better results than 2D videos and 3D
static scans.
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Subspace representation for dynamic facial information either
for image sets or for image sequences (videos) showed a great
success. Shigenaka et al. [10] proposed a Grassmann distance
mutual subspace method (GD-MSM) and Grassmann Kernel Sup-
port Vector Machine (GK-SVM) comparison study for the face
recognition problem from a mobile 2D video database. In [11], Lui
et al. proposed a geodesic distance based algorithm for face
recognition from 2D image sets. Turaga et al. [12] presented a
statistical method for video based face recognition. These methods
use subspace-based models and tools from Riemannian geometry
of the Grassmann manifold. Intrinsic and extrinsic statistics are
derived for maximum-likelihood classification applications. More
recently, Huang et al. [13] proposed learning projection distance
on Grassmann manifold for face recognition from image sets. In
this work, an improved recognition is obtained by representing
every image set using a Gaussian distribution over the manifold.

Sparse representation and dictionary learning attracted a lot of
attention recently, due to their success in many computer vision
problems. In [14], a sparse coding framework was presented for
face recognition from still images. In this work, Wright et al.
showed that using sparse coding the role of feature extraction on
the performance is not so important, and the sparse coding is
more tolerant with face occlusion. Yang et al. [15] proposed a
robust sparse coding (RSC) approach for face recognition. In this
work, the sparse coding problem is solved as a constrained robust
regression, which makes the recognition more robust against
occlusion, change of lighting and expression variation in still
images. Elhamifar et al. [16] presented the Sparse Subspace Clus-
tering (SSC) algorithm that classifies linear subspaces after finding
their sparse coding. A generalization of sparse coding and dic-
tionary learning was proposed by Xie et al. [17], which permits its
application on subspace data representations that do not have a
linear structure, like the Riemannian manifold. Mapping points
from a non-linear manifold to tangent spaces shows good classi-
fication results on texture and medical images’ classification.

In [18], Harandi et al. proposed an extrinsic solution to combine
sparse coding and dictionary learning with nonlinear subspaces,
like the Grassmann manifold. Embedding the Grassmann manifold
into the symmetric matrices’ sub-manifold makes the sparse
coding on the induced manifold possible, faster, and more coher-
ent than intrinsic embedding on one or more tangent spaces.
Application to 2D video face datasets shows the efficiency of this
approach against other learning solutions.
2. Methodology and contributions

In this paper, we investigate the contribution of 3D face
dynamics in face recognition. To this end, after a preprocessing
step, we compute surface curvature from each 3D static mesh of a
sequence, and project it to a 2D map (call edcurvature map). A
sequence of curvature maps is then cast to a matrix form by re
shaping the 2D maps to column vectors, Singular Value Decom-
position (SVD) is used to reduce the subspace spanned by the
matrix to that of the first k-singular-vectors, which in turn is
regarded as a point on a Grassmann manifold. Recognition using
extrinsic methods based on sparse coding and dictionary learning
on the manifold achieved the best performance. An overview of
the proposed approach is shown in Fig. 1.

In summary, the main contributions of this paper are:

� A fully automatic and computationally cheap face recognition
approach using 4D data. To the best of our knowledge, this is the
first study in the literature, which brings the subspace modeling
methodology with advanced geometric and learning tools to 3D
face sequences.
� An in-depth investigation of the contribution of the 3D shape
dynamics to face recognition.

� An extensive experimental analysis, involving the BU-4DFE
dataset and three classification schemes based on intrinsic
and extrinsic methods on the manifold.

The rest of the paper is organized as follows: in Section 3, the
methodology of modeling 4D faces on Grassmann manifold as well
as essential elements on the geometry of these manifolds is pre-
sented; Section 4 discusses sparse representation and dictionary
learning on the Grassmann manifold; our 3D dynamic face
recognition framework is presented in Section 5; Experimental
results and their discussion are given in Section 6; finally, our
conclusions and future work are drawn in Section 7.
3. Modeling sequences of 3D faces on Grassmann manifold

The idea of modeling multiple-instances of visual data, like set
of images or video sequences, as linear subspaces for classification
and recognition tasks has revealed its efficiency in many computer
vision problems [12,19,20]. This compact low-dimensional data
representation has the main advantage in its robustness against
noise or missing parts in the original data. Besides, the availability
of computational tools from differential geometry makes working
on non-linear data (e.g., the space of k-dimensional subspaces)
possible, and allows managing the non-Euclidean nature of these
spaces. Accordingly, in this work, we adopt the subspace repre-
sentation solution for analyzing 4D facial sequences. To our
knowledge, this is one of the first investigations on modeling the
temporal evolution of 3D facial shapes with application to face
recognition. Studying the effects of these two aspects together is
still an open problem in computer vision applications.

In the remaining of this section, we will describe the static 3D
shape representation using mean curvature computed on 3D facial
surfaces as well as the associated subspace representation to
capture their temporal dynamics (Section 3.1). In addition,
since the subspace learning approach that we propose lies
on the Grassmann manifold, we will also recall essential back-
ground on its geometry, and related definitions including metrics
and distances (Section 3.2) and sample mean computation (Sec-
tion 3.3).

3.1. Static and dynamic 3D shape representation

In the proposed solution, we consider 3D scans of the face
acquired continuously via a dynamic 3D scanner (3D plus time,
also called 4D), thus producing a temporal 3D sequence with the
dynamic evolution of the 3D face. Using these data, the proposed
approach is designed to exploit the spatio-temporal information.
To achieve this goal, a subspace modeling technique is applied as
follows: (i) the 3D scans are preprocessed by cropping the facial
region from the rest of the scan, then pose normalization,
denoising via smoothing, and holes filling are performed; (ii) the
mean curvature on 3D surfaces is computed, so that a flow of
curvature-maps is produced by projection; (iii) the k-SVD ortho-
gonalization procedure is applied to subsequences of the curva-
ture-maps, so as to obtain an orthonormal basis spanning an
optimized subspace. This subspace represents an element on the
Grassmannian manifold GkðRnÞ, being n the dimension of
curvature maps.

The shape information of every 3D scan is captured first by
computing, as 3D local descriptor, the mean curvature
H¼ ðk1þk2Þ=2, where k1 and k2 are the two principle curvatures.
The mean curvature values are computed at every vertex, then
they are visualized and saved as a 2D map using a blue-red color



Fig. 1. Overview of the proposed approach: top – modeling the shape and its dynamics using a subspace representation; bottom – classification of space representations
using the proposed Sparse Representation based Classification (SRC) algorithm.

Fig. 2. Visual illustration of two subspaces using their singular vectors derived by SVD orthogonalization on sequences of size 50 frames (Angry, top row – Surprise, bottom
row). In the plots, colors ranging from blue to red reflect increasing values of the curvature. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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scale.1 The main motivation in using this descriptor is its ability to
capture the local facial shape and the non-rigid deformation, and
also its invariance against rotation, scale and mesh resolution.

Fig. 2 shows, as color maps, the matrices representing the
subspaces computed from two different 3D facial sequences. It can
be appreciated that a subspace (k-first dominant left singular
vectors of the original matrix of data) can be viewed as the mean
shape computed over the subsequence (leftmost images), followed
by the dominant deformations (remaining images on the right).
These deformation images change according to the expression
exhibited by the face (Angry in the first row, and Surprise in the
1 The VTK library has been used: http://www.vtk.org.
second). We note histogram equalization is used here (except for
the images on the left column) to highlight the location of the
deformation areas, using cold to warm colors. Colors in between
reflect the most stable areas of the curvature-maps over the
3D video.

3.2. Distances on the manifold

The idea of using the Grassmann manifold representation is
that a subsequence of 3D scans can be cast to a matrix repre-
sentation, and thus mapped to a unique point on the manifold. In
this way, computing the similarity between two subsequences is
transformed to the problem of computing the distance between
two points on the manifold. More specifically, let X and Y denote a

http://www.vtk.org


Table 1
Subspace distances.

Subspace distance Mathematical formulation

Min correlation dMinðX ;YÞ ¼ sin θk
Binet-Cauchy dBC ðX ;YÞ ¼ 1�∏k

i cos 2 θi
� �1=2

geodesic
dGeo ¼

Pk
i θ

2
� �1=2

Procrustes
dProcðX ;YÞ ¼ 2

Pk
i sin ðθi=2Þ

� �1=2
Max correlation dMaxðX ;YÞ ¼ sin θ1
Projection d2projðX ;YÞ ¼ Pk

i sin ðθiÞ2
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pair of subspaces on GkðRnÞ: the Riemannian distance between X
and Y is the length of the shortest path connecting the two points
on the manifold (i.e., the geodesic distance). The problem of
computing this distance can be solved using the notion of Principle
Angles introduced by Golub and Loan [21] as an intuitive and
computationally efficient way for defining the distance between
two linear subspaces. In fact, there is a set of principal angles Θ
¼ ½θ1;…;θk� (0rθ1;…;θkrπ=2), between the subspaces X and Y
of size n� k, recursively defined as follows:

θk ¼ cos �1 max
uk AX

max
vk AY

〈uT
k ; vk〉

� �
; ð1Þ

where uk and vk are the vectors of the basis spanning, respectively,
the subspaces X and Y, subject to the additional constraints:
〈uT

k ;uk〉¼ 〈vTk ; vk〉¼ 1, being 〈�; �〉 the inner product in Rn; and 〈uT
k ;

ui〉¼ 〈vTk ; vi〉¼ 0 ð8 k; i : ka iÞ.
Based on the notion of principle angles, several other distances

and metrics on the Grassmann manifold have been proposed in
the literature. Some of them are summarized in Table 1.

3.3. Karcher mean computation

As mentioned above, an important tool in shape (and its tem-
poral evolution) analysis is given by the computation of statistical
summaries. The idea here is that given a set of subspaces, which
correspond to subsequences of 3D videos of the same person (or
different persons), with the same expression (or different
expressions), one would like to compute their statistical mean. For
a set of given subspaces P1;…;PmAGkðRnÞ (i.e., points on the
underlying manifold), Karcher mean μ is defined as
μ¼ arg minP

Pm
i ¼ 1 dGeoðP;PiÞ2, is a point on the Grassmannian,

which minimizes the mean squared error [22] with respect to the
canonical metric dGeo previously defined in Table 1.
Re
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4. Grassmann sparse representation

Recently, the sparse coding theory showed great success in
several topics, like signal processing [23], image classification [24]
and face recognition [15], where a given signal or image can be
approximated effectively as a combination of few members
(atoms) of a dictionary. The success of sparse coding motivated the
extension of this approach to the space of linear subspaces [12], in
order to represent a subspace as the combination of few subspaces
of a dictionary. However, in so doing, the main issue is the
inherent non-linearity of the Grassmann manifold, which implies
using tools from differential geometry. Since these tools often
require intensive computation, these solutions are less attractive
for 2D and 3D video modeling and analysis.

The problem of sparse coding has been solved in Euclidean
spaces in Rn by minimizing the following quantity, which includes
a coding cost function with a penalty term related to the sparsity
of the result:

lðx;DÞ ¼min
y

Jx�DyJ22þλJyJ1; ð2Þ

where xARn is the sample signal to be coded, D is a dictionary (a
n� N matrix being N the number of training samples) with atoms
DiARn in its columns, and λ the sparse regularization parameter.
The vector yARN is the new latent sparse representation of the
original data, which contains many zeros. The problem of dic-
tionary learning consists of minimizing the total coding cost for all
the samples fxtARng1r trN of the training set, over all choices of
codes and dictionaries as follows:

hðDÞ ¼min
fxt g;D

1
N

XN
t ¼ 1

lðxt ;DÞ: ð3Þ

In order to combine advantages of subspace modeling men-
tioned in Section 3 with the powerful sparse coding representa-
tion, it is essential to handle the non-linearity of the Grassmann
manifold. The first direction to tackle this problem is provided in
the literature by the extrinsic solution, which relies on the basic
idea of mapping the points of the Grassmann manifold into a fixed
tangent space (i.e., a vector space) [17]. The main constraint of this
method is the logarithm map function used for tangent space
mapping, which does not have an explicit formula in the case of
Grassmann manifold. This makes its estimation numerically not
accurate, especially for the points far from the tangent space
position. Also, it is time consuming, which makes the approach
slow. To avoid these limitations, a second common extrinsic
method consists of embedding the Grassmann manifold into a
smooth sub-manifold of the space of symmetric matrices [25]. This
embedding is performed by a projection mapping function [26,27].
For convenience, we recall here the main ideas and the derived
algorithm.

Formally, let us have P ¼ fSpanfP1g; SpanfP2g;…; SpanfPmgg as a
set of points (i.e., subspaces), where SpanfPigAGkðRnÞ. We need to
be able to represent each point as a linear combination of a few
atoms fD1;D2;…;Djg of a dictionary D using the sparse coding. For
any X ¼ SpanðXÞAGkðRnÞ the mapping : GkðRnÞ-SymðnÞ, such
that ðX Þ ¼ XXT ¼ X̂ is computed. The mapping function is iso-
metric, as it preserves the curve length between the Grassmann
manifold and the manifold of symmetric matrices SymðnÞ [28]. A
natural choice of metric on the manifold of symmetric matrices
SymðnÞ is the Frobenius inner product, that is for any Span(X),
SpanðYÞAGkðRnÞ, δsðX̂ ; Ŷ Þ ¼ TrðX̂ ; Ŷ Þ ¼ JXTY J2F . With this embed-
ding, Eq. (2) can be rewritten by considering the embedding X̂ of a
given query subspace X :

lðX ;DÞ ¼min
y

J X̂�D̂yJ2F þλJyJ1; ð4Þ

where D̂y denotes the dictionary with atom elements of SymðnÞ, y
the sparse representation, and λ is the regularization parameter
that weighs the importance of the fitting of the model versus the
magnitude of y. This convex optimization problem is solvable as a
vectorized sparse coding problem, as depicted in Algorithm 1.

Algorithm 1. Sparse coding on GkðRnÞ.
quire A given dictionary D¼ fDigNi ¼ 1AGkðRnÞ where Di ¼
SpanðDiÞ of size N. Query subspace XAGkðRnÞ ¼ SpanðXÞ
or i; j’1 to N do
ðDÞi;j’JDT

i Dj J2F
nd for
ðDÞN�N ¼ UΣUT

¼Σ1=2UT

for i’1 to N do
ðX;DÞi’JXTDi J2F



en

x
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d for
n’Σ �1=2UTKðX;DÞ
sure yn’arg miny Jxn�AyJ2þλJyJ1
en

In Algorithm 1, the training set of (labeled) subspaces is con-
sidered as the dictionary D of size N (i.e., the training set size); (i) a
similarity matrix between dictionary elements KðDÞ is computed
based on the Frobenius inner product; (ii) SVD is applied to K (i.e.,
K¼UΣVT ) to compute the A matrix, which is the weighted sin-
gular vectors of K; (iii) the similarity matrix KðX;DÞ between
testing and training samples is computed on the induced space.
The decomposition of Eq. (4) shows that the sparse coding pro-
blem can be formulated as:

lðX ;DÞ ¼min
y

Jxn�AyJ2þλJyJ1; ð5Þ

where xn ¼Σ �1=2UTKðX;DÞ.
We have used the implementation provided by Harandi et al.

[18], and we refer the reader to their recently-published paper [29]
for further mathematical details on their extrinsic solution. Using
Algorithm 1, a new observation point in the symmetric matrices
manifold after the embedding step, could be (sparsely) decom-
posed into a combination of atoms of the dictionary. From a
classification perspective, it is now possible to use conventional
classifiers, such as SVM (Support Vector Machine) or SRC (Sparse
Representation Classification), since these features lie in an
Euclidean space.
Table 2
BU-4DFE dataset main characteristics.

Number of subjects (male/female) 101 (43/58)
Age range 18–45
Number of 3D videos per subject 6
Expressions per subject Angry, Disgust, Fear, Happy, Sad, Surprise
3D sequence duration 4 sec (25 fps) – about 90 frames

per sequence
Vertices per 3D mesh 35,000 (Di4D capturing system)
Acquisition protocol neutral–onset–apex–offset–neutral
5. Identity recognition from 4D faces

To perform face recognition from the 3D facial shapes and their
temporal evolution, the flow of curvature-maps is first divided into
clips (subsequences) of size w. Then, each clip is modeled as an
element on the Grassmann manifold via k-SVD orthogonalization.
More formally, given a sequence of curvature-maps fm0;…;mtg, a
predefined size of a sliding window w, and a fixed subspace order
k, the idea is to consider the maps under the temporal interval
½t�wþ1; t�, and to compute the corresponding subspace Pt . This
results in a collection of subspaces, elements of the Grassmann
manifold, which represent the 3D video sequence (after curvature
computation). The main goal of such representation is to capture
the 3D shape of the face as well as its dynamics (spatio-temporal
description) to perform face recognition.

5.1. Grassmann Nearest-Neighbor Classifier (GNNC)

In this approach, for each subject a Karcher mean subspace is
computed out of the subspaces that belong to the training set of
the subject (i.e., more subsequences are used as training for each
individual). These means constitute the gallery subspaces used for
recognition. According to this, given a probe subspace X ¼ SpanðXÞ,
it is compared against the gallery subspaces using one of the
distances defined on the Grassmann manifold (see Table 1).
Finally, the probe subspace is assigned to one class using the
Grassmann Nearest-Neighbor Classifier.

5.2. Grassmann Sparse Representation Classifier (GSRC)

In this case, the classification is performed on the sparse
representation computed according to Algorithm 1. In fact, given a
test sample, its sparse representation is first computed using the
dictionary on the training samples. Consequently, conventional
classification methods, like SVM or Nearest-Neighbor can be
applied. An alternative solution is to use the Sparse Representation
Classifier (SRC) proposed in [14]. The main concept behind this
classifier is to reproduce the testing query subspace from non-zero
sparse codes that belong to one specific class only in the dic-
tionary. Repeating this class-specific estimation, and computing
the residual error between the estimation and the original query
subspace gives a similarity indicator. The estimation from the
correct class should give the minimum residual error.

In summary, face recognition is performed according to the
following steps: (1) Dictionary learning on the Grassmann manifold
– given a training subset of observations, a set of atoms (dic-
tionary) is determined to describe the observations sparsely; (2)
Sparse representation – given a dictionary and a probe on the
underlying manifold, the probe is approximated using a sparse
linear combination of atoms from the dictionary; (3) GSR-based
classification – once the training and testing observations are
expressed linearly using sparse representation, it is possible to
perform the Grassmann Sparse Representation Classification.
6. Experimental results

To investigate the contribution of facial dynamics in identity
recognition using 4D data, we conducted extensive experiments
on the BU-4DFE dataset. This dataset has been collected at Bin-
ghamton University [30] and is currently used in several studies
on 4D facial expression recognition. To our knowledge, only the
work of Sun et al. [6] has reported identification performance on
this dataset. The main characteristics of the BU-4DFE dataset are
summarized in Table 2.

6.1. Experiments setting

Following the protocol proposed in [6], 60 subjects have been
considered out of the BU-4DFE, and their sequences are parti-
tioned into subsequences using a window size w¼6 (with a
shifting step of 3 frames). This results into 30 sub-sequences
extracted out of every facial expression sequence of the 60 sub-
jects (i.e., each sequence lasts approximately 90 frames). On these
subsequences, experiments have been conducted following two
settings:

� Expression independent (EI): One expression per subject is used
for training, and this expression does not appear in the testing.
All the remaining five expression sequences per subject are
used for testing. Since 30 sub-sequences represent each expres-
sion sequence, for the 60 subjects a total of 30� 60¼ 1800
subsequences are used for training. Five expressions per subject
are used for testing, i.e., for each subject we have 5� 30¼ 150
test subsequences, with a total for all the 60 subjects of 150�
60¼ 9000 subsequences.

� Expression dependent (ED): For each sequence, the first half
(from neutral to nearby the apex of the expression) is used for
training, while the remaining half (from the apex of the
expression to neutral) is used for testing. As a consequence, the
gallery and the probe samples convey similar dynamic behavior,



Table 3
Recognition rates (RR%) for GNN-classification using different subspace distances.

Subspace distance ED-RR (%) EI-RR (%)

Min correlation 44.75 28.72
Binet-Cauchy 52.83 51.99
Geodesic 73.00 65.00
Procrustes 78.11 66.55
Max correlation 92.61 67.12
Projection 93.69 68.88
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though with inverse temporal evolution. The number of training
subsequences for every subject is 15� 6¼ 90, with a total for
the 60 subjects of 90� 60¼ 5400 subsequences. The same
number of subsequences is used for testing.

Using these settings, we report in the following experimental
evaluation and comparative analysis of the proposed approaches
using Grassmann Nearest-Neighbor Classification (GNNC) on the
mean subspaces of each subject' class, and Grassmann Sparse-
Representation (GSR) based classification computed on the sparse
codes, in comparison to the current literature.

6.2. 4D face recognition using GNNC

In this experiment, a window of six frames w¼6 and shifting
step equals to 3 is used (the same as in [6]), with only the first two
dominant components kept for representing the subspace (k¼2).
The GNN-classification method is based on a gallery of subspaces,
one per subject, each computed as the mean of the training sub-
sequences for the subject. With the setting above, in the EI sce-
nario, one complete expression is used to compute the mean
for each subject, i.e. 30 subsequences; in the ED scenario, the
mean is computed on 15� 6¼ 90 subsequences with different
expressions.

Using the GNN-classifier, a comparison is performed between
the ED and EI experiments. Different distances are also considered,
which involve the principal angles between subspaces (see Section
3.2). The average recognition rates are reported in Table 3.

Some observations can be derived from this GNN: (i) ED results
outperform EI results for each distance measure. This is expected,
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Fig. 3. Trade-off between accuracy and latency (fraction of the video seen
since in the ED setting there are sequences of the same subject
conveying the same expression both in the gallery and probe sets
(though with inverse temporal evolution); (ii) the different RRs
scored by the distances provide experimental evidence of the
discriminative information distribution across the principle angles.
In particular, the highest RR obtained with the Projection distance
shows that all the singular vectors, and consequently the dynamic
information of subsequences, helps in the recognition task by
improving the result obtained using just one singular vector (i.e.,
Max Correlation distance). The lowest RR is scored by the Min
Correlation distance, suggesting us that the subspaces on the
manifold are sufficiently separated from each other, thus making
them well suited for the identity recognition task.

Results reported in Table 3 have been obtained by comparing
single instances (subspaces) in the video. Actually, since sub-
sequences are part of a continuous video, it is possible to fuse the
decisions of successive subsequence instances to perform recog-
nition. This allows us to design an incremental recognition
approach over time, where multiple instances are used instead of
only one. This idea has been implemented using a majority voting
fusion rule, at each time, using all available instances. The
experimental results are reported in Fig. 3 to show the perfor-
mance at increasing size of the data seen and analyzed along a
sequence. From these plots, it is clear the performance increases
with the fraction of the video seen. This trend is the same under
ED and EI settings. The same conclusions drawn above are still
valid, with a serious limitation in using a metric-based approach
for comparing sub-sequences exhibiting different facial behavior.
More elaborated approaches, which handle with these differences
are suitable for performing 3D face recognition under EI settings.

6.3. 4D face recognition using GSRC

In these experiments, we use the proposed solution based on
Sparse Coding on Grassmann manifold (GSR). A variant of the GDA
Grassmann Discriminant Analysis algorithm [20], called GGDA
(Graph-embedding GDA) [31] is also used as a baseline to evaluate
the effectiveness of the GSR algorithm. In practice, the flow of
curvature-maps, for the window of size w is first mapped to the
Grassmann manifold using SVD. Then, the steps described in
Section 5.2 are performed for training and testing. The value of the
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Table 4
EI experiment: effect of the subspace order k on the recognition rate for the GSR
algorithm. Subsequences with window size w¼6 have been used in all the cases.

Subspace order k 1 2 3 4 5 6

Yk (%) 81 90 94 96 98 100
RR (%) 81.03 84.13 81.76 81.22 80.94 80.02

Table 5
EI experiment: effect of the window size w on the recognition accuracy for the
GGDA and GSR algorithms. The subspace order k is set to keep 90% of the
original data.

w; k Algorithm

GGDA-RR (%) GSR-RR (%)

6, 2 64.24 84.13
10, 4 61.15 79.89
15, 6 56.61 76.55
20, 9 50.50 76.59
25, 11 50.60 75.80
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regularization parameter λ in Eq. (4) is selected empirically.
Results under the ED and EI settings are reported. Results when
varying the window size w, and the subspace order k are also
reported and discussed.

6.3.1. Expression independent (EI) experiment
As a preliminary experiment, we investigated the effect of the

subspace order k on the performance. To this end, we apply the
GSR algorithm with a varying kAf1;2;3;4;5;6g, while keeping a
fixed window size w¼6, and shifting step equals to 3. Thus, in this
case, we have 30 training subspaces per subject, for a total of 1800
subspaces in the training set (dictionary).

The subspace order k (i.e., number of singular vectors con-
sidered) is also related to the information carried by the respective
singular value λi, through the measure Yk:

Yk ¼
Xk
i ¼ 1

λi

 ! Xw
i ¼ 1

λi

 !
;

,
ð6Þ

where w is the window size or the maximum number of singular
vectors (the length of the subsequence).

As shown in Table 4, the highest average recognition rate is
84.13%, obtained for k¼2. This rate is 3% higher than the average
recognition rate obtained for k¼1 (using only the first dominant
left-singular vector, which corresponds to the common data over
the window).

This allows us to make two main conclusions: (i) the impor-
tance of the facial dynamics in improving the recognition perfor-
mance. In fact, the optimal parameter k¼2 implies that the mean
and the first dominant deformations are important in the recog-
nition process. They are given by the first and the second singular-
vectors of the orthogonal matrix, respectively; (ii) the remaining
left-singular vectors are less relevant in the recognition process,
since they include the noise, which is present in the 4D acquisi-
tion. We note that k¼2 allows capturing, on average, about 90% of
the data available in the 4D sub-sequence. Based on these
empirical observations, in our next experiments, we will consider
90% of the information for different size of the window w.

We are interested now on studying the effect of varying the
size of the window w on the performance. In the following
experiment, we considered wAf6;10;15;20;25g. The subspace
order k is defined as the number of left singular-vectors, which
retains 90% of the original data. The corresponding recognition
accuracies are reported in Table 5. It can be seen that the optimal
window size is w¼6 for both the GSR and the GGDA algorithms.
One explanation for the decreasing accuracy at increasing size of w
is the lack of temporal registration of the curvature-maps. In fact, a
large difference between the frames across the window affects
negatively the orthogonalization procedure, which assumes dense
correspondence between the frames. Interestingly, the accuracy
obtained using the GSR (84.13%) substantially improves the accu-
racy achieved using the GGDA (64.24%), and the GNN-classification
(68.88%). This result also evidences the efficiency of sparse coding
of subspaces in comparison to the discriminant analysis, which can
be affected by the points’ distribution over the Grassmannian
manifold.

In Fig. 4, we show an example where the face is reconstructed by
using only the first k-singular vectors out of the base, which contains
90% of the information as reported in Table 5. It is clear from this
figure that the accuracy of reconstructing the face decreases by
increasing the window size due to the lack of tracking.

To investigate the effect of the regularization parameter λ used
in dictionary learning (see Eq. (4)), we report in Table 6 the
recognition rate of the GSR method, using w¼2 and k¼2, for
different values of λ.

Table 7 provides additional details by reporting the RR obtained
separately for each test expression, by the GGDA and GSR algo-
rithms, and the approach proposed in [6]. The average recognition
rate achieved by GSR is 84%, which is about 10% lower than the
accuracy reported in [6]. However, differently from the approach
proposed by Sun et al., our solution does not require any manual
or automatic landmarking of the face and it is computationally
more efficient. In addition, the dense (vertex-level) registration of
the 3D frames, which is computationally complex and time con-
suming, is not performed in our method. On an opposite side, this
operation permits the approach presented in [6] to achieve com-
parable results throughout all the expressions. In our case instead,
we observe the RR decreases of about 4% in the case of posed
surprise expression, which includes topological variations of the
face (i.e., mouth open). Another methodological difference
between the two approaches is that Sun et al. designed and
trained two separate HMMs called spatial and temporal; In our
approach, only few coefficients of the sparse representation are
sufficient to code the dynamics of a 3D facial sequence and can be
used to perform GSR classification.

The recognition performance of our solution can be improved
by using an increasing fraction of the video. This implies that more
than one instance (subsequence) is used to recognize a subject.
With this approach, the overall performance of GSR increases from
84.13% (using only one instance, which represents about 5% of the
video) to 95.11% using the whole video (about 4 s). This is illu-
strated in Fig. 5, separately for each expression. This figure also
confirms the difficulty in recognizing subjects with Surprise
expression.

In the experiments above, recognition values have been
obtained by averaging on six-folds, each of which uses one
expression for (identity) training and the other five for testing. To
investigate the importance of using larger training set and with
different expressions, we have also performed experiments in the
case the training includes five expressions (i.e., 9000 sub-
sequences, 150 per subject), while the subsequences from the only
remaining expression are used for testing (i.e., 1800 subsequences,
30 per subject). Results are reported in Table 8 in comparison with
those obtained for training with one expression. Results (using
GSR) show that increasing the number of samples and their
dynamics (even though originated from different expressions) can
significantly increase the recognition rate from 84.13% to 93.37%.
We can also observe that identity recognition under Surprise
expression is the most difficult, due to the large shape changes in



Fig. 4. Reconstructed faces from the first k-singular vectors for different window sizes.

Table 6
Recognition rate of the GSR algorithm for subspaces generated using different
values of the regularization parameter λ.

λ 0.01 0.05 0.1 0.15 0.2 0.3

RR (%) 82.09 83.21 84.13 83.00 82.94 80.02

Table 7
EI experiment: recognition rate obtained using different training expression com-
pared to the approach in [6].

Training expression Method

Sun et al. [6] (%) GGDA (%) GSR (%)

Angry 94.12 61.26 85.20
Disgust 94.09 68.54 87.70
Fear 94.45 69.02 83.49
Happy 94.52 68.56 83.36
Sad 93.87 63.05 84.86
Surprise 95.02 56.07 80.49
Overall 94.37 64.42 84.13
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Table 8
Impact of the training set on the performance: training based on one expression vs.
training based on five expressions.

Testing expression Training by one (%) Training by five (%)

Angry 83.27 94.50
Disgust 78.42 96.30
Fear 92.21 98.13
Happy 86.23 93.20
Sad 94.32 97.73
Surprise 69.75 80.40
Overall 84.13 93.37

Table 9
ED experiment: comparison between the recognition accuracy obtained for the
methods proposed in this works, and for the 2D video, 3D static, and 3D dynamic
(4D) approaches reported in [6].

Method RR (%)

Gabor-wavelet on 2D videos (from [6]) 85.09
LLE on static 3D (from [6]) 82.34
PCA on static 3D (from [6]) 80.78
LDA on static 3D (from [6]) 91.37
ST-HMM on 4D (proposed in [6]) 97.47
GNN on 4D 93.69
GGDA on 4D 98.08
GSR on 4D 100

Table 10
ED and EI results for 2D and 3D videos.

Method EI–RR (%) ED –RR (%)

2D video A-HMM [32] (from [6]) 67.05 93.97
4D ST-HMM [6] 94.37 97.47
4D GSR 84.13 100
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the mouth region, while identity recognition under Sad expression
is the easiest across the time.

6.3.2. Expression dependent (ED) experiments
In this experiment, the window size is w¼6, with shifting step

equals to 3, and 30 sub-sequences are obtained from each facial
expression sequence, half of which is used for training and half for
testing. Thus, we have 90 training subspaces per subject, and a
dictionary of 5400 subspaces. The GSR-based classifier is used in
this experiment. Table 9 reports the results obtained using the GSR
and the GGDA algorithms on 3D dynamic sequences (4D). In
addition, for comparison purposes, we also reported in the table
several results from [6], including Gabor wavelets on 2D videos,
LLE, PCA and LDA on 3D static data, and the ST-HMM on 4D data.

It can be seen that both GGDA and GSR outperform previous
approaches. In particular, their accuracy is close or equal to 100%
under the ED-setting. Our explanation of the higher accuracy
achieved by GGDA and GSR compared to existing methods is that
the optimized SVD-based orthogonalization produces a matrix
independent of the time-order of the 3D video clips. That is,
comparing two video clips taken from the Onset-Apex and the
Apex-Offset gives small distance as the temporal order of the
curvature-maps is ignored. This demonstrates the ability of the
Grassmann representation associated with the learning methods
in 4D face recognition.

6.4. Comparative study and discussions

From the experimental results reported above, it emerges the
proposed approach, which combines Grassmann representation
with an extrinsic learning method achieved promising results in



Table 11
Processing time of the proposed pipeline compared to [6]. A 3.2 GHz CPU was used
in [6], compared to the 2.6 GHz CPU used in our work.

Processing step Processing time (s)

Sun et al. [6] This work

One 3D frame processing 15 1
One probe recognition 5 0.73
Full video processing – 100 frames 1500 90
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4D face recognition. This demonstrates the contribution of the
facial dynamics in the recognition process. In Table 10, we sum-
marize the obtained results under the ED and EI settings. To the
best of our knowledge, only Sun et al. have investigated the pro-
blem of face recognition from 4D data. They have also studied the
advantage of using the dynamic of shape (3D videos) compared to
the dynamic of appearance (2D videos), as reported in the table.

It is clear from these results that the 3D video modality out-
performs the 2D video modality. That is, the dynamics in 3D facial
shapes has more discriminating power compared to the dynamics
of 2D facial images. When the proposed approach is compared
with [6], it is evident that the latter performs better in the EI case,
where sequences with different expressions are compared. This
indicates a good robustness to the expression differences of the
method in [6]. This is mainly due to the dense temporal vertex-
tracking approach required before training the HMMs. However,
this comes at the cost of an increased computational complexity of
the tracking, in addition to the required accurate manual/auto-
matic landmarks detection in the first 3D frame of a sequence.

The computational aspect is evaluated in Table 11, which
reports the processing time of the proposed pipeline compared to
[6] (the original values reported in [6] are used here). From the
table, it emerges the proposed approach is less demanding in
processing time. In addition, it does not need any manual or
automatic landmark detection of the face.
7. Conclusions and future perspectives

In this paper, we have proposed a comprehensive and effective
4D face recognition framework, which adopts a subspace-learning
methodology. We have demonstrated that the shape dynamics
(behavior) improves the recognition accuracy. This conclusion is
valid even if the training samples (in the gallery) and the probes
(to be recognized) present a different behavior. Leveraging the
geometry of Grassmann manifolds, relevant geometric tools and
advanced Machine Learning tools, i.e., dictionary learning and
sparse coding on the underlying manifold, our approach is capable
of managing face recognition from dynamic sequences of 3D scans
in an effective and efficient way. The main advantages of this
framework are: it is completely automatic and computationally
less demanding compared to the current literature; it achieves
promising face recognition accuracy; it outperforms previous
approaches under the expression-dependent setting.

Conversely, the main limitation of the proposed approach is the
lack of temporal dense correspondence across the curvature-maps
of a sequence. Despite the limited size of the temporal window
considered, this has a negative effect especially for expressions
with large face variations. These aspects will be part of our next
investigations and future research direction. Investigating the
proposed framework for different face analysis tasks, such as facial
expression recognition will be also considered as an important
direction for future work.
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