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In this paper, we propose a framework for analyzing and understanding human behavior from depth
videos. The proposed solution first employs shape analysis of the human pose across time to decompose
the full motion into short temporal segments representing elementary motions. Then, each segment is
characterized by human motion and depth appearance around hand joints to describe the change in pose
of the body and the interaction with objects. Finally, the sequence of temporal segments is modeled
through a Dynamic Naive Bayes classifier, which captures the dynamics of elementary motions char-
acterizing human behavior. Experiments on four challenging datasets evaluate the potential of the
proposed approach in different contexts, including gesture or activity recognition and online activity
detection. Competitive results in comparison with state-of-the-art methods are reported.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Visual recognition and understanding of human activity and
behavior represent a task of interest for many multimedia appli-
cations, including entertainment, medicine, sport, video surveil-
lance, human–machine interfaces and active assisted living. This
wide spectrum of potential applications encouraged computer
vision community to address the issue of human behavior un-
derstanding from 2D videos taken from standard RGB cameras [1–
5]. However, most of these methods suffer from some limitations,
like the sensitivity to color and illumination changes, background
clutter and occlusions. Since the recent release of RGB-D sensors,
new opportunities have emerged in the field of human motion
analysis and understanding. Hence, many research groups in-
vestigated data provided by such cameras in order to benefit from
some advantages compared to RGB cameras [6–10]. Indeed, depth
data allows a better understanding of the 3D structure of the scene
and thus makes background subtraction and people detection
easier. In addition, the technology behind such depth sensors
provides robustness to light variations as well as the capability to
work in complete darkness. Finally, the combination of such depth
sensors and powerful pattern recognition algorithms [11] enables
the representation of human pose at each frame as a set of 3D
joints. In the past decades, human motion analysis from 3D data
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provided by motion capture systems has been widely investigated
[12–14]. While these systems are very accurate, they present some
disadvantages. First, the cost of such technology may limit its use.
Second, it implies that the subject wears some physical markers so
as to estimate the 3D pose. As a result, this technology is not
convenient for the general public. All these considerations moti-
vated us to focus our study of human behavior on RGB-D data.
However, this task still faces some major challenges due to the
temporal variability and complexity of human actions and the
large number of motion combinations that can characterize the
human behavior. Motion analysis is further complicated by the fact
that it should be invariant to geometric transformations, such as
translation, rotation and global scaling of the scene. In addition,
human behavior often involves interaction and manipulation of
objects. While such information about the context may help the
understanding of what the human is doing, it also involves pos-
sible occlusions of parts of the human body, resulting in missing or
noisy data.

In order to face these challenges, we propose in this paper to
locally investigate the sequence by detecting short temporal seg-
ments representing elementary motion, called Motion Segments
(MS). Then, for each MS, we analyze human motion and depth
appearance around human hands to characterize the interaction
with objects. This provides a deeper analysis of the human beha-
vior and allows the recognition of human gestures, actions and
activities. In particular, in this paper, gestures indicate simple
movements performed with only one part of the body, actions
represent a combination of gestures with different parts of the
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body, and activities refer to more complex motion patterns possi-
bly involving interaction with objects. The proposed solution can
be adapted to realistic scenarios, where several actions or activities
are performed subsequently in a continuous sequence. In that
case, the sequence should be processed online in order to detect
the starting and ending time of actions or activities. That is, the
proposed approach can operate on the data stream directly,
without assuming the availability of a segmentation module that
identifies the first and last frame of each action/activity.

1.1. Previous work

In recent years, recognition and understanding of human behavior
by analyzing depth data have attracted the interest of several research
groups [15–18]. While some methods focus on the analysis of human
motion in order to recognize human gestures or actions, other ap-
proaches try to model more complex behaviors (activities) including
object interaction. These solutions focus on the analysis of short se-
quences, where one single behavior is performed along the sequence.
However, additional challenges appear when several different beha-
viors are executed one after another over a long sequence. In order to
face these challenges, methods based on online detection have been
proposed. Such methods can recognize behavior before the end of
their execution by analyzing short parts of the observed sequence.
Thus, these methods are able to recognize multiple behaviors within a
long sequence, which may not be the case for methods analyzing the
entire sequence directly. Existing methods for human behavior re-
cognition using depth data are shortly reviewed below.

Methods analyzing human motion for the task of gesture / action
recognition from RGB-D sensors can be grouped into three categories:
skeleton-based, depth map-based and hybrid approaches. Skeleton
based approaches have become popular thanks to the work of Shotton
et al. [11]. This describes a real-time method to accurately predict the
3D positions of body joints in individual depth maps, without using
any temporal information. In [19], Yang and Tian performed human
action recognition by extracting three features for each joint, based on
pair-wise differences of joint positions (initial, previous and current
frames). PCA is then used to obtain a compact EigenJoints re-
presentation of each frame and a naïve-Bayes nearest-neighbor clas-
sifier is used for multi-class action classification. Similar features are
used by Luo et al. [20], but pairwise differences are computed only in
the current frame and with respect to only one reference joint (the hip
joint). To better represent these features, they propose a dictionary
learning method based on group sparsity and geometry constraints.
The classification of sequences is performed using SVM. Zanfir et al.
[15] propose the Moving Pose feature, capturing for each frame the
human pose information as well as the speed and acceleration of body
joints within a short temporal window. A modified kNN classifier is
employed to perform action recognition. Hongzhao et al. [21] in-
troduce a part-based feature vector to identify the most relevant body
parts in each action sequence. Other approaches use differential geo-
metry to represent skeleton data. In [22], Vemulapalli and Chellappa
represented each skeleton as one element on the Lie-group, and the
sequence corresponds to a curve on this manifold. In [23], Slama et al.
express the time series of skeletons as one point on a Grassmann
manifold, where the classification is performed benefiting from Rie-
mannian geometry of this manifold. In [24], Anirudh et al. regard
actions as trajectories on a Riemannian manifold, and analysis of such
trajectories using Transport Square-Root Velocity Function is em-
ployed for action recognition.

Methods based on depth maps extract meaningful descriptors
from the entire set of points of depth images. In [25], Yang et al. de-
scribed the action dynamics using Depth Motion Maps, which
highlight areas where some motion takes place. Other methods, such
as Spatio-Temporal Occupancy Pattern [26], Random Occupancy Pat-
tern [27] and Depth Cuboid Similarity Feature [16], propose to work
on the 4D space divided into spatio-temporal boxes to extract features
representing the depth appearance in each box. Such features are
extracted from Spatio-Temporal Interest Points. A similar method is
proposed by Rahmani et al. [28], where keypoints are detected and
the point cloud is described within a volume using the Histogram of
Principal Components. In [29], Oreifej and Liu proposed a method to
quantize the 4D space using vertices of a polychoron, and then model
the distribution of the normal vectors for each cell. The idea of using
surface normals to describe both local motion and shape information
characterizing human action is also used by Yang and Tian [30].
Althloothi et al. [31] represent 3D shape features based on spherical
harmonics representation and 3D motion features using kinematic
structure from skeleton. Both features are then merged using a multi-
kernel learning method. A depth feature to describe shape geometry
and motion, called Range-Sample, is proposed by Lu and Tang [32].

Analyzing human motion, however, may not be sufficient to un-
derstand more complex behaviors involving human interaction with
the environment (i.e., what we call activities). Hybrid solutions are
often proposed, which use depth maps for modeling scene objects and
body skeleton for modeling human motion. For example, Wang et al.
[33] used Local Occupancy Patterns to represent the observed depth
values in correspondence to skeleton joints. Other methods propose to
describe and model spatio-temporal interaction between human and
objects characterizing the activities, using Markov Random Field [17].
A graphical model is also employed by Wei et al. [34] to hierarchically
define activities as combination of sub-events including description of
the human pose, the object and interaction between them. Yu and Liu
[35] propose to capture meaningful skeleton and depth features using
a middle level representation called orderlet.

Some of the works reviewed above have also online action re-
cognition capabilities, as they compute their features within a
short sliding window along the sequence [35]. This challenge has
recently been investigated for continuous depth sequences, where
several actions or activities are performed successively. For ex-
ample, Huang et al. [18] proposed and applied the Sequential Max-
Margin Event Detector algorithm on long sequences comprising
many actions in order to perform online detection by successively
discarding not corresponding action classes.

1.2. Overview of our approach

Human behavior is naturally characterized by the change of the
human body across time. Thanks to depth sensors, we are able to
capture skeleton data containing the 3D position of different parts of
the body. The skeleton and its changes across time provide valuable
information. However, understanding the human behavior is still a
difficult task due to the complexity of human motion and spatial/
temporal variations in the way gestures, actions, or activities are per-
formed. These challenges motivated us to analyze locally the motion
sequences. First, we represent the skeleton of each frame by a 3D
curve describing human pose. These curves are then interpreted in a
Riemannian manifold, which defines a shape space where shapes of
the curves can be modeled and compared using elastic registration
and matching. Such shape analysis allows the identification and
grouping of the human poses. As a result, a motion sequence is
temporally segmented into a set of successive sub-sequences of ele-
mentary motions, called Motion Segments (MS). A MS is thus char-
acterized by a sequence of skeletons, each of which is modeled as a
multi-dimensional vector by concatenating the three-dimensional
coordinates of its joints. Then, the trajectory described by this vector in



Fig. 1. Overview of our approach. Shape analysis of human poses allows us to identify temporal segments of elementary motions (i.e., MS). Each MS is described using the
trajectory of the joints of the skeleton regarded as a multidimensional vector, and the depth appearance around subject hands. A Dynamic Naive Bayes classifier is then used
to model the sequence of temporal segments and recognize human behavior.
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the multi-dimensional space is regarded as a signature of the temporal
dynamics of all the joints. Similar to pose curves, the shape of such
motion trajectories is studied in a Riemannian shape space. The elastic
metric provided in this framework allows us to compare motion tra-
jectories independently to their elasticity, i.e., the execution speed of
motions. A statistical analysis on this manifold allows us to identify
relevant shapes characterizing a set of MSs. However, skeleton data is
not sufficient to describe human behavior in cases where objects are
manipulated. This motivated us to describe, in each MS, the depth
appearance around subject hands providing information about pos-
sible human–object interactions. Finally, the sequence of MSs is
modeled through a Dynamic Naive Bayes classifier, which combines
both skeleton and depth features and captures the dynamics of hu-
man behavior. Fig. 1 summarizes the proposed solution. The main
contributions of the proposed approach are:

� A segmentation method based on the statistical shape analysis
of human pose variation along the sequence.

� A temporal description of a sequence, which combines elastic
shape analysis of motion trajectories on a Riemannian manifold,
and description of depth appearance around subject hands.

The rest of the paper is organized as follows: Section 2.1 discusses
the Riemannian framework that we employ for shape analysis of both
human pose and human motion. Section 2 presents our method for
characterizing a motion sequence based on its segmentation into MSs,
and their skeletal and depth description. In Section 3, we describe the
Dynamic Naive Bayes classifier and show how we use it for classifi-
cation and online detection. Section 4 describes the experimental
settings, the datasets used and also reports results in terms of accuracy
of gesture, action and activity recognition in comparison to state-of-
the-art solutions. Finally, in Section 5 conclusions and future research
directions are drawn.
2. Description of activity sequences

Our proposed approach is based on the analysis of both human
pose and human motion. Using a shape analysis framework, an ac-
tivity sequence is analyzed and described through two steps: first, we
locally regard it at the level of human poses in order to segment the
full human motion into a set of MSs. Then, the analysis of these
segments allows us to describe the sequence as a combination of
successive MSs.

2.1. Shape analysis framework

A pose of human body can be characterized by the spatial
configuration of body parts. So we propose to analyze the shape of
such spatial configuration. Human motion is characterized by the
evolution of the human pose across time. In order to capture the
geometric deformation of the pose as well as the dynamics of the
motion, we propose to consider the motion as a trajectory of the
human pose and analyze its shape. As a result, we recast the
problem of human pose and human motion analysis to a problem
of shape analysis by employing the Shape Analysis framework,
presented in [36]. In the following, we recall the main idea of the
framework and we refer the reader to [36] for more details. In this
framework, the shape of a n-dimensional curve β → I: n, nor-
malized in the interval I¼[0,1], is captured through the Square-
Root Velocity Function (SRVF) [37] defined as: β β( ) ≐ ̇( ) ∥ ̇( )∥q t t t/ .
As a result, each q function can be viewed as an element of a
Riemannian manifold and the distance between two elements q1
and q2 is the length of the geodesic path connecting them on .
Such geodesic path represents the elastic deformation of the shape
q2 to correspond to the shape q1. As is a hyper-sphere, the
geodesic length between two elements q1 and q2 is defined as
θ = ( ) = (〈 〉)−d q q q q, cos1 2

1
1 2 .

The SRVF representation is invariant to translation and scaling, but
it is not invariant to rotation and re-parametrization. To copewith this,
we define the equivalence class of q as [ ]q where elements of [ ]q are
equivalent up to rotation and re-parametrization. The set of all
equivalence classes is called the shape space denoted as . To compute
the geodesic distance between [ ]q1 and [ ]q2 on , we first need to find
the optimal rotation and re-parametrization that register the element
q2 with respect to q1 resulting in *q2 . Then, the distance

([ ] [ ]) = ( *)d q q d q q, ,1 2 1 2 is invariant to translation, scale, rotation and
re-parametrization of curves. In practice, SVD is used to find the op-
timal rotation, and Dynamic Programming is used to find the optimal
re-parametrization.

2.2. Segmentation of sequences

Due to the complexity of human motion characterizing activities,
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we propose to decompose the full motion into shorter MSs, which are
easier to analyze. The idea of decomposing a motion sequence into a
set of MSs has already been investigated in state-of-the-art. In [38] the
‘movelet’ is proposed on accelerometer data by concatenating features
within overlapping temporal intervals with fixed length. However, as
the length of each temporal interval is fixed, it may not represent a
relevant MS. Another idea called ‘dyneme’ is employed in [14], where
human poses are clustered to identify several temporal segments with
similar poses represented by one centroid pose. However, the use of
pose information only may lack of information about the dynamics of
the MS. In addition, labeling successive poses independently may re-
sult in irrelevant intervals. In this paper, we propose to identify re-
levant MSs including continuous elementary motions. This process is
based on the analysis of the human pose at each frame of the
sequence.

2.2.1. Pose representation and analysis
Human body is represented by a set of 3D joints located in cor-

respondence to different body parts. Thus, a human pose is char-
acterized by a certain spatial configuration of these 3D joints. In order
to describe human poses, we propose to analyze the shape of the
spatial configuration of 3D joints. By connecting the 3D joints, human
pose can be viewed as a 3D curve representing the shape of human
body. As shown in Fig. 2, in order to keep the human shape in-
formation associated to the limbs, we keep a coherent structure
linking together joints belonging to the same limb. Thus, a 3D curve
representing the human pose connects successively the spine joints,
then the arms joints (left/right) and finally the legs joints (left/right).
In this way, a human pose is represented by a 3D curve instead of a 3D
skeleton. Thus, we can perform shape analysis of curves using the
shape analysis framework and the provided distance (see Section 2.1)
for n¼3 as each joint is represented by the x, y, z coordinates. Note
that, as we will explain later, we need to compare successive human
poses from the same sequence (same subject). Hence, we can assume
that the scale of skeletons as well as the orientation of the subject
between two successive poses is unchanged during a short time in-
terval. Likewise, as a 3D curve connects joints in a predefined order,
the parametrization of curves remains the same along a single se-
quence. Since it is not necessary to find the optimal re-parametriza-
tion between two shapes, the analysis of the shape of the 3D curves is
simplified. Fig. 2 shows a geodesic path between two human poses
represented by their 3D curve.

2.2.2. Motion segmentation
Once a distance measuring the similarity between the shape of

two poses is defined, we can use it to analyze the deformation of
human body along an activity sequence. Hence, in order to divide the
continuous sequence into MSs, we detect when the motion is chan-
ging. We identify MSs by breaking the sequence in correspondence to
points where the speed of change of the 3D curve has a local mini-
mum. To compute the speed of change, we take advantage of the
shape analysis framework that enables the computation of statistics,
Fig. 2. Shape analysis of human poses in the shape space. (a) Shape of 3D curves repres
two shapes is measured through the geodesic distance (length of the minimum path).
shapes of poses.
like the mean and the standard deviation, on the manifold. Hence,
given the poses …p p, , n1 observed over a temporal window of pre-
defined duration, the average pose shape μ is computed as the Rie-
mannian center of mass [39] of the pose shapes …q q, , n1 on the shape
space. For this purpose, the distance d described in Section 2.1 is used
according to the following expression:

∑μ = ([ ] [ ])
( )[ ] =

d q qarg min , .
1q

i

n

i
1

2

Once the mean pose shape is computed, the standard deviation
s between this mean shape and all the shapes within the window
is estimated:

∑σ μ= ([ ] [ ])
( )=n

d q
1

, .
2i

n

i
1

2

Higher values of s correspond to faster motion, while lower values
correspond to slower motion, i.e., transition intervals. By detecting
local minima along the sequence, we are able to temporally localize
the motion transition, and thus decompose the sequence into MSs. As
an example, Fig. 3 shows the variation of s along a sequence and the
MSs identified by breaking the sequence in correspondence to local
minima of s.

2.3. Segment description

Once an activity sequence is segmented, we analyze the re-
sulting MSs in order to describe the whole sequence.

2.3.1. Human motion analysis
Here, we interpret the pose changes across a time interval corre-

sponding to a MS. For each frame included in a MS, we concatenate
the xi, yi, zi coordinates of each joint to build a feature vector. Let Nj be
the number of joints of the skeleton, the posture of the skeleton at
frame t is represented by a 3Nj dimensional tuple:

( ) = [ ( ) ( ) ( ) … ( ) ( ) ( )] ( )v t x t y t z t x t y t z t, , . 3N N N
T

1 1 1 j j j

For a MS composed of Nf frames, Nf feature vectors are ex-
tracted and arranged in columns to build a feature matrix M de-
scribing the whole segment:

( )= ( ) ( )… ( ) ( )M v v v N1 2 . 4f

This matrix captures the changes of the skeleton pose across time.
Hence, it can be viewed as a trajectory in R N3 j representing the motion
in a 3Nj dimensional space. The size of such feature matrix is ×N N3 j f .
Note that, in order to guarantee invariance to MSs translation and
rotation, we normalize the position and the orientation of the subject
before extracting the features. We use the spine and hips joints to
form the base representing the position and orientation of the body.
We align the initial pose of a segment with respect to a reference
posture by finding the best rigid transformation between
enting human poses is interpreted in the shape space where the distance between
(b) Visualization of the geodesic path representing a natural deformation between
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Fig. 3. Segmentation of a sequence based on minima of the standard deviation s. Different MSs and corresponding poses are displayed with different colors. (For inter-
pretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 4. An activity sequence can be viewed as a set of successive spatio-temporal trajectories in R Nj3 representing MSs performed by the subject.
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corresponding bases. The optimal transformation is then applied to all
other poses of the segment. This makes the representation invariant to
the position and orientation of the subject in the scene (see [36] for
more details). With this representation, an activity sequence can be
viewed as a set of short spatio-temporal trajectories in R N3 j re-
presenting MSs, as illustrated in Fig. 4.

In this paper, we propose to use the shape analysis framework
described in Section 2.1, with =n N3 j, to capture and analyze the
shape of trajectories of MSs. Shapes are represented as elements
on the shape space and the similarity measure between two
shapes is the elastic metric d on this shape space. Our idea here is
to identify a codebook of exemplar shapes (symbols) to be used as a
reference dictionary in the classification. To learn the codebook,
we perform clustering of shapes using the k-means algorithm.
First, k shapes are randomly selected as mean shapes of k clusters,
and each sample shape is assigned to the clusters using the d
distance. Then, the mean shapes are repeatedly updated until
convergence using the Riemannian center of mass (see Eq. (1)).
Such clustering provides a mapping between trajectory shapes
represented on the shape space and a finite set of symbols cor-
responding to clusters.

In order to describe each cluster by using its corresponding mean
shape, we learn a density function for each cluster. These density
functions capture the variability between shapes belonging to the
same cluster and provide a deeper modeling of each cluster. In so
doing, we assume the distribution of shapes within a cluster follows a
multivariate normal model. Unfortunately, learning such density
functions on the shape space is not straightforward, mainly due to the
non-linearity and infinite-dimensionality of such manifold (i.e., shapes
are represented by functions, so they have infinite dimension). Dif-
ferent methods have been proposed to deal with these two challenges
[40,41]. A common way to circumvent the non-linearity of the
manifold is to consider a hyper-plane tangent to the manifold at the
mean shape (i.e., tangent space). Such tangent space is a linear vector
space, where conventional statistics applies, like the computation of
density functions. We denote μT k the tangent space at the mean
shape of the k-th cluster μk. For each shape ∈qi within the k-th
cluster, we compute its corresponding tangent vector ∈ μv Ti k using
the logarithm map. This approximation is valid because samples be-
long to the same cluster. Thus, we can assume that they lie in a small
neighborhood around the mean shape μk. To deal with the problem of
infinite-dimensionality, we assume the variations in tangent vectors
are restricted to an m-dimensional subspace. Using tangent vectors of
each cluster, we use PCA to learn a principal subspace for each cluster.
We denote n the dimension of such principal subspace. Tangent vec-
tors vi are then projected into the learned subspace. Let ṽi be such
projected vectors, we compute the covariance matrix Σ between all
projected vectors ṽi belonging to the same cluster. Finally, we use the
resulting mean shape μ and covariance matrix Σ to learn a multi-
variate normal distribution for each cluster. Its corresponding prob-
ability density function is defined as:

π Σ
( ˜) =

( ) | | ( )
Σ− ˜ ˜−

f v e
1

2
.

5n
v v

/2 1/2

1
2

T 1

The codebook is learned from MSs of training sequences. Such
codebook is then used to label MSs of the test sequence, characterized
by its trajectory shape in the shape space. The test shape is first pro-
jected into the learned subspace of a cluster k. Then, using the cor-
responding covariance matrix, we can compute the probability that
the test shape is generated by the learned density function corre-
sponding to the cluster k. We do the same for each cluster and assign
the test shape to the cluster giving the highest probability.

2.3.2. Depth appearance
Descriptors of human motion are complemented with descriptors

of the objects the user is interacting with, if any. Such combination of
motion and object descriptors improves the robustness of the activity
recognition, and is also necessary to discriminate between actions that
would be almost identical in terms of motion patterns. For instance,
discriminating between activities like Drink and Phone call based on
the analysis of the sole motion patterns would require a description
framework capable of accurately distinguishing whether the user
hand is closer to the mouth than to the ear. This level of accuracy is



Fig. 5. LOP feature computation. (a) A 3D cuboid divided into 3D cells is extracted from the depth image around the hand joint and the number of 3D points within each 3D
cell is counted. (b) Schema of the 4DLOP feature representing depth appearance evolution along a MS in two time steps.
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generally beyond the capability of commercial low-res scanners, un-
less the user is very close to the sensor. Differently, two such actions
can be much more easily discriminated by considering the objects the
user is interacting with.

In order to describe the distribution of depth pixels within a local
region around subject hands, we adapt the Local Occupancy Pattern
(LOP) [27] feature. In this approach, a depth image is viewed as a 3D
point cloud, and the local regions are represented by 3D bounding
boxes centered at the hand joints. As shown in Fig. 5a, each bounding
box is partitioned into = × ×N N N Nc x y z 3D cells, and the number of
3D points that fall in each cell is counted. In the experiments, we
empirically select a local region of size × ×0.3 m 0.3 m 0.3 m divided
into × ×5 5 5 cells.

This local depth representation is combined with the motion de-
scription, which represents an activity as a sequence of successive
MSs. For each frame of a MS, we compute the LOP feature for each
hand joint (ll and lr) and concatenate them to form one global LOP
feature vector = [ ]L l l,f l r for the frame f. The length of such feature
vector is × N2 c . However, MSs can have different duration. As a
consequence, they are described with a different number of LOP fea-
tures, which is not convenient in the comparison. To deal with
duration variability, we propose a compact representation of the depth
appearance, which is independent from its duration. First, we assume
the object held by the subject during the time interval corresponding
to a MS does not change considerably, and we compute the mean of
the LOP features among frames of a MS. Thus, one single feature, that
we call Mean LOP (MLOP) is used to describe the average depth ap-
pearance of a MS. Then, we consider changes of depth appearance
around hand joints, which can be induced by object manipulation
during a MS. For instance, for the activity Drink a MS would consist of
bringing the container to the mouth. In that case, the support where
the object is located may appear in the local region around the hand,
in the first part of theMS, but the face of the subject may be present in
this local region at the end of the MS. To represent this depth varia-
tion, we adopt an extension of LOP feature in four dimensions called
4DLOP. The spatio-temporal volume representing the change of the
local region around hands along the MS is also partitioned in Nt di-
visions across temporal dimension. Note that, differently to [26],
which analyzes depth variation in fixed 4D boxes, we consider depth
variation in a moving spatio-temporal region following the motion of
human hands. This idea is illustrated in Fig. 5b.

As a result, each MS is represented by a feature vector describing
the depth appearance independently to its duration (either MLOP or
4DLOP). To cluster LOP features and build a codebook of exemplar LOP,
we use the k-means algorithm with Euclidean distance. Such clus-
tering provides a mapping between LOP feature vectors and a finite
set of LOP symbols represented by the cluster centroids. Similar to
human motion, the codebook is learned from MSs of training se-
quences. For MSs of test sequences, we compute the distance between
the corresponding LOP feature and all the exemplar LOP and labeling
is done using the nearest rule.
3. Modeling of activity sequences

As discussed in Section 2, a sequence is decomposed in MSs, and
each MS is described in terms of human motion and depth appear-
ance around subject hands. Thus, the dynamics of a sequence can be
viewed as combination of two sequences of successive symbols, one
corresponding to human motion, and the other corresponding to
depth appearance around hands. In so doing, we assume that se-
quences of the same class are represented by similar arrangements of
MSs. Conversely, different sequences of symbols should represent
different classes. Hence, we need a method to analyze the change of
symbols across time, and recognize different arrangements of MSs. To
this end, we propose to use the Dynamic Naive Bayes classifier (DNBC)
[42] as statistical model.

3.1. Learning

In DNBC training, we only know the sequence of observations
= { | = … ≤ ≤ }X X t T a A1, , , 1t

a , with A being the number of attri-
butes, while the states = { | = … }S S t T1, ,t are not available. Thus, we
need tools for estimating the model parameters, i.e., the prior, transi-
tion and emission probabilities. The prior probability represents the
initial state of the process. The transition probability is the probability
to transit from one state to another state of the process. The emission
probability represents, for each state, the probability of generating
each attribute. Similar to HMM, a common way to learn such para-
meters from training sequences of observed symbols is to use the
Baum–Welch algorithm [43]. In the case of DNBC, parameters esti-
mation is slightly modified due to the model setting, which allows the
emission of several attributes per state (more details on this can be
found in [44]). For our task, we assume that each activity class is
modeled with a different DNBC. Let the activity class ∈ { … }c C1, ,
with C being the number of activity classes, we learn one DNBC de-
noted λc for each class c using the training sequences of to the class c.

3.2. Classification

The classification process of an observed sequence X is the per-
formed as follows. First, the sequence is presented to each of the
trained λc DNBC modeling different activity classes. Then, the like-
lihood λ( | )P X c that the sequence X has been generated by the λc DNBC
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is computed using the Forward algorithm. Finally, the sequence is
classified as the activity whose corresponding DNBC gives the highest
log-likelihood: λ( ) = ( | )activity X P Xarg maxc c .

The classification process is then extended to work in an online
manner, so that a classification decision can be taken before the
end of a sequence. This is particularly convenient for real-time
applications, permitting natural interaction with the system. In
addition, it allows us to process a sequence as a continuous
stream, where several activities can be performed successively,
which is often the case in real-world contexts. As shown in Section
2.2, the segmentation process is based on a sliding window
technique. Hence, it can also be applied in an online manner so as
to detect MSs from a continuous stream. Each new frame of the
sequence is given as input to the segmentation process. When a
MS is detected, we compute the corresponding human motion and
depth appearance features and assign a symbol to each, as de-
scribed in Section 2. The resulted observation sequence of length-1
is then presented to each trained DNBC in order to compute the
corresponding log-likelihoods. This process is performed for each
new detected MS. Thus, the length of the observation sequence is
increased by one, and the log-likelihoods are updated. If the log-
likelihood of a class falls below a threshold, we discard the activity
class. This allows us to gradually reduce the set of possible classes.
The process is repeated until all classes are discarded. Among the
remaining classes, we keep the class with the highest log-prob-
ability as the detected activity. However, transitions between ac-
tivities are often smooth. Thus, when an activity is finished, its
corresponding log-probability may not considerably decrease and
directly fall below the threshold. In order to consider this smooth
transition, we select as the ending boundary of the activity the
time step when its corresponding log-probability starts to de-
crease instead of the time step when it falls below the threshold.
Finally, we restart the detection process from the successive time
step using all the classes. This is repeated until the end of the
sequence. As a result, we obtain the set of detected activities along
the sequence with corresponding starting and ending boundaries.
This online activity detection is illustrated in Fig. 6.
4. Experimental evaluation

We evaluate the proposed approach in comparison with state-
of-the-art methods using four public benchmark datasets.

4.1. MSRC-12 dataset

First, we evaluate our method in the task of human gesture
Fig. 6. Online detection method. The Activity-2 and Activity-3 are discarded after the fou
remaining Activity-1 is discarded after the seventh time interval. As a result, the five firs
sixth time step.
recognition. The main goal of this experiment is to show how the
proposed method deals with actions characterized by repetitions
of a single gesture. In particular, we want to evidence the proposed
decomposition of a sequence into a set of MSs is capable of
managing such variability.

We perform this experiment on the Microsoft Research MSRC-
12 dataset, which includes 12 gestures performed by 30 subjects
for a total of about 50 sequences per class, where a single gesture
is performed several times along a sequence (10 times in most of
the cases, but this number may vary from 2 to 15). This variability
is indeed important to show how it can affect the recognition
accuracy. Only skeleton data is provided in this dataset, so we only
use the motion features to describe each segment. Following the
same protocol as in Lehrmann et al. [45], only six gestures are
considered and a 5-fold cross validation protocol is applied. Re-
sults are reported in Table 1 as average accuracy across folds in
comparison to [45, 36].

From Table 1, we can notice that the proposed approach out-
performs [45] for all gesture classes except one (Shoot), with an
overall accuracy of 92.8%, compared to 90.9% reported in [45]. In
addition, the accuracy of the proposed approach increases of about
4% that reported in our previous work [36], where the decom-
position into MSs is not considered. Moreover, we computed the
standard deviation among the 5-folds and obtained a standard
deviation of 0.9% for our method compared to 3.1% for [36]. This
shows that our method is more robust to the variability of subjects
used for training and test. Finally, by investigating the failure cases,
we notice that the different number of repetitions in the se-
quences affects the accuracy of [36] for the case of similar gestures,
like Shoot and Goggles. To emphasize this latter aspect, we run an
experiment on the sequences of these two classes only. In the
training set, we include Goggles sequences with exactly 10 re-
petitions of the gesture, plus all Shoot sequences except those with
exactly 10 repetitions of the gesture (these latter sequences are
included in the test set). We observe that the recognition accuracy
of the class Shoot is increased from 39.4% using [36] to 80.2% using
the proposed approach. This shows that our method is able to
handle various repetitions of a single gesture within a sequence.
Indeed, as we use DNBC to model the sequences, repetitions of
gestures are characterized by repetitions of the process without
changing the structure of the model, thus allowing robustness to
repetition variability.

4.2. Cornell activity dataset 120

We use the Cornell Activity dataset 120 (CAD120) to test our
approach in the context of human activity recognition. This dataset
contains 120 RGB-D sequences of ten high-level activities
rth and second time step, respectively, as their log-probability falls below �80. The
t time intervals are classified as Activity-1, and a new detection is started from the



Table 1
MSRC-12. Comparison of the proposed approach with DFM [45, 36]. Accuracy is
reported in percentage.

Class DFM [45] Devanne et al. [36] Our

Duck 96.0 100 100
Goggles 88.0 82.0 91.6
Shoot 85.7 73.5 83.0
Throw 90.0 88.0 90.0
Change weapon 87.5 89.6 94.0
Kick 98.0 98.0 98.2
Mean 90.9 88.5 92.8

Table 2
Cornell activity dataset 120. Comparison of
our approach to state-of-the-art methods.

Method Accuracy (%)

Skeleton only
Koppula et al. [17] 27.4
Devanne et al. [36] 48.3
Our 69.474.1

Skeleton þ depth

Koppula et al. [17] 80.6
Koppula and Saxena [46] 83.1
Rybok et al. [47] 78.2
Our (Skel þ MLOP) 79.0
Our (Skel þ LOP4D) 82.373.4
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involving manipulation with objects, performed by four different
subjects three times each. The variability of performed activities,
the variability of subject orientation in the scene and the body part
occlusion caused by objects make this dataset quite challenging.
For a fair comparison with state-of-the-art methods, the leave-one-
person-out cross protocol is used, and the average accuracy and
standard deviation among the four folds are finally computed.
Table 2 reports results obtained by our method in comparison to
state-of-the-art. Our best accuracy is obtained by using a codebook
size of 100 for both features. In particular, methods are compared
by separating the case in which only the human skeleton is used,
from the case in which both skeleton and depth data are
considered.

From the results, we can first notice that our method sig-
nificantly outperforms the other approaches when only skeleton
data is used. More specifically, in comparison with [36], which
represents each activity by spatio-temporal trajectory only, the
recognition accuracy is improved by more than 20%. This shows
that when activities involve complex motions, it is not sufficient to
analyze the global motion. Indeed, local analysis and decomposi-
tion of the activity into MSs provides a better representation of
activities, thus allowing a better understanding of the human
behavior. In addition, the accuracy of 69.4% obtained by our
method shows that the decomposition of the sequence allows us
to quite well recognize activity sequences involving objects ma-
nipulation, even without describing any explicit information about
objects held by the subject. However, results show that using only
skeleton data is insufficient to be competitive with state-of-the-art
methods. As we can see in Table 2, using depth appearance fea-
tures in addition to skeleton in our DNBC allows us to improve the
recognition by about 13%. As a result, we obtain competitive ac-
curacy in comparison with other approaches. Indeed, only [46] is
above by less than 1%. Note that methods in [17, 46] use ground
truth object bounding box in the training process. In our case, we
do not need this information. Moreover, the small value of stan-
dard deviation among the folds shows that our method has a low
dependency on training data.

Finally, by comparing the results obtained with our two dif-
ferent depth appearance features, we can notice that the 4DLOP
feature is more effective. This observation is strengthened by the
confusion matrices in Fig. 7, and particularly by the confusion
obtained for the pair of opposite activities stacking and unstacking
objects. We can see that using the LOP4D feature results in less
confusion between the two activities than using the MLOP feature.
Indeed, in this particular case, the average depth appearance of
putting and taking the object may be very similar and represented
by the same symbol from the codebook. The 4DLOP feature cap-
turing the variation of depth appearance is more suitable to dis-
criminate the two elementary motions, and thus the two activities.

On this dataset, we also evaluate the effectiveness of our
method when the value of parameters (size of the codebook and
number of DNBC states) is changed. The evolution of the accuracy
with respect to both parameters is displayed in Fig. 8 for both
MLOP and LOP4D features. First, it can be observed that the pro-
posed method obtains the best accuracy using both features, when
a DNBC with 10 states is trained. It can be also observed that the
accuracy is relatively independent from the number of states
(except when only three states are used). Second, we can notice
that the best accuracy is obtained with a codebook of size 50 for
the MLOP feature, and a codebook of size 100 for the LOP4D fea-
ture. In addition, if too much exemplar features (i.e., 200) are used,
the accuracy falls down. Indeed, learning a codebook with too
much symbols may result in similar activities represented by dif-
ferent symbols. Hence, symbols represent more a particular se-
quence performed by one subject, than a generic template of one
activity class.

4.3. Multi-modal action database

The Multi-Modal Action Detection (MAD) database [18] has
been used to evaluate our method in the online detection task.
This RGB-D database has the advantage of including long se-
quences of 20 subjects performing successively 35 actions, like
running, throwing and kicking. Since actions are performed without
objects, and for a fair comparison with state-of-the-art-methods,
we only use skeleton data in these experiments. A five-fold-cross-
validation over the 20 subjects is used as evaluation protocol. In
each iteration, the labeled sequences of four folds are used to build
the vocabulary of MSs and train the DNBCs. We used the ground
truth segmentation in order to separate each action of the training
sequences and learn one DNBC per action. One model corre-
sponding to the null class is also learned from transition intervals
when the human is standing.

Our method is run in an online way as described in Section 3.2.
As a result, we obtain a segmented sequence with an action label
for each AU corresponding to the action we detected. In order to
evaluate the method and compare it with the state-of-the-art, we
compute two measures: Precision, which corresponds to the per-
centage of correctly detected actions over all the detected actions;
Recall, that is the percentage of correctly detected actions over all
the ground truth actions. An action is considered as correctly de-
tected if it overlaps with 50% of the segments of the ground truth
action. The ground truth provided by the database authors is ob-
tained by manual labeling of sequences. We compare these two
measures with the SMMED and MSO-SVM methods, both pro-
posed in [18]. The average and standard deviation values among
the five folds are reported in Table 3. We can see that our method
outperforms the state-of-the-art approaches for both the
measures.

Fig. 9 also shows the detection results of one sequence in
comparison with the ground truth and the best state-of-the-art
method, SMMED, proposed in [18]. We can see that while both our



Fig. 7. Confusion matrices obtained on CAD-120 using MLOP (a) and 4DLOP (b).

Table 3
MAD database. Comparison of the proposed online detection approach with
SMMED [18] and MSO-SVM [18]. The precision and recall measures are computed.

Measure (%) MSO-SVM [18] SMMED [18] Our

Recall 51.4 57.4 79.776.4
Precision 28.6 59.2 72.175.8
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method and [18] are able to accurately detect actions along the
time, our method detects more efficiently the end of actions, thus
resulting in a duration of detected actions closer to the ground
truth. As an overlap of 50% with ground truth is considered as the
criterion of good detection, our method obtains higher values of
recall and precision.

4.4. Online RGB-D dataset

The Online RGB-D dataset [35] proposes different types of se-
quences, which allow evaluation in different contexts, like activity
recognition and online activity detection. The dataset contains
RGB-D sequences of seven activities, like drinking, eating or reading
book. On this dataset, we first evaluate the effectiveness of our
method for activity recognition. To this end, we follow the same
procedure as in [35] by employing a 2-fold cross validation. We
compare our approach with state-of-the-art methods according to
the type of features employed. When we use depth features in our
method, we use the 4DLOP feature and learn codebooks of
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Fig. 8. Accuracy evolution of our method with respect to varying parameter
different sizes. The best accuracy is obtained for a codebook of size
100. Results are reported in Table 4.

It can be noticed that the proposed approach outperforms the
state-of-the-art methods for every combination of features. It
should also be noted that if only depth features are used, our
method is not fairly comparable to the others. Indeed, even if we
only use depth features to describe MSs, our method still needs
skeleton data to identify MSs. Nevertheless, we can see that our
segmentation approach allows a good recognition of activities
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Fig. 9. Action detection result, for the sequence-1 of subject-1 from the MAD database, of the SMMED method [18] (second row) and the proposed approach (third row) in
comparison to the ground truth (first row). Our method provides segments whose duration is closer to ground truth compared to [18].

Table 4
Online RGB-D dataset. Comparison of our approach with state-of-the-art methods
for the task of activity recognition.

Method Accuracy (%)

Depth Skeleton Depth þ skeleton

DCSF [16] 61.7 – –

Moving pose [15] – 38.4 –

Actionlet [33] – – 66.0
DOM [35] 46.4 63.3 71.4
Our 64.570.7 71.871.8 80.971.1
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when each segment is only described by depth appearance fea-
ture. Compared to skeleton-based methods, our approach sig-
nificantly outperforms other solutions. This shows that our seg-
mentation approach combined with shape analysis of human
motion allows us to efficiently recognize activities involving ma-
nipulation of objects. Even without considering any information
about objects held by the subject, we are able to recognize 71.8% of
the activities. This result is higher than that scored by [33, 35],
which combine both skeleton and depth features. Finally, if we add
depth features to the skeleton, the recognition accuracy is in-
creased to 80.9%, which is almost 10% above the best state-of-the-
art method [35].

We evaluate also the latency of our approach by measuring the
ability to recognize the activity without observing the whole se-
quence. Hence, the average recognition accuracy is computed on
different observed portions of the sequence, as reported in Fig. 10
in comparison to state-of-the-art. We can notice that the proposed
approach outperforms the methods in [16, 15] for every observa-
tion ratio. However, our method exceeds the method proposed in
[35] from 40% of observation. Indeed, when we observe less than
40% of the sequence, it often results in activity sequences re-
presented by one or two temporal segments. In these cases, the
dynamics of the activity is null (one observation) or very small
(two observations). Hence, the use of statistical models like DNBC
is not appropriate and efficient for modeling short portions of the
activity sequence. Finally, our method allows efficient recognition
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Fig. 10. Latency analysis on online RGB-D dataset. Accuracy obtained for different
portion of the sequences is compared to and state-of-the-art methods.
when half of the sequence is observed (accuracy of 75.6%). This
shows that even if our method is not suitable for very early de-
tection of activities (less than 30% of observation), we guarantee a
good recognition accuracy when only half of the sequence is
observed.

Finally, we propose to evaluate our approach for online activity
detection. The same set of activities as for activity recognition is
used to train one DNBC for each activity class. In addition, we use a
set of background activities provided by the dataset, so as to learn
the null class. Finally, we run our detection method on a new set of
sequences. It includes 36 long sequences from 30 s to 2 min where
12 new subjects are successively performing different activities.
Manual labeling provided by the dataset is used as ground truth.
Detection is evaluated using a frame-level accuracy as in [35],
computed by averaging the number of well classified frames out
the all set of frames in the test sequences. Results are reported in
Table 5. We can see that our method performs better than state-of-
the-art approaches to detect activity in an online manner. Using an
unoptimized Matlab implementation with an Intel Core i-5
2.6 GHz CPU and a 8 GB RAM, we run our detection method at
7 fps.
5. Conclusions

In this paper, we propose an effective method for modeling and
understanding human behavior, like gestures, actions and activ-
ities. Thanks to a pose-based shape analysis, we decompose a se-
quence into relevant MSs. On the one hand, such MSs are re-
presented as motion trajectories and interpreted in the Rie-
mannian shape space in order to capture the dynamics of human
motion. On the other hand, we add depth appearance information
in order to characterize possible objects manipulation across MSs.
The combination of skeleton and depth data, as well as the mod-
eling of the dynamics of the sequence of MSs is done through a
Dynamic Naive Bayes classifier. Experiments on several datasets
show the potential of our method for the task of human behavior
recognition in comparison with state-of-the-art. Finally, we adapt
our method to allow online behavior detection in long sequences,
which is an important challenge in real-world contexts. Evaluation
on two datasets demonstrates that the proposed approach out-
performs state-of-the-art methods for online detection of human
Table 5
Online RGB-D dataset. Comparison of
our approach with state-of-the-art
methods for the task of online activ-
ity detection.

Method Accuracy (%)

DSTIP þ DCSF [16] 32.1
Moving pose [15] 50.0
DOM [35] 56.4
Our 60.9
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behavior. As future work, we plan to investigate more in detail the
online detection problem and more specifically the early behavior
detection.
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