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Abstract— Performing face recognition across 3D scans with
different resolution is now attracting an increasing interest thanks
to the introduction of a new generation of depth cameras, capable
of acquiring color/depth images over time. In fact, these devices
acquire and provide depth data with much lower resolution
compared with the 3D high-resolution scanners typically used for
face recognition applications. If data are acquired without user
cooperation, the problem is even more challenging, and the gap of
resolution between probe and gallery scans can yield to a severe
loss in terms of recognition accuracy. Based on these premises,
we propose a method to build a higher resolution 3D face model
from 3D data acquired by a low-resolution scanner. This face
model is built using data acquired when a person passes in front
of the scanner, without assuming any particular cooperation. The
3D data are registered and filtered by combining a model of the
expected distribution of the acquisition error with a variant of
the lowess method to remove outliers and build the final face
model. The proposed approach is evaluated in terms of accuracy
of face reconstruction and face recognition.

Index Terms— Kinect depth camera, increased resolution,
manifold estimation, locally weighted regression, face recognition.

I. INTRODUCTION

PERSON identity recognition by the analysis of 3D face
scans is attracting an increasing interest, with several

challenging issues successfully investigated, such as 3D face
recognition in the presence of non-neutral facial expressions,
occlusions, and missing data [1], [2]. Existing solutions have
been evaluated following well defined protocols on consoli-
dated benchmark datasets, which provide a reasonable cover-
age of the many different traits of the human face, including
variations of gender, age, ethnicity, and expressions, occlusions
due to hair or external accessories, missing parts caused by
pose changes. The resolution at which 3D face scans are
acquired varies across different datasets, but given a dataset
it is typically the same for all the scans. Due to this, the
difficulties posed by considering 3D face scans with different
resolutions and their impact on the recognition accuracy have
not been explicitly addressed in the past. Nevertheless, there
is an increasing interest for methods capable of performing
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recognition across scans acquired with different resolutions.
This is mainly motivated by the availability of a new genera-
tion of low-cost, low-resolution 3D dynamic scanning devices
(i.e., 3D plus time, also called 4D), such as Microsoft Kinect
or Asus Xtion PRO LIVE. In fact, these devices are capable of
a combined color-depth (RGB-D) acquisition at about 30fps,
with an optimal working distance from the sensor ranging from
40cm up to 1.5m. The spatial resolution of such devices is
lower than that of high-resolution 3D scanners, but these latter
are also costly, bulky and highly demanding for computational
resources. Despite the lower resolution, the advantages in
terms of cost and applicability of consumer cameras moti-
vated some preliminary works performing face detection [3],
re-identification [4], continuous authentication [5] and recogni-
tion [6]–[8] directly from the depth frames of the Kinect cam-
era. However, based on the opposite characteristics evidenced
by 4D low-resolution and 3D high-resolution scanners, new
applicative scenarios can be devised, where high-resolution
scans are likely to be part of gallery acquisitions, whereas
probes are acquired with 4D cameras, resulting in lower
resolution models.In this context, reconstructing a higher-
resolution model out of a sequence of low-resolution depth
frames is a plausible way to bridge the gap between low- and
high-resolution acquisitions.

Based on these premises, in this work we define an approach
that given a sequence of low-resolution depth frames recon-
structs a higher-resolution face model. Some recent works
explicitly addressed this problem [9], but require a cooperative
protocol for the acquisition of the 3D dynamic sequence.
Differently, in the proposed solution we aim to improve the
previous work by removing the user cooperation requirement,
and enabling the extraction of a 3D facial model of a person
that just passes in front of the camera.

A. Related Work

The idea of constructing a higher-resolution representation
of an object or scene from multiple low-resolution observa-
tions, possibly altered by noise, blurring or geometric warping,
has been first introduced for 2D still images. Later, this
concept has been extended to 3D generic data for recover-
ing one high-resolution model from a set of low-resolution
3D acquisitions. For example, in [10] data acquired with a
time-of-flight camera are upsampled and denoised by using
information from a high-resolution image of the same scene
taken from a viewpoint close to the depth sensor. Time-of-
flight data are processed also in [11] by using an energy
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minimization framework that explicitly takes into account the
characteristics of the sensor, the agreement of the reconstruc-
tion with the aligned low resolution maps and a regularization
term to cope with reconstruction of sparse data points. Some
works on this topic also focus on 3D faces [12]–[14]. In [14],
high-resolution 3D face models are used to learn the mapping
between low- and high-resolution data. Given a new low-
resolution face model the learned mapping is used to compute
the high-resolution face model. Differently, in [13] the recon-
struction process is modeled as a progressive resolution chain,
whose features are computed as the solution to a maximum
a posteriori estimation (MAP) problem. However, in both
the cases, the framework is validated just on synthetic data.
In [12], an algorithm is proposed that takes a single face frame
from a Kinect depth camera, and produces a high-resolution
3D mesh of the input face. In this approach, the input
depth frame is divided into semantically significant regions
(eyes, nose, mouth, cheeks) and a database of high-resolution
scans is searched for the best matching shape per region.
The input depth frame is further combined with the matched
database shapes into a single mesh that results in a high-
resolution shape of the input person.

In the approaches above, the higher-resolution reconstruc-
tion depends on a single 3D low-resolution scan, with the
additional information used for reconstruction coming from
multiple high-resolution scans used as reference. This com-
pletely disregards the temporal dimension available in depth
sequences acquired with a Kinect sensor. In order to exploit
such temporal information, some methods approach the prob-
lem of noise reduction in depth data by fusing the observations
of multiple scans [15]–[18]. In [17], the Kinect Fusion system
is presented, which takes live depth data from a moving
Kinect camera and creates a high-quality 3D model for a
static scene. Later, in [19] dynamic interaction has been added
to the system, where camera tracking is performed on a
static background scene and a foreground object is tracked
independently of camera tracking. Aligning all depth points
to the complete scene from a large environment (e.g., a
room) provides very accurate tracking of the camera pose
and mapping [17]. However, this approach is targeted to
generic objects in internal environments, rather than to faces.
In [18], the approach is further extended to cope with non-
rigid objects, such as faces, but results of non-rigid object
denoising are demonstrated only in cases where the object to
camera distance is almost constant. The work in [20] proposes
to enhance low resolution dynamic depth videos containing
non-rigidly moving objects with a dynamic multi-frame super-
resolution algorithm. This is obtained by accounting for non-
rigid displacements in 3D, in addition to 2D optical flow, and
simultaneously correcting the depth measurement by Kalman
filtering. This concept is incorporated in a multi-frame super-
resolution framework, formulated in a recursive manner that
ensures real-time deployment. Reported results range from
a full moving human body to a dynamic facial video with
varying expressions.In [16], a 3D face model with an improved
quality is obtained by a user moving in front of a low
resolution depth camera. The model is initialized with the first
depth image, and then each subsequent cloud of 3D points is

registered to the reference one using a GPU implementation of
the ICP algorithm. This approach is used in [15] to investigate
whether a system that uses reconstructed 3D face models per-
forms better than a system that uses the individual raw depth
frames considered for the reconstruction. To this end, authors
present different 3D face recognition strategies in terms of the
used probes and gallery. The reported analysis shows that the
scenarios where a reconstructed 3D face model is compared
against a gallery of reconstructed 3D face models, and where
one frame (1F) is compared against multiple frames in the
gallery, provide better results compared to the baseline 1F-1F
approach. The approach proposed in [9] is the most closed
solution to our method. Here the idea is to constructing a
high-resolution face model from a sequence of low-resolution
depth frames acquired with a Kinect camera. However, the
approach leans strongly of the acquisition protocol, assuming
the subjects sit in front of the camera at a predefined distance,
moving the head to their left/right side in order to expose
different parts of the face to the sensor. This avoids, a priori,
scale and velocity problems, permitting a solution where
the increased resolution of the reconstructed model can be
obtained with up-sampling and 2D-Box splines approximation
of the cumulated 3D point cloud obtained by rigid (ICP)
registration of multiple 3D frames of a sequence.

B. Our Method and Contribution

In this paper, we present an original solution to derive one
3D face model from low-resolution depth frames acquired
with a RGB-D sensor. In the proposed approach, first the face
is automatically detected and cropped in each depth frame
of a sequence, and the extracted 3D face data are aligned
with each other so as to build a cumulated face model.
Then, an initial denoising operation is performed, which is
based on the anisotropic nature of the error distribution with
respect to the viewing direction of the acquired frames. Finally,
a manifold estimation approach based on the lowess non-
parametric regression method is used to approximate the face
surface from the cumulated face model and remove outliers
from the data. The proposed approach has been evaluated on
an extended version of the Florence Superface dataset [9],
which includes depth sequences capturing the enrolled persons
in cooperative as well as non-cooperative contexts, and high-
resolution face scans acquired with a 3dMD scanner.

In summary, the main contributions of this paper are:
• An approach to reconstruct a 3D face model from a

sequence of low-resolution depth frames of the face
that can work both in cooperative and non-cooperative
contexts, with the only constraint of having the face of
the subjects in the operating field of the camera. After
entering the field of view of the camera, the user can get
closer to it and change the orientation of the face with
respect to the camera, yet maintaining the face exposed
to it. This requires specific solutions to manage pose and
velocity variations in a sequence. The resolution of the
reconstructed face model is higher than the resolution of
the individual depth frames;

• A thorough evaluation demonstrating the accuracy of
the reconstructed face models. This is quantitatively
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Fig. 1. Processing steps applied to the RGB-D sequences. In (A), the face is first detected in each RGB frame, and the corresponding data in the depth frame
are transformed to a point cloud; The point cloud are then registered together so as to obtain a cumulated point cloud capturing all the data of a sequence;
In (B), the 3D positions of the points of the cumulated point cloud are adjusted using an iterative procedure based on median filtering; In (C), a 2D-manifold
of the face is estimated (reconstructed) by applying a local weighted regression to the principal components of the cumulated point cloud.

measured both in terms of mean distance error between
the reconstructed and the high-resolution facial surface
and in terms of recognition rate against a gallery of high-
resolution scans.

The proposed method develops on our previous studies on
reconstruction of super-resolved face models in a cooperative
scenario [9]. In particular, we introduce a novel face recon-
struction method that relaxes the constraint of the cooperative
scenario: During data acquisition, the user is not requested
to move the head following some predefined motion pattern;
his/her distance to the camera may change; and even the
part of the face that is exposed to the camera can vary.
The improvements of the proposed solution are threefold:
(i) registration of point clouds is achieved by combining the
Iterative Closest Point [21] and the Coherent Point Drift [22]
approaches so as to cope with slight scale variations (due
to the approximations of the sensor calibration) and face
deformations; (ii) the registered point cloud is subject to noise
removal through a nonlinear filtering scheme, which exploits
the anisotropic distribution of the acquisition error; (iii) local
weighted regression is used in place of global box-spline
approximation to reconstruct the face surface. This scheme
yields a better fit to local variations of the surface compared to
box-splines used in [9]. Preliminary ideas and results related to
the proposed method were first reported in [23]. With respect
to that previous work, the manifold reconstruction problem is
now addressed by combining lowess estimation with a median
filtering, which exploits the anisotropic error distribution of the
range sensor. This latter one is a completely new contribution
of this paper that allows us to properly initialize the lowess
iterative procedure resulting in a more effective and efficient
solution.In addition, we revised and extended the experimental
evaluation of the proposed approach, which is demonstrated
using more people observed from multiple viewpoints, and
with application to recognition and re-identification tasks.
A comparative analysis with [9] and [17] is also presented.

The rest of the paper is organized as follows: The scenario
and the problem statement are defined in Sect. II; Sect. III
reports the overall point cloud construction by registering the
depth frames of a sequence, and the initial removal of noisy

points based on anisotropic error modeling; Face reconstruc-
tion based on manifold estimation is presented in Sect. IV;
Experimental results are reported and discussed in Sect. V,
focusing on a realistic scenario of data acquired at an access
gate; Finally, conclusions are drawn in Sect. VI.

II. PROBLEM OVERVIEW

In this work, we aim at reconstructing a higher-resolution
3D model of the face, by processing a sequence of low-
resolution depth frames (frames in the following) acquired
with a Kinect camera. The depth sequences acquired with the
RGB-D camera feed the processing pipeline sketched in Fig. 1.

In the initial step, the face is detected in each RGB frame of
the input sequence using a state of the art face detector [24].
The face detector is capable of correctly detecting faces in
frontal and side views up to 90◦, over a broad range of scales
spanning from less than one to a few meters. By exploiting
the fact that the RGB and depth frames are registered with
each other, the face region detected in the RGB frame is
projected in the depth frame, so as to extract the depth data
about the detected face and convert them into a point cloud in
the 3D (X, Y, Z) coordinate system of the camera. The point
clouds extracted from different depth frames are registered
with each other, thus obtaining a cumulated point cloud,
which includes all the depth data of the sequence (block A
in Fig. 1). The cumulated point cloud is then processed to
reduce noise and construct the higher resolution face model,
passing through two additional steps, namely, iterative point
adjustment along the line of sight of the camera, and local
weighted regression for manifold estimation (corresponding,
respectively, to the blocks B and C in Fig. 1). The iter-
ative point adjustment relies on the characteristics of the
RGB-D camera, by which the (x, y, z) coordinates of a generic
point of the cloud are affected by an acquisition error, which
is anisotropically distributed (i.e., the variance of the error
along the Z axis, aligned to the line of sight, is much larger
than the variance along the X and Y directions) [25], [26].
This suggested us it is possible to adjust the position of the
points in the cumulated point cloud by exploiting their multiple
acquisitions from different viewing directions. The final step
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estimates the 2D-manifold of the face, by regularizing the
cumulated point cloud based on the non-parametric local
weighted regression (lowess) method.

Details on the steps above are given in the following.

III. CUMULATED POINT CLOUD

The first step to compute a high-resolution model of the face
is to cumulate the data of individual frames in a registered way,
thus deriving a denser point cloud (compared to the density of
data in a single frame) from multiple observations of the face.
Then, the dense point cloud is processed to discard redundant
or noisy observations.

A. Incremental Registration

Let k ∈ {1, . . . , K } be the indexes of the frames where
a face is detected, and p(k)

i the 3D coordinates (x , y and
the depth value z) of the i -th observed facial point in the
k-th frame. Registration of the 3D facial data is operated
starting from the first frame where a face is detected. It should
be noticed that using the 3D coordinates, which express the
position of points in real coordinates (millimeters) instead of
image coordinates, makes the measurements independent on
scale. The first order cumulated point cloud C(1) merges facial
data extracted from the first two frames:

C(1) = R(1)
(
{p(1)

i }i , {p(2)
i }i

)⋃
{p(1)

i }i , (1)

being R(S1, S2) the registration operator that returns the points
in the second set S2 after registering them to the points
in S1. This registration operator should cope with quite general
depth sequences, allowing the users to walk and/or change the
pose of the head, so that the scale and pose of the face can
vary during acquisition. To account for these difficulties, the
registration operator is obtained by cascading the Coherent
Point Drift (CPD) algorithm [22], a probabilistic method for
non-rigid registration of point sets, and the Iterative Closest
Point (ICP) algorithm [21], which performs rigid registration
between point sets. This combination resulted in the best
alignment between subsequent point clouds. In fact, CPD is
demonstrated to be more robust to noise and outliers than stan-
dard rigid registration methods [22]. In addition, CPD can cope
with non-rigid deformations, such as those related to facial
expressions and/or speaking that can occur in an unconstrained
acquisition process. So, running CPD permitted us to obtain a
first good initialization of the alignment, which is subsequently
refined with the rigid ICP registration.

Using this procedure, data in the next frame {p(3)
i }i are

aligned to the first order cumulated point cloud to yield the
second order cumulated point cloud:

C(2) = R(2)
(
C(1), {p(3)

i }i

)⋃
C(1). (2)

This registration process is iterated for all the available
frames, yielding the K -th order cumulated point cloud C(K ).

Figure 2 shows the effect of cumulating point clouds
of subsequent frames. In (a), the point cloud of a frame
is reported in red, whereas in (b) the current cumulated
point cloud (constructed with the frames preceding the frame
in (a)) is reported; in (c) the final result is shown, after the

Fig. 2. Cumulated point cloud construction: (a) Point cloud of a frame
in blue; (b) Cumulated point cloud of the sequence; (c) Final result obtained
by registering and cumulating the point cloud in (a) to the point cloud
in (b) using CPD and ICP.

Fig. 3. Two point clouds (one with red and one with blue colors) and the
directions of the lines of sight of two points.

point cloud in (a) is registered and added to the cumulated
point cloud of the sequence using CPD and ICP. It should be
noticed that the construction of a cumulated point cloud allows
the proposed method to cope with large pose variations with
respect to the first observed frame. In fact, the presence of a
large pose variation between the first and current observation
is compensated by the combination of all the observations
between the first and the current one.

B. Iterative Point Adjustment

The cumulated point cloud is composed of points extracted
from different frames of the acquisition sequence, and thus
observed from different viewing directions—this corresponds
to the most general case of a subject that moves with respect
to the camera.

As an example, Fig. 3 shows the cumulated point cloud
obtained from two different frames (red and blue colors are
used based on the frame points are extracted from), and the
lines of sight of two points of the cloud—the two points
are actually two observations from different directions of
the same point on the face surface. Given a point of the
cloud, its line of sight identifies the direction along which the
maximum expected measurement error can be observed [26].
Thus, regularization of the point cloud is accomplished by
moving each point along its line of sight, so as to maximize
the consistency between the coordinates of the point and
its neighbors.Formally, given a generic pivot point of the
cumulated cloud p̂ ∈ C(K ), its estimated true position pe is
measured as the median value of points of the cloud that lie
inside the cylinder Cr (p̂) of radius r and axis aligned with the



BONDI et al.: RECONSTRUCTING HIGH-RESOLUTION FACE MODELS 2847

Fig. 4. (a) The cumulated point cloud and points of the cloud (red circles)
that are within the cylinder aligned with the line of sight of the pivot point
(black circle); (b) Close up and top view of the cylinder in (a) with highlighted
the line of sight of the pivot (green line), the points of the cloud within the
pivot cylinder (red circles), and the projection of the median of points of the
cloud within the pivot cylinder onto the line of sight (green circle); (c) Close
up and top view of data shown in (a) after one adjustment step.

line of sight of p̂:

pe = median
{

p ∈ C(K )
⋂

Cr ( p̂)
}

. (3)

By using the median operator to estimate the true coordi-
nates of the pivot, the influence of outliers is reduced. Filtering
of the point cloud is operated through an iterative procedure
that adjusts the position of each point of the cloud toward
its estimated true position. At each iteration, all points of the
cloud are processed and their positions adjusted. To reduce
the computational cost of the iterative procedure, points of
the cloud are organized in a kd-tree index structure. Conver-
gence has been obtained, on average, with two iterations. The
stopping criteria uses a threshold on the variation between two
subsequent iterations.

As an example, Fig. 4 shows a general view and two close
up views of points of the cloud within the cylinder computed
for one of the point of the cloud, acting as the pivot (a value
of r=1.5mm for the radius of the cylinder has been used). The
two close up views show that after just one adjustment step
of all the points of the cloud (Fig. 4(c)), approximation of the
thin face surface is more accurate than in the original cloud
(Fig. 4(b)). This is particularly true if points within the pivot
cylinder are considered (red circles).

IV. MANIFOLD ESTIMATION

The result of the registration and adjustment processes
described in the previous Sections is a point cloud that collects

a set of points in the 3D space. The generic i -th point
pi = (xi , yi , zi ) can be regarded as the observation, affected by
some noise, of the underlying face surface that can be modeled
as a 2D-manifold embedded in the 3D space. In the proposed
approach, reconstruction of the true face surface is formalized
as a problem of manifold estimation from noisy data. For
this purpose, we adopt an approach based on the combination
of dimensionality reduction and local weighted regression,
similarly to [27] and [28] (see also block C in Fig. 1). Mapping
3D data into the 2D embedding makes it explicit the distance
on the manifold rather than in the 3D space. This is used to
compute, for a generic point of the cloud, the set of its closest
neighbors based on the local geometry of the manifold.

A. Dimensionality Reduction

Principal Component Analysis (PCA) [29] is used to
reduce the dimensionality of the manifold and compute
a 2D-embedding of the 3D point cloud. In this way, the intrin-
sic geometry of the manifold is preserved by mapping close
points on the manifold (that does not necessarily mean close
points in the 3D space) into close points on the 2D embedding.
In general, other dimensionality reduction methods could be
combined with the proposed framework. We also considered
Isomap [30] as a candidate solution, since it preserves in the
embedded space the geodesic distances between points on the
manifold. However, comparison of the results obtained with
Isomap and PCA did not show considerable differences, and
the much lower computational complexity of PCA induced us
to adopt this latter approach.

More in detail, being M the number of points in the
cumulated point cloud, their average is computed:

p̄ =
M∑

i=1

pi , (4)

and subtracted from the observations:

p′
i = pi − p̄, i = 1, . . . , M. (5)

A matrix P ∈ R
3×M is then constructed, with the points p′

i as
columns.Performing PCA of the covariance matrix C = P ·Pt ,
the matrix U ∈ R

3×3 is determined, whose columns are the
eigenvectors of C. Then, the two eigenvectors corresponding
to the two largest eigenvalues of C are considered as columns
of the matrix U2, which spans the 2D embedding subspace.
Finally, the projection of the cumulated point cloud in the
embedding subspace can be computed as Q = Ut

2 ·P ∈ R
2×M .

As an example, Fig. 5(a)-(b) show, respectively, the
3D points of the cumulated point cloud, and the corresponding
2D-embedding using PCA.

B. Locally Weighted Regression

Let qi = (ui , vi ) ∈ R
2 be the coordinates of the

3D points pi after projection onto the 2D-embedding. Fol-
lowing the original approach described by Cleveland [31],
estimation of the manifold at point pi is accomplished by
fitting a low-dimensional polynomial to the subset of points of
the cumulated point cloud that are mapped close to qi on the
2D-embedding.Operatively, the subset of data is determined
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Fig. 5. (a) Cumulated point cloud in 3D; (b) 2D-embedding of the points
in (a) using PCA.

by a nearest neighbors algorithm on the 2D-embedding. The
cardinality of this subset is controlled through a smoothing
parameter α ∈ (0, 1). The points used to fit the polynomial are
the αM closest to qi on the 2D-embedding. This set is denoted
as N(qi ). Large values of α produce smooth regression
functions that wiggle the least in response to fluctuations in the
data. The smaller α is, the closer the regression function will
conform to the data, thus yielding poor robustness to noise.

For each point qi (i = 1, . . . , M), a weight w j (qi ) is
computed using a tricube weight function:

w j (qi ) =
{(

1 − h3
j

)3
i f h j ∈ (0, 1)

0 otherwi se,
(6)

where h j is the distance between qi and q j in the 2D embed-
ding, scaled by the maximum distance between points q j ∈
N(qi ) and qi :

h j = d
(
qi − q j

)

maxq j ∈N(qi ) d
(
qi − q j

) . (7)

It should be noticed that Eq. (6) gives higher weight values
to points that are close to qi , and zero value to weights
of the points that are outside N(qi ). Furthermore, based on
Eq. (6) the value of the weight of the central point is zero
(wi (qi ) = 0). In this way, the regression function used to
project qi onto the 3D space depends only on the points in
the neighbor N(qi ) and not on qi itself. This choice is intended
to increase robustness to outliers.

These weights are used to approximate the function that
locally maps points of the 2D embedding (i.e., q j ) onto the
manifold (i.e., p j ) through a local weighted regression scheme.
This is obtained by fitting a second order polynomial on pairs
q j �→ p j , weighted by w j (qi ), for each q j ∈ N(qi ).

Algorithm 1 Locally Weighted Regression Fit
Require: 〈α, M, qi 〉
Ensure: p̂i

for all qi, i = 1, . . . , M do
compute set N(qi )
compute weights w j (qi ) for points in N(qi )
solve the weighted least squares to identify the polynomial
P : R

2 �→ R
3

update the coordinates of the i-th point of the cloud
p̂i = P(qi )

end for

Algorithm 1 summarizes the estimation process. In particu-
lar, the smoothing parameter α has been set equal to 0.0035,

Fig. 6. Effect of Locally Weighted Regression filtering for surface recon-
struction: (a) the face surface is reconstructed using only the Iterative
Point Adjustment; (b) the face is reconstructed applying Locally Weighted
Regression after Iterative Point Adjustment.

TABLE I

ESTIMATED AND MEASURED COMPUTATIONAL COMPLEXITY OF THE

PROPOSED RECONSTRUCTION METHOD (TIME MEASURES ARE

REFERRED TO A MATLAB CODE RUNNING ON A 3.2GHz CPU

WITH 32Gb MEMORY). K IS THE FRAME IMAGE SIZE;
S AND C ARE THE NUMBER OF POINTS IN THE

CURRENT FRAME AND CUMULATED POINT

CLOUD, RESPECTIVELY; M IS THE NUMBER

OF POINTS IN THE OVERALL POINT CLOUD

while the number of points in the reconstructed model M
resulted, on average, equal to 90000. The number of points
in the neighbor N(qi ) of each point qi is thus of about
300 points (i.e., αM).

Figure 6(b) shows the application of the locally weighted
regression module to surface reconstruction. Compared to the
reconstruction based only on iterative point adjustment, shown
in Fig. 6(a), the surface is smoothed, yet preserving the details
of the 3D geometry characterizing facial traits, such as the
shape of the mouth, the nasal, the orbital and the auricular
regions.

The computational complexity of the proposed reconstruc-
tion method has been estimated in Table I (some of the steps
reported are repeated for individual frames of the sequence–
on average, models are reconstructed from 23 frames). Cur-
rently, the processing is not real-time, the most onerous steps
being the iterative point adjustment and filtering. However,
these steps operate locally on the point cloud and could be
parallelized.

V. EXPERIMENTAL RESULTS

To evaluate the reconstruction accuracy of the proposed
approach, two different aspects have been considered: the
metric accuracy, which measures the error of the reconstructed
face model with respect to the high-resolution face model of
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Fig. 7. Un-cooperative acquisition. Sample RGB and depth frames (false colors) of a same subject acquired with the Kinect camera in two different set-up:
(a) door; (b) window.

the same person (Sect. V-B); the recognition accuracy, which
measures the improved accuracy of face recognition using as
probe a reconstructed face model instead of one or multiple
low-resolution frames (Sect. V-C). The recognition accuracy is
measured considering two distinct experiments: identification,
and re-identification.

The Florence Superface dataset has been used for the
evaluation. As a contribution of this work, this dataset has
been extended to include new acquisitions captured according
to an un-cooperative protocol, as described in the following.

A. The Florence Superface Dataset

Some public datasets exist for face analysis from consumer
depth cameras like Kinect. Examples are the EURECOM
Kinect Face dataset [32], or the The 3D Mask Attack database
specifically targeted to detect face spoofing attacks [33].
However, the former only includes cooperative acquisitions,
where the subjects stay in front of the camera at a predefined
(fixed) distance, while the latter yet includes cooperative
acquisitions only, and is devised to investigate mask attacks of
face recognition methods based on Kinect data.Furthermore,
since these datasets do not provide high-resolution scans of
the enrolled subjects—just low-res data—they cannot be used
to evaluate the accuracy of the proposed solution. Due to
this, in the experiments reported hereafter, we decided to
use and extend the Florence Superface dataset (UF-S) [9].
This dataset was originally designed to include 3D high
resolution face scans, and 2D videos of the face acquired in
different conditions [34]. Successive extensions of the dataset
addressed the inclusion of depth video sequences of the face,
acquired with the Kinect camera according to a cooperative
protocol [9], [35]. In this work, we further extend this dataset

by capturing depth video sequences for a subset of the subjects
according to an un-cooperative protocol. In particular, the part
of the UF-S used in the experiments includes the following
data for each one of 25 different persons:

• A 3D high-resolution scan of the face of the person,
with about 40,000 vertices acquired with a 3dMD scanner
(see Fig. 8(c) for some examples). The geometry of the
mesh is highly accurate with an average RMS error of
about 0.2mm;

• Two un-cooperative Kinect video sequences (RGB-D),
acquired in two slightly different conditions (called
in the following door and window), where the per-
son goes through an access point monitored by the
RGB-D camera. The camera is mounted on a doorjamb
or an easel, in the door and window set-up, respec-
tively, at a height of about 170cm, well positioned
for viewing the face of a person walking through the
access (see Fig. 7(a)-(b)). The face is almost com-
pletely visible at the maximum working distance (about
180cm), while just a side-part of the face is exposed
to the sensor when the person gets closer to the cam-
era (minimum distance of about 40cm). It should be
noticed that the size of the face changes as the per-
son moves toward the camera, requiring the approach
to cope with scale variations in the reconstruction
process.

B. Metric Accuracy

This experiment aims to evaluate the error of the recon-
structed 3D model with respect to the 3D high-resolution scan
of the same subject. To better understand the accuracy of
reconstruction, this error is compared to the error between the
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Fig. 8. For each subject in a column, we report: (a) The low resolution 3D scan of the reference frame; (b) The reconstructed 3D model; (c) The high-
resolution 3D scan; (d) The error-map showing, for each point of the reconstructed model, the value of the distance to its closest point on the high-resolution
scan after alignment (distance increases from red/yellow to green/blue).

depth data extracted from a reference frame of the sequence
and the 3D high-resolution scan. For this purpose, the last
frame where the face is detected in the RGB data is used as
a reference. This case corresponds to the best condition for
depth frame acquisition, where the subject is most close to
the sensor, thus yielding the highest resolution for 3D facial
data in a single depth frame.

For each subject used in the experiments, we considered:
The high-resolution scan; The reconstructed model using the
proposed approach; and the low-resolution scan obtained from
the reference frame. In all these cases, the 3D facial data are
represented as a mesh and cropped using a sphere of radius
95mm centered at the nose tip (the approach in [36] is used
to detect the nose tip).Furthermore, to fully simulate the most
general case of uncooperative data acquisition, we assume that
just one half of the face is exposed to the sensor.Accordingly,
we estimate the plane passing from the nose tip and ridge
that divides the face into its right and left parts. This plane is
used to retain 3D data about the part of the face that is most
visible. To measure the error between the high-resolution scan
and the reconstructed model of the same subject, they are first
aligned through CPD registration [22]. Then, for each point
of the reconstructed model its distance to the closest point in
the high-resolution scan is computed to build an error-map.

As an example, Fig. 8 shows the cropped 3D mesh of the
reference frame, the reconstructed model, the high-resolution
scan and the error-map between the reconstructed model and
the high-resolution scan, for some test subjects (one column
per subject).

To represent the average error of the reconstructed models
and reference frames with respect to the high-resolution scans,
the Root Mean Square Error (RMSE) between their surfaces
S and S′ is computed considering the vertex correspondences
defined by the CPD registration, which associates each vertex
p ∈ S to the closest vertex p′ ∈ S′:

RM SE(S, S′) =
(

1

N

N∑
i=1

(pi − p′
i )

2

)1/2

, (8)

being N the number of corresponding vertices in S and S′.
Results obtained using this distance measure are summa-

rized in Table II. In particular, we reported the average values
for the RMSE computed between the high-resolution scan and,
respectively, the reconstructed model and the reference frame.
On the one hand, values in Table II measure the magnitude
of the error between the reconstructed model and the high-
resolution scan of the same subject; On the other hand, they
give a quantitative evidence of the increased quality of the
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TABLE II

STATISTICS OF THE RMSE COMPUTED BETWEEN REFERENCE FRAMES
AND RECONSTRUCTED MODELS WITH RESPECT

TO 3D HIGH-RESOLUTION SCANS

TABLE III

RMSE COMPUTED BETWEEN REFERENCE FRAMES (ref.) AND 3D MODELS

RECONSTRUCTED (rec.) WITH DIFFERENT SOLUTIONS WITH

RESPECT TO 3D HIGH-RESOLUTION SCANS (high-res)

reconstructed model with respect to the reference scan. This
latter result is indeed an expected achievement of the proposed
approach, since the reconstructed models combine information
of several frames of a sequence. Thanks to the proposed
processing pipeline, the mean error of the reconstructed model
is considerably lower (less than 36% on average) than the
mean error observed in the reference frame.

1) Comparative Evaluation: The metric results obtained for
our approach have been also compared with a variant of our
method that uses median filtering instead of lowess for noise
removal, and two alternative state of the art solutions, namely,
the face Super-resolution approach [9], and the Kinect-fusion
approach proposed in [17].

Since the approaches in [9] and [17], are targeted mostly
for contexts where the framed subject is slowly moving, we
acquired a new set of depth videos with less uncooperative
conditions, so as to enable these methods to work properly
(i.e., the subjects move towards the camera keeping a frontal
pose). Results of the comparison are reported in Table III.
It can be observed that, on average, results of the proposed
method using lowess outperform other solutions. In particular,
lowess results to be more effective in removing noise, while
capturing the local manifold of the reconstructed surface.
For what concerns the other methods, the super-resolution
approach in [9] ranks as the second best, with the Kinect fusion
solution improving not so much with respect to rough frames.

Examples of reconstructed models obtained using the
approaches listed above are also reported in Fig. 9.

C. Recognition Accuracy

The reconstructed 3D face better represents the shape of the
face and is thus expected to enable more robust recognition
compared to the use of 3D data extracted from a single frame.

Fig. 9. Example models reconstructed using, respectively: (a) the proposed
approach with lowess filtering; (b) the proposed approach with median filter-
ing; (c) the super-resolution method in [9]; (d) the Kinect fusion solution [17].
In (e), the first frame of the sequence (i.e., reference frame) is shown.

The potential of the proposed approach to enable accurate
recognition is investigated with respect to two distinct sce-
narios: identification and re-identification.

In the subject identification task, the gallery is composed of
high-resolution scans, whereas reconstructed models obtained
in both the door and window set-up are used as probes
(25 subjects, 2 models per subjects, one for the door and one
for window set-up). Description and matching of gallery and
probe models is obtained according to the face recognition
approach proposed in [37], that is based on the extraction and
comparison of local features of the face.

We included 66 high-resolution scans in the gallery, and
considered the reconstructed models as probes (50 probe
models in total). We remark here that the probe models
reconstruct one side of the face thus making the recognition
more difficult with respect to the case of full frontal faces.
The recognition accuracy is evaluated through the Cumulative
Matching Characteristic (CMC) curves. Figure 10 reports the
CMC curve in the cases the reference frames (baseline) or
the reconstructed models are used as probes. The blue curve
clearly shows that using the reconstructed models a much
higher recognition accuracy is achieved compared to the use of
raw frames (red curve): the rank-1 recognition rate increases
from about 32% to 78% and rank-10 from 74% to 96%.

To further motivate the advantage of reconstructing a model
with increased resolution with respect to using raw depth
frames, we also performed a recognition experiment where
a set of N low-resolution depth frames is considered as
representing a unique probe identity, and each gallery iden-
tity is instead represented by a high-resolution scan. In this
way, the match between a probe and a gallery identity is
regarded as a match of a probe sequence against a gallery scan
(i.e., N vs. 1 match). A fusion mechanism based on the sum of
ranking is used to produce the probe vs. gallery final ranking
(we also tried voting, as fusion method, but the sum of rank
provided better results).

In the subject re-identification task described in the fol-
lowing, both the gallery and the probes are composed of
reconstructed models. Description and matching of gallery and
probe models is obtained adopting the same approach used for
the identification experiment (i.e., the method in [37]). For
each one of the 25 different subjects, two different recon-
structed models and two different low resolution reference
frames are available, acquired in the door and window set-up,
respectively. Half of the models/frames are randomly selected
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Fig. 10. CMC curves obtained by using high-resolution scans as gallery,
and reconstructed models (blue curve), reference frames (red curve), and
sequences of low resolution frames (black curve) as probes.

Fig. 11. CMC curves for the re-identification experiment. The red and the
black curves represent the baselines, respectively, for the case of matching
between individual low-resolution face frames (reference frames), and for
the case in which full sequences of low resolution frames are used for both
gallery and probes. The blue curve refers to the proposed approach, where
reconstructed face models are used for both gallery and probes.

and used as gallery, while the remaining models/frames are
used as probes. The baseline is evaluated using two methods:
matching between two reference frames, one used as probe and
one as gallery; and matching full sequences of low resolution
frames. In the latter case, a set of N low-resolution depth
frames is considered as representing a unique probe, and each
gallery identity also comprises a set of M low-resolution depth
frames. In this way, the match between a probe and a gallery
identity is regarded as a match of two sequences, which is
ultimately handled as a match between N vs. M frames.
The sum of ranking is used as fusion mechanism.Results
obtained with the baseline methods are compared with those
obtained with the reconstructed models in Fig. 11 using CMC
curves. From these curves, it clearly emerges that the proposed
face reconstruction approach enables much higher face re-
identification accuracy than the baseline solutions.

In both the recognition and re-identification scenarios,
reported in Fig. 10 and Fig. 11, it can be noticed that matching
more low-resolution frames of a sequence produces similar
results to the case where only the first frame (reference) of the
sequence is used. This is mainly motivated by the fact that, in
the sequences, subjects enter the field of view of the camera
at a distant point, go closer to the camera, and then move
away from the camera. So, there is a sort of tradeoff between

the face details that can be captured by Kinect (closer frames
correspond to higher details) and the portion of the face which
is visible to the sensor (closer frames include just a partial,
side view of the face). Results suggest that performing face
matching with just a part of the face frame adds noise to the
results, yielding no improvement in terms of accuracy.

VI. CONCLUSIONS

In this paper, we have defined an approach that permits
the construction of a higher-resolution face model starting
from a sequence of low-resolution 3D scans acquired with
a consumer depth camera in an uncooperative scenario. In the
proposed framework, first the low-resolution 3D frames of a
sequence are aligned using the Coherent Point Drift (CPD) and
ICP algorithms, so as to construct a cumulated point cloud;
Then, the cumulated and registered 3D data are filtered by
exploiting the expected distribution of the acquisition error,
and by estimating the resulting face manifold using a variant
of the lowess method.Qualitative and quantitative experiments
have been performed by extending the Florence Superface
dataset with sequences of low-resolution 3D frames acquired
with a Kinect camera according to an uncooperative proto-
col. Results of the reconstruction process of high-resolution
models are evaluated by measuring the distance error between
the reconstructed models and the high-resolution 3D scans
used as the ground truth data of a subject’s face. Results
support the idea that constructing higher-resolution models
from consumer depth cameras can be a viable approach to
make such devices deployable in real application contexts that
also include identity recognition and/or re-identification using
3D faces.
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