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Viale Morgagni 65 - 50134 Firenze, Italy
bertini, delbimbo, seidenari@dsi.unifi.it

ABSTRACT

In this paper we propose a local space-time descriptor to be
employed for behaviour analysis in video-surveillance appli-
cations. We show how this local video representation is able
to extract scene semantics in both a supervised (behaviour
recognition) and semi-supervised (anomaly detection) setup.
Our approach yields state-of-the art performance on two pub-
licly available datasets and is not computationally intensive.

Index Terms— Anomaly detection, local descriptors, be-
haviour recognition, spatio-temporal descriptors

1. INTRODUCTION AND PREVIOUS WORK

The performance of the real-world surveillance systems cur-
rently deployed is essentially dependent on that of the human
operators whose duty is to watch, typically simultaneously, a
large number of screens showing the video streams captured
by different cameras. One of the main tasks of this security
staff is to detect suspicious or unusual behaviour of individu-
als and crowds, so to react appropriately.

Video analysis techniques that automatically interpret
video streams to warn the operators, possibly in real-time,
that unusual activity or certain human action is taking place
are receiving much attention from the scientific community
in recent years. The detection of unusual events can be used
also to guide other surveillance tasks such as human be-
haviour and action recognition, target tracking, and person
and car identification (e.g. using pan-tilt-zoom cameras to
capture high resolution images of the subjects).

Some interesting research contributions to human action
recognition have proposed methods to automatically detect
and recognize classes of human activity [1–4]. However,
building a general recognition and classification system for
this type of dynamic facts has proven to be very challenging,
because of the many variations in setting, persons and actions
that may be observed: setting variations can be caused by
clutter or background changes, scene illumination changes
and camera motion; person appearance may change in size,
shape and posture; actions that are semantically equivalent
can manifest differently or partially. All these issues reflect

in the difficulty of defining effective descriptors of spatio-
temporal facts.

A possible solution is to use local representations, that
have shown better performance for videos in unconstrained
scenes. In fact, they are less sensitive to partial occlusions
and noise and overcome some limitations of holistic models,
such as the necessity of performing background subtraction
and target tracking. In this approach, body movements and
scene changes are described from the observations of spatio-
temporal interest points, computing robust local descriptors of
the local patches either around salient points or in correspon-
dence of grids used for dense sampling. Laptev [5] proposed
an extension to the Harris-Förstner corner detector for the
spatio-temporal case; interesting parts were extracted from
voxels surrounding local maxima of spatio-temporal corners,
i.e. locations of videos which exhibit strong variations of in-
tensity both in spatial and temporal directions. The extension
of the scale-space theory to the temporal dimension permit-
ted to define a method for automatic scale-selection. Laptev’s
descriptors were used in [6] to define a set of codewords
so to have each video shot of a human action represented
by a histogram of dynamic visual words. Dollár et al. [7]
proposed a different descriptor than Laptev’s, by looking for
locally periodic motion. While this method produces a denser
sampling of the spatio-temporal volume, it does not provide
automatic scale-selection. Despite of it, experimental results
have shown that it improves w.r.t. [6]. In [8] Willems et
al. extended SURF feature to time and defined a new scale-
invariant spatio-temporal detector and descriptor that showed
high efficiency. More simple descriptors based on spatio-
temporal gradients have been used to model motion in [9, 10]
for anomaly detection. Dynamic textures have been used to
model multiple components of different anomaly appearance
and dynamics in [11, 12].

In this paper we propose a local space-time descriptor to
be employed for behaviour recognition and anomaly detec-
tion in video-surveillance applications. The descriptor can be
used in real-time applications and obtains state-of-the art per-
formance on two publicly available datasets .
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2. THE SPATIO-TEMPORAL DESCRIPTOR

2.1. Feature sampling

Similarly to the approaches used in scene and object de-
tection, local spatio-temporal descriptors can be computed
around sparsely or densely sampled points. In the first case,
in our approach, the spatio-temporal interest points are de-
tected at video local maxima of the Dollár’s detector applied
over a set of spatial and temporal scales. Multiple scales are
used to capture the essence of motion activity. Linear filters
are separately applied to the spatial and temporal dimension:
the spatial scale permits to detect visual features of higher or
lower detail, while the temporal scale allows to detect action
primitives performed at different speeds. The response func-
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provide a strong response to temporal intensity changes,
specifically to periodic motion patterns. In the experiments
we used � = {2, 4} as spatial scales and ⌧ = {2, 4} as tem-
poral scales. In the second case we sample the features on a
grid, in order to obtain a coverage of the scene statistics that
is as complete as possible. This approach is also motivated
by the good performance obtained using dense sampling in
object recognition [13] and human action recognition [14].
When considering the task of anomaly detection the solu-
tion adopted in this work is to use spatio-temporal features
that are densely sampled on a grid of cuboids that overlap
in space. This overlap has three effects: it performs a more
precise localization of an anomaly both in terms of position
and time; it takes into account the fact that certain parts of
the scene are subject to different anomalies and illumination
conditions; it is well suited for the typical fixed camera setup
used in surveillance deployments. In our previous work [15]
we have investigated how the overlap affects the performance
of the system, and determined that a 50% spatial overlap pro-
vides the best performance, detecting more abnormal patterns
without raising false positives, because spatial localization
of the anomaly is improved. Preliminary experiments have
instead shown that temporal overlap does not provide an
improvement and may even increase false detections.

2.2. Descriptor computation

Spatio-temporal volumes are taken around spatio-temporal
interest points selected using one the approaches presented
in the previous subsection, and divided into equally sized
regions: S

x

, S

y

for the spatial dimensions x, y and T for the
temporal dimension t.

For each region a descriptor that accounts for the varia-

tion of appearance and motion is obtained as follows. Image
gradients on x, y and t direction are computed as:
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The orientation histograms of � and ✓ are derived, by
weighting the contribution of each pixel with the gradient
magnitude M
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entations � (with range �⇡
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2 ) and ✓ (�⇡,⇡) are quantized
in four and eight bins respectively. The descriptor is obtained
by concatenating the histograms of � and ✓ of each region.
The total dimension is S
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⇥ T ⇥ (8 + 4). The choice
of S
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has an influence on the speed of computation of
the descriptor when using dense sampling with overlap. In
fact, using a number of spatial subregions that is a multiple of
the overlap reduces the computational cost of the descriptors:
considering that a 50% overlap of cuboids is optimal then it
is convenient to use an even number of spatial regions, since
it is possible to reuse 50% or, depending on the position of
the cuboid, 75% of the descriptors of nearby cuboids. The
choice of T is dependent on the frame rate of the video: typ-
ically surveillance videos are captured with low framee rate,
so that there is no need to have a fine grained temporal sub-
division. Therefore, we have divided the cuboid in 8 subre-
gions (S

x

= S

y

= 2), two along each spatial direction and
two along the temporal direction. This choice increases the
speed of the system of about 50%, with respect to a division
of cuboids in 3 ⇥ 3 ⇥ 2 regions [15]. The final size of the
descriptor is then 2⇥ 2⇥ 2⇥ (8 + 4) = 96.

This construction of the three-dimensional histogram is
inspired, in principle, by the approach proposed by Scovanner
et al. [16], where they construct a weighted three-dimensional
histogram normalized by the solid angle value (instead of
separately quantizing the two orientations) to avoid distor-
tions due to the polar coordinate representation. However, we
have found that our method is computationally less expensive,
equally effective in describing motion information given by
appearance variation, and shows an accuracy of human action
recognition that is above or in line with other state-of-the-art
descriptors [17], but without requiring tuning of descriptor
parameters.

3. BEHAVIOUR AND ANOMALY MODELLING

3.1. Supervised approach for behaviour recognition

The proposed descriptor can be used to represent video se-
quences using a bag of spatio-temporal visual words, follow-



ing the successful results achieved in object and scene classi-
fication. The basic idea of the bag-of-visual-words (BoVW)
approach is to represent visual content as an unordered col-
lection of (visual) words. To this end, it is necessary to define
a visual vocabulary from the local features extracted in the
video sequences, performing a quantization of the original
feature space. The visual vocabulary is generated by clus-
tering of a set of interest points and each cluster is treated as
a visual word. In particular, we use the k-means algorithm
because of its simplicity and convergence speed. By map-
ping the features extracted from a video to the vocabulary, we
can represent it by the frequency histogram of visual words.
Then, this histogram is fed to a classifier to predict the action
category.

In our work classification is performed using non-linear
SVMs with the �

2 kernel [18]. For multi-class classification,
we use the one-vs-one approach.

3.2. Unsupervised approach for anomaly detection

Considering that anomalies are rare and differ amongst each
other with unpredictable variations, in this work we follow an
unsupervised approach. Our technique is inspired by the one
proposed in [19], where the proposed scene representation is
global and static, based on global histograms of oriented gra-
dients of single frames. Instead, in our approach, we repre-
sent the scene using local spatio-temporal features with dense
sampling and we exploit the idea of the adaptive threshold
in order to learn, over time, local models for different por-
tions of the scene. Another significant difference with respect
to [19] is the use of pure data instead of clusters, to avoid to
corrupt data distribution and to produce a more accurate es-
timation of the distance threshold used to detect anomalies.
Also the model update procedure is different: since we are
not applying any clustering procedure to data, our model up-
date can be performed just by analyzing the detected anoma-
lies stored over time; therefore it can be performed more fre-
quently, without the need to operate either in detection mode
or in maintenance mode.

In order to decide if an event is anomalous we need a
method to estimate normal descriptor statistics. Since no
assumptions are made on the scene setup, it is important to
define this normal descriptor distribution locally with respect
to the frame. Therefore, given a certain amount of train-
ing frames for each cell in our grid, space-time descriptors
are collected and stored using a structure for fast nearest-
neighbour search, providing local estimates of anomalies.
The training stage is very straightforward, since we do not
use any parametric model to learn the local motion and ap-
pearance. A simple way to decide if an event happening at
a certain time and location of the video stream should be
considered anomalous, is to perform a range query on the
training set data structure, looking for neighbours. Once an
optimal radius for each image location is learned, all patterns

for which the range query does not return any neighbour are
considered anomalies. The main issue with this technique is
the intrinsic impossibility of selecting a priori a correct value
for the radius. This happens for several reasons: firstly, each
scene location undergoes different dynamics, for example a
street will mostly contains fast unidirectional motion gener-
ated by vehicles, a walkway will have less intense motion
and more variations of the direction and, instead, the side
of a parking lot will mostly contain static information. Sec-
ondly, we want to be able to update our model dynamically by
adding data which should be considered normal given the fact
that we observed that kind of pattern for a sufficient amount
of time; therefore, scene statistics will evolve over time and
the optimal radius will evolve too. Finally, we also would like
to select a value that encodes the system sensitivity, i.e. the
probability that the observed pattern is not generated from the
underlying scene descriptors distribution.

To estimate the optimal radius for each data structure
we compute CDF

i

, the empirical cumulative distribution of
nearest-neighbour distances of all features in the structure of
the cell i of the sampling grid. Given a probability p
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below
which we consider an event anomalous, we choose the radius
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less sensitive system. After setting such value p
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, optimal
radii are estimated for each cell with likely different values.
This optimal radius formulation allows easy data-driven pa-
rameter selection and model update.

4. EXPERIMENTAL RESULTS

4.1. Experiments on crowd behaviours

In this experiment we analyze the ability of our descriptor
to classify crowd behaviours, in particular normal pedestrian
behaviours and panic. We tested our approach on the crowd
behaviour dataset created by the University of Minnesota
(UMN)1. The dataset comprises the videos of 11 different
scenarios in different indoor and outdoor scenes. Each video
consists of an initial part of normal behaviour and ends with
sequences of panicking and escaping. Videos are recorded at
30 FPS with a resolution of 320 ⇥ 240. Examples of these
behaviours are shown in Fig. 1. We split the dataset in four
sub-sets segmenting different scenes which include different
indoor and outdoor settings. For each video of each sub-set
we extracted clips, with a length of 100 frames, from each
“normal” and “panic” parts, obtaining a total of 88 video
clips. Experiments are carried with a 4-fold cross-validation
per scene, avoiding to classify a video using a model trained
on clips from the same scene. We test our approach evaluat-
ing different interest points detection strategies. In particular

1http://mha.cs.umn.edu/proj events.shtml



we tested both the detector based (sparse) approach and a
dense sampling approach. The dense sampling has shown to
perform best with a 97.43% accuracy while the detector based
approach accuracy is 85.89%. This is probably due to the fact
that in this dataset persons are relatively small w.r.t. the frame
size and the detector finds too few interest points.

4.2. Experiments on anomaly detection

We tested our approach on the UCSD2 anomaly dataset pre-
sented in [12], which provides frame-by-frame local anomaly
annotation. The dataset consists of two subsets, correspond-
ing to different scenes using fixed cameras that overlook
pedestrian walkways: one (called Peds1) contains videos of
people moving towards and away from the camera, with some
perspective distortion; the other (called Peds2) shows pedes-
trian movement parallel to the camera. Videos are recorded at
10 FPS with a resolution of 238⇥158 and 360⇥240, respec-
tively. This dataset mostly contains sequences of pedestrians
in walkways; annotated anomalies, that are not staged, are
non-pedestrian entities (cyclists, skaters, small carts) ac-
cessing the walkway and pedestrians moving in anomalous
motion patterns or in non-walkway regions. The first sub-
set contains 34 training video samples and 36 testing video
samples, while the latter contains 16 training video samples
and 12 testing video samples. Each sequence lasts around
200 frames, for a total dataset duration of ⇠ 33 minutes. 10
videos of the Peds1 subset have manually generated pixel-
level binary masks, which identify the regions containing
anomalies. Each anomalous frame in the testing set is an-
notated; for each cuboid classified as anomalous, we flag
as anomalous each region of the frames from which it was
created; frames that contain at least one anomalous region are
considered anomalous. We follow the evaluation procedure
reported in [12]: in the frame level evaluation an abnormal
frame is considered correctly detected if at least one pixel of
the frame is detected as anomalous; in the pixel level evalua-
tion an abnormal frame is considered correctly detected if at
least the 40% of the anomalous pixels are detected correctly
and considered a false positive otherwise. A “lucky guess”
happens when a region different from the one that generated
the anomaly is detected as anomalous in the same frame. The
frame level detection evaluation does not takes into account
this phenomenon. In our previous work [15] we evaluated the
best parameters for dense sampling and overlapping of the
spatio-temporal descriptors: the best results were obtained
for cuboids of 40 ⇥ 40 pixels, with 8 frames of depth, a
spatial overlap of 50% and no temporal overlap. In these
experiments we used the same parameters.

We compare our system with other state-of-the-art ap-
proaches, whose results are reported in [12]: MPCCA [20],
Adam et al. [21], Mehran et al. [22] and Mahadevan et
al. [12]. Results are reported using the ROC curve and the

2http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm

Localisation UCSPed1 UCSPed2 Average
Single scale 27% 34% 32% 33%
Multiscale 28% 32% 31% 32%
Context 29% 31% 30% 30%
MDT (Mahadevan et al. ) 45% 25% 25% 25%
MPPCA (Kim et al. ) 18% 40% 30% 35%
Social Force (Mehran et al. ) 21% 31% 42% 37%
Adam et al. 24% 38% 42% 40%

Table 1. Summary of quantitative system performance and
comparison with state-of-the-art. EER is reported for frame
level anomaly detection on Peds1 and Peds2 datasets. Local-
isation performance is presented as detection rate at EER.

Equal Error Rate (EER), that is the rate at which both false
positives and misses are equal. Fig. 2, Fig. 3 and Tab. 1 report
the results for anomaly detection in Peds1 and Peds2. Fig.4
and Tab. 1 report results for anomaly localization on Peds1.
Our performance at the frame level is close to Social Force
for Peds1 but is far superior in the localisation task to all other
methods except [12]. Our approach, with the use of multiple
scales and contextual queries, obtains the second best result
in temporal and spatial anomaly detection after the method
proposed in [12], but it has to be noted that this approach is
not suitable for real-time processing since it takes 25 seconds
to process a single frame on a computer with a computational
power comparable to the one used in our experiments. The
good results in anomaly localization imply that we are not
taking advantage of lucky guesses, but that we accurately
localise the abnormal behaviours in space and time. Fig. 5
shows a qualitative comparison of anomaly localization of
our approach with state-of-the-art off-line approach [12].
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Fig. 2. ROC curve to compare our method with state-of-the-
art approaches on the Peds1 dataset. The dashed diagonal is
the EER line.

5. CONCLUSIONS

In this paper we have presented a spatio-temporal descrip-
tor that can be used for crowd behavior recognition and non-
parametric anomaly detection. The descriptor has been tested



Fig. 1. Sample frames from the UMN dataset; top row shows normal crowd behaviour and bottom row shows crowd panic
frames.
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Fig. 3. ROC curve to compare our method with state-of-the-
art approaches on the Peds2 dataset. The dashed diagonal is
the EER line.

in combination with dense and overlapping spatio-temporal
volumes and with sparse sampling, to capture the scene dy-
namics, allowing the detection of different types of anomalies
and crowd behaviours. The proposed descriptor is capable of
handling challenging crowded scenes that cannot be modeled
using trajectories or pure motion statistics (e.g. optical flow).
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