
onthepositionsofjoints.First,thebodyskeletonisde-

composedinasetofkinematicchains,andthepositionof

eachjointisexpressedinalocallyde“nedreferencesys-

temwhichmakesthecoordinatesinvarianttobodytrans-

lationsandrotations.Amulti-partbag-of-posesapproach

isthende“ned,whichpermitstheseparatealignmentof

bodypartsthroughanearest-neighborclassi“cation.Ex-

perimentsconductedontheFlorence3DActiondatasetand

theMSRDailyActivitydatasetshowpromisingresults.

1. Introduction

Imaging technologies have recently shown a rapid ad-

vancement with the introduction of consumer depth cam-

eras with real-time capabilities, like Microsoft Kinect or

Asus Xtion PRO LIVE. These new acquisition devices

have stimulated the development of various promising ap-

plications, including human pose reconstruction and esti-

mation [1, 6, 12], scene flow estimation [7], hand gesture

recognition [2], face super-resolution [3]. Encouraging re-

sults shown in these works have been made possible also

thanks to the advantages that depth cameras have in com-

parison to conventional cameras, such as an easier fore-

ground/background segmentation, and a lower sensitivity to

lighting conditions.

In particular, an increasing attention has been directed

to the task of recognizing human actions using depth map

sequences. To this end, several approaches have been devel-

oped in the last few years that can be categorized as: skele-
ton based, that estimate the positions of a set of joints in

the human skeleton from the depth map, and then model

the pose of the human body in subsequent frames of a se-

quence using the position and the relations between joints;

depth map based, that extract volumetric and temporal fea-

tures from the overall set of points of the depth maps in a

sequence; and hybrid solutions, which combine information

extracted from both the joints of the skeleton and the depth

maps. Following this categorization, existing methods for

human action recognition with depth cameras are shortly

reviewed below.

1.1. Related work

Skeleton based approaches have become popular thanks

to the work of Shotton et al. [12], where a real-time method

is defined to accurately predict 3D positions of body joints

in individual depth map without using any temporal infor-

mation. In that work, prediction accuracy results are re-

ported for 16 joints, but the Kinect tracking system devel-

oped on top of this approach is capable to estimate 3D po-

sitions for 20 joints of the human skeleton. Relying on the

joints location provided by Kinect, in [15] an approach for

human action recognition is proposed which computes his-

tograms of the locations of 12 3D joints as a compact rep-

resentation of postures. The histograms computed from the

action depth sequences are then projected using LDA and

clustered into k posture visual words, which represent the

prototypical poses of actions. The temporal evolutions of

those visual words are modeled by discrete Hidden Markov

Models (HMMs). Results were provided on a proprietary

dataset and on the public Microsoft Research (MSR) Ac-

tion3D dataset [9]. In [16], human actions recognition is

obtained by extracting three features for each joint which

are based on pair-wise differences of joint positions, respec-

tively: differences between joints in the current frame; be-

tween joints in the current frame and the preceding frame;

and between joints in the current frame and in the initial

frame of the sequence that is assumed to approximate the

neutral posture. Since the number of these differences re-

sults in a high dimensional feature vector, PCA is used to

reduce redundancy and noise in the feature, and to obtain a

compact EigenJoints representation for each frame. Finally,

a naı̈ve-Bayes nearest-neighbor classifier is used for multi-

class action classification on the MSR Action3D dataset.
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3. Action classification
State of the art methods for image classification are

based on parametric classifiers, like SVM, Boosting, etc.,

which require an intensive learning/training stage. In con-

trast, non-parametric Nearest-Neighbor (NN) based classi-

fiers have some favorable properties: Naturally deal with a

large number of classes; Avoid the overfitting problem; Do

not require parameters learning. However, the large perfor-

mance gap between these two families of approaches ren-

dered NN-based image classifiers useless. This position has

been recently rebutted in [4], where it was observed that

the effectiveness of NN for image classification has been

largely underestimated due to the quantization of image de-

scriptors and the computation of image-to-image distance.

In particular, the experiments in [4] showed that frequent

descriptors have low quantization error, but rare descriptors

have high quantization error. Since discriminative descrip-

tors tend to be rare, quantization can significantly degrade

the discriminative power of descriptors. In addition, they

observed that computing image-to-class distance, which de-

pends on the distribution of the descriptor over the entire

class, provides better generalization capability than image-

to-image distance. Extension of these concepts to NN-

based video classification for action recognition was also

proposed in [16].

3.1. NBNN on bag of poses

Following this idea, in our approach a Naı̈ve-Bayes

Nearest-Neighbor (NBNN) classifier is applied for action

recognition. For each frame in a sequence of depth maps,

a feature vector is computed and used without quantization

as frame descriptor, as detailed in Sect. 2. Considering M
classes of actions to be recognized Ck , k = 1, . . . , M , a

number of labelled sequences per class is used as “train-

ing” set. Actually, this step does not include any learn-

ing/training of parameters, but the frame descriptors of

these labelled sequences just serve as prototypes of a class.

According to this, given a depth frame f i of a query se-

quence and its descriptor hi , for each class Ck the training

frame is searched which minimizes the distance:

dCk
i = � hi Š NN Ck(hi )� 2, (1)

where NN Ck
(hi ) is the NN-descriptor of hi in the train-

ing frames of class Ck . Repeating this step for each

frame f i , i = 1, . . . , S of a sequence, a set of M class-
reconstructed sequences are derived, each comprising the

NN-frames in the class Ck .

Based on the distance between a query frame descriptor

and its NN-frame descriptor, a goodness value is than asso-

ciated to each of the class-reconstructed sequences:

GCk =
1
S

S�

i=1

gCk
i =

1
S

S�

i=1

exp(dCk
i /� 2). (2)

3.2. Weak temporal alignment of bag of poses

However, the goodness value computed between two se-

quences does not account for their temporal ordering. Due

to this, frames in the class-reconstructed sequences could

have a meaningless temporal ordering when compared to

the query sequence. So, in order to account for the temporal

correlation between two sequences, the Kendall rank corre-
lation coefficient (also known as Kendall’s � coefficient) is

computed, which produces an index in the [Š1, 1] interval:

� equal to 0 means that the two sequences have indepen-

dent ordering; values of � equal to +1 or Š1 indicate, re-

spectively, that the two sequences have values that follow

the same or opposite ordering. In our case, the Kendall’s �
coefficient is computed between the S frames of a query se-

quence and the class-reconstructed sequence of each class

Ck :

� Ck =
N Ck

a Š N Ck

d
1
2N (N Š 1)

, (3)

where N Ck
a and N Ck

d represent, respectively, the number of

observation pairs (i.e., frames) in the two sequences which

are in agreement/disagreement. Finally, the two scores are

combined together to obtain the overall classification score

of a query sequence with respect to a class Ck . To this end

the � Ck value is normalized in [0,1], that is: TCk = (� +
1)/ 2. The class C∗

k which maximizes the overall score is

assumed as the label for the query sequence:

C∗
k = arg max

Ck

(�G Ck + (1 Š � )TCk). (4)

In our preliminary experiments, we found that even for

reasonably high � values (e.g., 0.8) the TCk scoring ac-

tually helps in disambiguating classes that appear simi-

lar if the order is not taken into account, like sit down
and stand up, but may decrease the recognition accu-

racy for other classes. Instead, we found beneficial to

add an extra feature to the feature vector obtaining h =�
u0 r0 t0, . . . , u7 r7 t7, � s

S

�
, where s is the frame index

and S is the sequence length in frames. The constant �
ensures that the weight of the temporal feature is not dis-

carded because of the high dimensionality of the vector

and it is selected by cross-validation. To encode short

time temporal relationships, we also add to vector h tem-

poral derivatives [duj dr j dt j ]. The final feature set is

h =
�
u0 r0 t0, du0 dr0 dt0, . . . , � s

S

�
.

For efficiency reasons, the frame descriptors of the train-

ing sequences of a class are stored in a KD-tree (a total

of M trees are constructed). Using a KD-tree, the class-
reconstructed sequence of a query with S frames is con-

structed with S searches, each search having a logarith-

mic cost in the number of frames in the tree. As it can

be observed in Fig. 2, our approach performs an implicit

sequence-to-class alignment procedure picking for each
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wave} on Florence 3D dataset; on the MSR Daily Activity

we can observe a diffused confusion in the upper left quad-

rant of the confusion matrix relative to { drink, eat, call, eat,
write} . Also, since we are not employing features other than

the joints representation our approach has not very high ac-

curacy on actions mainly defined by the presence of an ob-

ject, like vacuum, laptop,read or write.

5. Discussion and conclusions
In this work, we have proposed a method for human

action recognition which is based on weakly aligning the

3D coordinates of joints in multiple parts of the skeleton.

The approach first defines a kinematic representation of the

human body which results into four chains, each model-

ing a limb. The 3D coordinates of each joint in a chain

are then expressed in a locally defined reference system,

which permits coordinates invariance with respect to rota-

tions and translations. In the proposed basic approach, the

coordinates of the joints are used as feature vector repre-

senting the human body in each frame. This basic solu-

tion is then extended with the use of temporal derivatives

of the coordinates as well as with a temporal feature. In

order to make the approach robust to noise, a part based

solution has been also deployed with permits alignment of

sub-sets of the joints. Both these extensions resulted ben-

eficial in improving the performance of the approach. In

all the cases, a sequence-to-class nearest-neighbor classifier

has been used to score the similarity of a query action. Ex-

periments carried out on two benchmark datasets support

the applicability of the proposed solution. When compared

to other skeletal-based solution our approach shows com-

petitive performance.

Achieved results are still lower than those obtained by

state of the art hybrid methods that exploit both joint and

depth map information. We remark that the main aim of

this work was to show the powerful of information that can

be extracted from the 3D skeleton only, without requiring

the additional processing of the entire depth maps of a se-

quence. The investigation of how to extend our solution also

including such information is left as future work.
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