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In this paper we address the problem of creating a smart audio guide that adapts to the actions and interests
of museum visitors. As an autonomous agent, our guide perceives the context and is able to interact with
users in an appropriate fashion. To do so, it understands what the visitor is looking at, if the visitor is
moving inside the museum hall or if he is talking with a friend. The guide performs automatic recognition
of artworks, and it provides configurable interface features to improve the user experience and the fruition
of multimedia materials through semi-automatic interaction.

Our smart audio guide is backed by a computer vision system capable to work in real-time on a mobile
device, coupled with audio and motion sensors. We propose the use of a compact Convolutional Neural
Network (CNN) that performs object classification and localization. Using the same CNN features computed
for these tasks, we perform also robust artwork recognition. To improve the recognition accuracy we perform
additional video processing using shape based filtering, artwork tracking and temporal filtering. The system
has been deployed on a NVIDIA Jetson TK1 and a NVIDIA Shield Tablet K1, and tested in a real world
environment (Bargello Museum of Florence).
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1. INTRODUCTION

Digital and mobile technologies are becoming a key factor to enhance visitors’ expe-
riences during a museum visit, e.g. creating interactive and personalized visits. Per-
sonalization is viewed as a factor in enabling museums to change from “talking to the
visitor” to “talking with the visitors”, turning a monologue to a dialogue. This applies
especially to audio guides since, similarly to a real museum guide, they must adapt
their content to the needs and interests of the visitors [Bowen and Filippini-Fantoni
2004]. Whether personalization addresses on-line exhibitions [Bowen and Filippini-
Fantoni 2004], on-site display of artworks [Karaman et al. 2016], or both on-line and
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on-site [Wang et al. 2009], there is a need to obtain information about the behavior
of the visitor, e.g. what he is looking at, for how long, and what other events happen
during the visit. In this paper we address the problem of creating a smart audio guide
that adapts to the actions and interests of the visitor of a museum, understanding both
the context of the visit and what the visitor is looking at.

The goal of this work is to implement a real-time computer vision system that can
run on wearable devices to perform object classification and artwork recognition, to im-
prove the experience of a museum visit through the automatic detection of the behavior
of users. Object classification, sensors and voice activity detection help to understand
the context of the visit, e.g. differentiating when a visitor is talking with people or his
sight is occluded by other visitors, e.g. understanding if he has friends that accompany
him during the visit to the museum, or he is just wandering through the museum, or
if he is looking at an exhibit that interests him.1 Artwork recognition allows to pro-
vide multimedia insights of the observed item automatically or to create a user profile
based on what artworks a user is looking at and for how long.

2. RELATED WORK

Personalized museum experience.

The personalization of a museum visit may address the on-line experience in a virtual
museum, the on-site experience in the museum itself, or both cases.

In [Bowen and Filippini-Fantoni 2004] web personalization in museums is moti-
vated by the advantages that it provides in improving usability of museum web sites
and the facilitation of the learning process implied in a visit. Personalization is consid-
ered a new communication strategy that improves relationships between visitors and
the institution. In [Wang et al. 2009] it is presented the Cultural Heritage Information
Personalization (CHIP) system, that bridges on-line and on-site tour guides creating a
personalized visit tour through a web site and then downloading the guide on a mo-
bile device with RFID sensors that track the visitor in the museum. Tour information
and the rating of artworks, if provided by users, are then sent back to the web site to
update the user profile. Interactive digital guides have been used in [Zancanaro et al.
2007] and [Kuflik et al. 2012] to analyze and predict the behavioral patterns of mu-
seum visitors, according to four main patterns that were initially identified through
ethnographic observations by [Eliseo and Martine 1991]. The works show that the
four patterns can be identified using features such as average time spent on each art-
work, percentage of observed artworks, etc. In [Keil et al. 2013] augmented reality
(AR) on a mobile device is coupled with a personalized interactive storytelling expe-
rience, e.g. adapting the guide based on the age of the visitor, providing a gamified
experience to children. In [Karaman et al. 2016] a non-intrusive computer-vision sys-
tem has been presented, based on person re-identification of museum visitors observed
through surveillance cameras. The system identifies the artworks that are observed
by museum visitors and measures how much time is spent looking at each artwork,
to create a personalized user profile. At the end of the tour the user profile is used to
create a personalized exploration of multimedia content on an interactive table, pro-
viding more information on the items that most attracted the visitor, and suggesting
additional visits and tours.

Object detection and recognition

After the breakthrough of convolutional neural networks in image classification
brought by Krizhevsky et al. [Krizhevsky et al. 2012], several works have used similar

1https://vimeo.com/187957085
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or derived strategies to solve other image and video related tasks [Erhan et al. 2014;
Girshick 2015; Girshick et al. 2014; Ren et al. 2015]. A simple, yet dramatically effec-
tive strategy pioneered by Girshick et al. is to extract CNN features from regions of an
image. Further improvements in localization and accuracy are obtained using a bound-
ing box regressor and fine-tuning the CNN features on the detection task. The task of
computing a full forward pass for every sub-window is extremely time expensive even
for moderately shallow networks. More up-to-date works [Girshick 2015; Ren et al.
2015] avoid this burden by computing a single full resolution convolution on the whole
frame and then performing classification and bounding box regression over a region of
interest computed over the last convolutional layer. Fast R-CNN avoided the compu-
tation of multiple full forward passes, nonetheless it required expensive resources to
compute object proposals, often generated with low-level features such as edges [Zit-
nick and Dollár 2014]. Ren et al. [Ren et al. 2015] removed this further computation
bottleneck by learning a lightweight object proposal sharing the same features of the
network used for object detection.

A more recent class of approaches tries to generate a set of class-labeled bounding
boxes with a single pass of a convolutional network [Redmon et al. 2016; Liu et al.
2016]. Redmon et al. argue that You should Only Look Once (YOLO) at frames, using
an architecture inspired by Inception [Szegedy et al. 2015] focused on reducing the
network size and the computation. The main idea is to produce, as an output, a tensor
of size N × N × |C| × 5, representing the coordinates and probabilities, for each of
the C categories, for N2 evaluated locations. Liu et al. proposed an approach named
Single-Shot Detection (SSD), which is very similar to YOLO, but differs in the fact
that it removes all fully connected layers allowing to predict bounding box using small
convolutional filters on the last convolutional activation map. One advantage of SSD is
that it allows to evaluate more windows, at multiple scales, by computing convolutions
on previous output layers.

Content-based retrieval for Cultural Heritage

Over the years several methods and applications of content-based image retrieval
(CBIR) techniques have been applied to the domain of cultural heritage.

A comparison of different techniques, based on engineered and learned features, for
image classification and retrieval in cultural heritage archives has been presented in
[Picard et al. 2015]. The authors of this work highlight two issues when applying cur-
rent state-of-the-art CBIR techniques in the cultural heritage domain: i) often there
is need to account for both micro properties, such as brush strokes, and macro prop-
erties, such as scene layout, in the design of similarity metrics; ii) datasets are, para-
doxically, relatively small, with few images for each item, thus hindering methods that
require large scale training datasets. A model to support recognition of complex 3D
monuments such as statues was proposed in [Del Bimbo et al. 2009]; in the proposed
approach salient SIFT points are selected using a measure of mutual information to
reject points that are part of background. A method for painting classification, in terms
of artist and style, has been proposed in [Anwer et al. 2016]. Paintings are represented
using the concatenation of two Fisher Vectors that represent the whole image and
salient parts of the image. In [Liu et al. 2015] a late fusion of global and local CNN
features is used to classify images taken during cultural events.

Object recognition on mobile devices

The availability of multi-core CPUs and GPUs on mobile devices has recently allowed
to implement multimedia and computer vision methods on smartphones, with partic-
ular attention to convolutional neural networks.
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In [Yanai et al. 2016] an analysis of the best CNN architectures for mobile de-
vices has been performed, evaluating the impact of using NEON SIMD instructions
available on ARM CPUs and BLAS routines. The authors propose to use a Network-
In-Network (NIN) architecture, where neuron weights are compressed with Product
Quantization, to reduce the memory occupation of the CNN network. This solution has
been employed to implement a mobile system for food recognition, presented in [Tanno
et al. 2016]. The problem of food recognition using mobile devices has been addressed
also in [Meyers et al. 2015], where different CNNs are used to segment food, estimate
the 3D volume and classify food, so to provide an estimation of the calories; however
only the CNN for food classification has been ported to a mobile device. Speed improve-
ment and memory requirements reduction of CNN execution, for mobile devices, has
been obtained in [Wu et al. 2016] through weights quantization of fully connected and
convolutional layers, and applying an error correction technique to minimize the esti-
mation error of each layer. In [Huynh et al. 2016] a framework to execute deep learning
algorithms on mobile devices has been presented. The framework uses OpenCL to ex-
ploit the GPUs. The framework addresses the problem of thread divergence in GPUs
through data padding. In [Latifi Oskouei et al. 2016] has been presented a framework
for GPU-accelerated CNNs on Android devices, that uses SIMD instruction on mobile
GPUs, parallelizing some types of layers on GPUs and others, that are less computa-
tionally intensive, on CPUs. The framework has been released as open source.

Voice Activity Detection

Voice activity detection (VAD) is the process of detecting when humans are speaking
in a given audio stream. It is essential to improve further processing like automatic
speech recognition or saving bandwidth in audio coding or conference systems.

The first VAD system was first investigated in the fifties to be used on TASI systems
[Bullington and Fraser 1959]. Early approaches to this problem were based on heuris-
tics and simple energy modeling, by thresholding or observing zero-crossing rate rules
[Woo et al. 2000]. These methods work well in settings where no background noise
is present. More recent methods address this limitation by employing autoregressive
models and line spectral frequencies [Mousazadeh and Cohen 2011] to observe sig-
nal statistics in current frame and compare it with the estimated noise statistics with
some decision rules. However, most of these conventional algorithms assume that noise
statistics are stationary over long periods of time, more than those of speech. Given the
extreme diversity and rapid changes of noise in different environments, they can’t de-
tect occasional presence of speech. The most recent class of approaches for VAD are
that of data-driven methods, that avoid to make assumption over the noise distribu-
tion. They usually use a classifier trained to predict speech vs non-speech given some
acoustic features [Elizalde and Friedland 2013; Misra 2012]. Anyway, their perfor-
mance degrades when the background noise resembles that of speech. The state-of-
the-art methods exploit long-span context features learned through the use of recur-
rent neural networks [Eyben et al. 2013; Drugman et al. 2016; Vesperini et al. 2016]
to adapt the classification on the basis of the previous frames.

The method presented in this paper addresses the problem of creating a personalized
on-site museum experience using a non-intrusive computer vision algorithm that can
be executed on board of an audio guide. Unlike works such as [Latifi Oskouei et al.
2016] and [Huynh et al. 2016], no special framework has been used, and the problem
of computational costs has been addressed using: i) a CUDA implementation of a CNN
running on NVIDIA portable GPUs, and ii) designing the algorithm to exploit the
same features used for object detection, classification and retrieval. The problem of the
scarcity of training data, highlighted in [Picard et al. 2015], has been solved applying
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fine tuning to a pre-trained CNN. Moreover, we exploit on-board sensors and recent
recurrent neural networks for voice detection to further understand the context of the
wearer, like its movements and its interactions with other people.

The remainder of the paper is organized as follows:in Sect. 3 we describe the overall
system architecture and its sub-systems; in Sect. 4 we describe our efficient method for
detecting objects and how we obtain a reliable artwork identification using tracking
and retrieval. Sect. 5 outlines the context modeling module based on voice and sensor
input processing. The full system, comprising also the Android App is described in
Sect. 6. Finally in Sect. 7 and Sect. 8 we present quantitative results on our system
together with an user experience evaluation, then drawing conclusions in Sect. 9.

3. THE SYSTEM

Object Detector Artwork Retrieval

Voice

Activity Detection

Walking 

Detection

Tracking & Temporal 

Smoothing

Artwork

Playback Control

Audio 

descriptions

Context Modeling

People

Artwork id

User status

Artwork RecognitionVideo

Mic

Sensors

Android

App

Fig. 1. The overall system architecture.

The system we propose comprises several components that work together to enable
a smart experience. Fig. 1 shows an architectural diagram illustrating the main sub-
modules of the system. From a higher level view of our system, two main sub-systems
are identified, one responsible to recognize artworks, (providing Artwork id) and one
to model the User status. They generate input signals for the Playback Control module
which is responsible to play descriptions at appropriate time.

Our system senses the environment through three main channels: a camera, a mi-
crophone and movement sensors. The three sources are accessed through an Android
App which is also responsible as a front-end of the whole system.
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The camera is used to understand what the user is looking at. A computer vision
system is responsible to detect objects (Object Detector) and recognize what artwork
the user is looking at (Artwork Recognition). Two sub-modules are highlighted in the
recognition step: the first retrieves the most similar artwork from a database of known
artworks and the second performs tracking to smooth out wrong predictions.

The Context Modeling module receives three behavioral signals: People Detections,
Voice Activity Detection, and Walking Detection. These signals concur in generating a
User Status signal. The microphone is used as a source for Voice Activity Detection, and
movement sensors are necessary for Walking Detection.

4. EFFICIENT OBJECT DETECTION AND RECOGNITION

The smart audio guide we developed is based on an efficient computer vision pipeline
that simultaneously performs artwork localization and recognition. The guide requires
two main computer vision tasks to be solved: i) detection of relevant object categories:
e.g. persons and artworks; and ii) for every detected artwork, reliable recognition of
the specific artwork framed. Moreover, since we are dealing with a sequence of frames,
in order to improve artwork recognition we take advantage from temporal coherence
to make the output more stable.

Our system is based on YOLO [Redmon et al. 2016], that is demonstrated to obtain
accurate results even for moderate size networks. The main advantage of YOLO can
be read in its acronym, i.e. it requires to look at the image only once. The process
to generate scored boxes for each category of interest can be summarized as in the
following. The whole image is split in 7 × 7 blocks. For each of the 49 regions a tensor
of 5 × 2 × |C| is output. This tensor encodes two box predictions for each of the |C|
classes. Boxes are represented as a tuple 〈x, y, h, w, s〉. Non maximal suppression can
be used to avoid multiple prediction for the same object. The confidence accounts for
the accuracy of the bounding box and the probability of that class being present inside
the given.

Differently from SSD [Liu et al. 2015], which is based on VGG-16, our YOLO-based
classifier uses a much smaller network that allows the classifier to adhere with the
memory requirements of an embedded system like the NVIDIA Tegra TK1 SoC. The
architecture is derived from Tiny Net, a small CNN pre-trained on ImageNet, which
allows the application to run at 10 FPS and fitting on the memory of a Shield Tablet.

The system network was fine-tuned to recognize artworks and people using our
dataset. Recognizing people is relevant for two reasons: first we can exploit the pres-
ence of people in the field of view to create a better understanding of context, see
Sect. 5; secondly, without learning a person model, it is hard to avoid false positives
on people, since artwork training data contains statues, which may picture human fig-
ures. Learning jointly a person and an artwork model, the network features can be
trained to discriminate between this two classes.

4.1. Artwork recognition

The rich features computed by the convolutional layers are exploited and re-used to
compute an object descriptor for artwork recognition.

To ensure ease of deployment and update of the system, we base our artwork recog-
nition system on a simple nearest neighbor step. We need to fulfill two important re-
quirements: first our feature should be lightweight, i.e. low dimensional, in order to be
stored on the device and reduce the computation time for feature comparison; second
we must compute a discriminative representation for a region of the frame that may
differ in size and aspect ratio.

To obtain a low dimensional fixed size descriptor of a region, we apply a global max-
pooling over convolutional feature activation maps, as shown in Fig. 2. To increase
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Fig. 2. Feature extraction procedure for an artwork detection on a single convolutional feature map.
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Fig. 3. Our network architecture, with tensor size and layer numbering.

the discriminative power, we concatenate such descriptor computed on two different
feature maps. The region is remapped from the frame to the convolutional activation
map with a simple similarity transformation.

Considering the activation map of the nth convolutional layer, we have a tensor di-
mension of Wn ×Hn × Cn. After the reprojection of the bounding box onto the feature
map we end up with a smaller tensor with a size of Wn,bb ×Hn,bb ×Cn; Wn,bb and Hn,bb

depend both on the network layer and the bounding box geometry, while Cn depends
solely on the network layer and represents its number of channels. The max-pooling
operation of the Cn channels over the Wn,bb × Hn,bb values generate a feature vector
that is independent from the dimension of the bounding box.

Considering the architecture in Fig. 3 one could wonder which features are best to
recognize the specific framed artwork, since leftmost layers have higher resolution and
mostly represent the low-level structure of the image, while rightmost ones, are low
resolution but encode higher level information, closer to the image semantics.

After an experimental evaluation, which is detailed in Sect.7, we selected, as com-
bination, the features from layers 3 and 4, yielding a feature of size 768. The final
bounding box descriptor is obtained by concatenation of the two max-pooled regions
values and is L2-normalized.

Considering a pre-acquired dataset of artwork patches pi ∈ D and their artwork
labels y, for each detected artwork d we predict a specific artwork label yp̂ finding the
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nearest neighbor patch

p̂ = argmax
i

〈pi, d〉 (1)

The recognition system observes each frame independently and predicts artwork labels
according to Eq. 1, this approach, in case of motion blur or quick lighting changes
may produce incorrect recognition results. In the following we detail how we exploit
temporal coherence to produce a more stable recognition output.

4.2. Artwork Tracking and Temporal Smoothing

High recognition accuracy is a requirement for the audio-guide, since mistaking an
artwork for another may result in a bad user experience, e.g. this would result, at the
interface level, in the audio guide presenting an artwork different from the one that is
actually observed.

This is an extremely critical aspect and must be addressed, in order to improve
the stability of the recognition system. We devise three strategies, based on the user
location with respect to the artwork of interest and the continuous tracking of object
bounding boxes.

To reduce the error rate our idea is to avoid performing artwork recognition on ob-
jects that may be too far from the user. Farther objects are unlikely to be of interest for
the user, moreover the feature computed on a smaller bounding box has little discrim-
inative power and likely leads to erroneous recognition.

Computing the actual metric distance from an artwork requires to perform real-time
camera tracking and scene mapping. We believe that this accurate information is not
required for our task and therefore we rely on a simple heuristic, comparing the areas
of an artwork detection and the whole frame as in the following:

wbbhbb

WH
> T (2)

where WH is the frame area and wbb and hbb are bounding box width and height
respectively, and T is a threshold (Fig. 4) empirically fixed. We name this strategy
Distance. In our experiments we obtained the best results for T = 0.1, that as can be
seen in Sec. 7.4, allows to reduce false recognitions by 50% w.r.t. not using the heuristic,
at the cost of introducing a small number of missed recognitions.

Considering that there is continuity when the user walks around in the area, an
artwork recognized frequently across a very short amount of time is probably the most
correct. To exploit this, we continuously predict artwork labels as described in Sec.
4.1, but we consider a prediction only after it persists for M frames. We name this
strategy Consistency. We implement it by tracking all artwork detection boxes with a
greedy data association tracking-by-detection algorithm, requiring an IoU of consecu-
tive bounding boxes of 50%. An example of this tracking is shown in Fig. 5.

With the same principle, it is unlikely that the user moves quickly from an artwork
to another in just few frames. So, after the system recognizes an artwork, it continu-
ously output its label proportionally to the elapsed time since the recognition. We call
this strategy Persistence. We increment a counter p every time the recognition label
for a box is unchanged, keeping track of the most frequent label y. Every time a label
y∗ is different from y we decrement p. We predict the artwork identity as y∗ only if
p > P > M . This technique greatly reduces the number of false recognitions. In our
experiments best results were obtained for M = 15 and P = 20.
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Fig. 4. Shape based filtering: artwork in yellow (left) is not considered for recognition, not satisfying Eq. 2,
while the other is recognized as “marzocco” (the heraldic lion symbol of Florence).

5. CONTEXT MODELING

To pursue the idea of an autonomous agent that is able to understand when it is the
time to engage the user and when it should be inactive, it is essential to understand
the context and the status of the wearer. In addition to the observation of the same
scene the user is viewing through the wearable camera, we also try to understand if
the user is busy following or participating in a conversation and if he is moving around
the room, both independently from the visual data.

5.1. Detecting conversations

Our audio-guide should be able to understand when the user is engaging in a con-
versation, if his field of view is occluded by other visitors or he is paying attention to
another person or an human guide. In that event, it is reasonable to stop the audio-
guide or temporarily interrupt the reproduction of any content, in order to let the user
carry out his conversation. This should be of high priority and it should be performed
even if the user is standing in front of an artwork. To identify this scenario, we use the
device microphone to detect the presence of a nearby voice. We chose to employ a Voice
Activity Detection (VAD) system for this task.

Typically, museums are mostly quiet environments where people tend to remain
silent, to appreciate the artworks, and briefly talk between each other. Nonetheless, in
some cases the environment can be noisy with the presence of music in background or

ACM Trans. Multimedia Comput. Commun. Appl., Vol. VOL., No. NUM., Article ART., Publication date: March 2017.
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Fig. 5. Example of artwork tracking, with M = 15. Only after a stable recognition over M frames the
system labels the artwork.

some environmental noise. This requires the adoption of a VAD with automatic noise
adaptation. The system will listen continuously to the environment, adapt to the local
environment noise and detect when voice is present. Therefore, in order to run in real-
time together with the computer vision module, it is essential to provide a lightweight
system with low computational complexity. We adopted the system from [Eyben et al.
2013], that is a state-of-the-art method based on a Long Short Term Memory recurrent
neural network. This approach is able to model long range dependencies between the
inputs (and thus accurately model environmental noise) and is highly scalable. The
computational complexity for evaluating the networks is linear with respect to the
number of input frames. Only a constant number of operations needs to be performed
for every audio frame. We use the open source implementation and model available in
the OpenSMILE framework 2.

Considering that a positive voice identification stops the playing of any description,
it is imperative that the classifier has a low false positive rate. Unexpectedly stopping
the reproduction due to a classifier error may result in a poor user experience. To this
end, we evaluate an entire second of audio before emitting the prediction. We choose
to use a classifier with a granularity of 0.01, so that, by exploiting all the predictions
in this time frame, we can increase the stability of the prediction. The final prediction
is the mean over the single classifications. We threshold this value according to the
expected false positive rate, measured empirically on our dataset.

5.2. Sensors for walking detection

An important hint for understanding the context of the user is given by its movements.
Standing still, walking or sitting can signal if the user is paying attention to some
artwork or if he is uninterested in what he is looking at.

We make use of this information for mainly two purposes:

2http://audeering.com/research/opensmile/
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— If the user is walking fast then he is not probably interested in the visible artworks.
This means that even if the visual system detects and recognizes an artwork, the
audio description should not be started.

— If the user is standing still in front of an artwork and he is listening to the audio de-
scription, this should not be stopped, even if the visual system stops recognizing the
artwork. This can happen mostly because of occlusions due to other people walking
or standing between the visitor and the artwork.

To perform walking detection we use accelerometer data. We estimate the mean and
standard deviation of acceleration magnitude from the training set. We subtract the
mean from the acceleration magnitude and then we filter out peaks below the standard
deviation. We consider each peak as a step. We then take into account a sliding window
of 1 second, and consider the subject walking if at least a step is detected in the given
window.

To detect if a person changes the facing direction, we estimate the orientation vari-
ation using gyroscope data. We average the orientation vector over the same 1 second
sliding window. The facing direction is considered changed if the current orientation
vector differs from the average for at least 45◦.

6. SYSTEM IMPLEMENTATION

The proposed system has been initially developed using a NVIDIA Jetson TK1 board,
to test the performance of the vision system, introduced in Sec. 4, using a device de-
signed for embedded systems. The board has a NVIDIA Kepler GPU with 192 CUDA
cores, and an NVIDIA 4-plus-1 Quad-core ARM Cortex A15 CPU. Then the audio-guide
application, named SeeForMe, has been deployed on an NVIDIA Shield Tablet K1 that
has the same computational capabilities of the TK1 board, but it runs Android 5.0 in-
stead of Linux, and it allows to develop a user friendly application that can support
the visitor in his museum experience.

Fig. 6. A visitor with the device camera in the pocket

We designed the application to handle three different user scenarios: (i) the user
makes use of the application in a fully-automated way (placing the device in a front
pocket with the camera facing forward, or hanging it on the chest using a special sup-
port), as shown in Fig. 6. In this scenario the system does not need any interaction
and continuously observes the surroundings using the camera, choosing when to start
and stop the audio by analyzing the user’s behavior; in this modality the user can still
interact with the application by using voice commands that are elaborated by the op-
erating system and translated in the form of actions such as start/stop the audio; (ii)
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the user makes use of the application actively in a semi-automated way: after point-
ing the device towards the artworks the visitor is interested in, the system detects the
artwork and provides the contextual audio guide, for which the audio can be started
and stopped automatically or manually by the user; (iii) the user has completed the
tour and wants to revisit his experience: to this end, the application provides a visual
history of the tour represented as a carousel of artworks in temporal order. Through
the carousel the user can select the artworks he visited, have multimedia insights and
replay the audio guide.

Fig. 7. (left) the user is listening to the description of the artwork, (center) the user is reviewing an item in
the history, (right) the user is speaking with someone not focusing on any artwork,

In Fig. 7 we show two use cases of the application GUI. Fig. 7 left) the user is lis-
tening to the description of an artwork, we can see from the bottom right icon on the
screen that the user is also walking, but keeping the focus on the artwork while he
moves. For this reason the system continues to provide the audio description of the
artwork. The GUI shows the recognized artworks by overlaying a small green indica-
tor that provides both the audio guide status in the form of a play/pause symbol and
information about the artwork. Among these the title, author and year of creation are
presented to the user. Artwork detected but not still recognized are marked with a
red icon stimulating the visitor to approach and to further frame it in order to have
it recognized. If the visitor moves away from the artwork the audio played will fade,
avoiding an abrupt interruption, so to improve user experience. In case the visitor goes
back to the same artwork before listening to any other audio description, the descrip-
tion is resumed automatically from where it stopped.

In the bottom of the screen the application keeps track of the viewing history by
showing the previously visited artworks in the form of small thumbnails. By touching
one, the user can review the history of the artwork and listen again to the guide as
shown in Fig. 7 center). This part of the GUI proposes an image of the artwork and the
full text of the audio guide. The user can choose to read the content without the audio
or start the playback by pressing the play icon.
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In Fig. 7 right) the user is speaking to someone close to him. The application rec-
ognizes the action and notifies the user by activating the speaking icon on the bottom
right of the screen. While the user is interacting with someone else, and while the focus
is not on an artwork, any currently active description stops playing leaving the user
free to discuss. Once the conversation is finished and the focus is brought back on the
artwork the system automatically resumes the artwork description.

Fig. 8. The contextual menus to configure the app properties. Here it is shown the appearance of the inter-
face in blur mode.

Several application properties and modalities can be configured in the mobile app
guide through a contextual menus reachable from the top right corner of the navigation
bar. In Fig. 8 it is shown the contextual menus where there are two main modes: i) Blur
mode, ii) Auto mode. The first one enables an app feature which blur the background
of the artwork being framed by the visitor in order to focus his attention on the target.
The Audio mode instead activates the automatic mode for the control of the guide audio
stream. Voice Commands and interaction can also be enabled and disabled. Finally, a
range in seconds can be defined to set a custom temporal window between the instant
that the system recognizes the artwork and the start of the audio guide reproduction
(these delay is marked visually by the green line in the icon which animates until it
closes the circle, as shown in Fig. 8).

The mobile app has been developed using the Android SDK. The interface follows the
guidelines of material design proposed by Google 3. SQLite is used to persist the in-
formation on the device local storage. Communication between the app and the YOLO
module is carried out using Java Native Interface (JNI) which enables the Java code
running in the Java Virtual Machine (JVM) to call and be called by native applications.
Data-interchange is performed through JSON messages. In particular, the YOLO mod-
ule communicates with the mobile app passing data related to the current frame of the

3https://material.google.com/
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camera stream. This data comprises detected and recognized artworks and persons,
with the coordinates of their bounding box, and booleans indicating if external speech
and user movements have been detected.

7. EXPERIMENTAL RESULTS

7.1. Dataset

We collected a dataset from footage captured in the Bargello Museum in Florence.
Bargello Museum hosts a variety of artworks, featuring a large hall (Donatello Hall)
with several masterpieces from Donatello. We use this hall as our testing ground. The
collected data serves two distinct purposes: train and evaluate the object detector de-
scribed in Sect. 4, and evaluate the full artwork recognition system.

Artwork imagery has been collected in a diverse set of illumination and viewpoint
conditions. In fact, the Donatello Hall is an extremely challenging environment fea-
turing a high ceiling with large glass windows. Therefore depending on the time of the
day and the weather condition, artwork appearance may change significantly, because
of light diffusion and camera sensor saturation. We collect 1, 237 images from all the
statues in the Donatello Hall, in different lighting and viewpoint conditions.

For the object detection task we extract a subset of annotated images, splitting the
data in training and testing. Artworks appearing in the training set do not appear in
the testing set to correctly evaluate the performance of the detector. We added person
images from PASCAL VOC2007 in order to have a more balanced training set. Fine-
tuning our small network does not require a huge amount of data; we simply collected
a balanced dataset of ∼ 300 person and ∼ 300 artwork images. We used vertical image
flipping in training as data augmentation.

To evaluate the recognition system we annotated a larger set of images with the
artwork id. To easily collect our recognition database we developed a tool based on our
detection pipeline. We use our artwork detector to generate bounding boxes and the
tracker described in Sect. 4.2, to link all boxes in a sequence, after a sufficient amount
of frames of an artwork has been collected the user may simply select an existing id
or enter a new record in the database. Considering the non-parametric nature of the
recognition system discussed in Sect. 4.1, this process can be run multiple times to
enrich the dataset.

Finally, to test our full pipeline, we use sequences accounting for 8, 820 frames. We
also pay attention to include shots where multiple artworks are visible. In each frame,
we annotated the bounding box and the label of each visible artwork. At the end of the
process we collected a total of ∼ 250 seconds of video with 7, 956 detections.

7.2. Artwork detection

In the first experiment, we evaluate the performance of the artwork detection system.
After performing the fine-tuning of the network on our dataset, we run the trained
detector on the test set and measure the average precision. As described in Sec. 4, we
aim at detecting the artworks that are in front of the wearer and give less importance
to the ones in the distance. As a result, we only consider detections of a minimum
area T that are indicative of a small distance from the user. We report in Fig. 9 the
average precision obtained by the detection system when varying the minimum area
of the considered detections. The area is normalized with respect to the dimension
of the video frame. It can be observed that the average precision increases with the
minimum area of the box and reaches the maximum value of 0.9 at 40% of the area.
This means that the classifier is more effective at recognizing nearer artworks. We
note that increasing the minimum box size area is not always a guarantee that the
detector will be more precise. While far detections are very prone to errors due to the
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small object scale, some detection errors may also be present at a near distance due to
blur.
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Fig. 9. Average precision of artwork detection
when varying the minimum box area.
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Fig. 10. Precision-recall curve for artwork de-
tection using a threshold T = 0.1.

Selecting a good value for the minimum box area is therefore a trade-off between
a good precision and the proximity that a wearer has to be to an artwork. We chose
the final value of T = 0.1, that provides a significant improvement of precision over
the bare detector output and a maximum distance of ∼ 5 meters. In Fig. 10 we show
the precision-recall curve relative to the final T value. Our system has a very good
precision at high recall rates. Hence, the curve exhibit only a small amount of loss in
terms of precision until 0.8 recall. We note that higher recall can not be reached due
to the T threshold selected according the results reported in Fig. 9. For this reason, the
curve is truncated at that point.

7.3. Artwork recognition: nearest neighbour evaluation

In this experiment we evaluate the effect of the number of nearest neighbors on art-
work recognition, in terms of precision. Descriptors are computed concatenating two
layers of the network, according to the approach described in Sect. 4.1. Results are
plotted in Figure 11 with accuracy using 1 nearest neighbour, where features extracted
from layers 3 or 4 are combined with the other layers. The figure shows again that the
combination of the 3rd and 4th layers provides the best results. In Figure 12 we report
the accuracy when varying the number of nearest neighbours using the just selected
best combination. We observe that 1 nearest neighbor provides the best performance
in recognizing an artwork. Accuracy degrades when more nearest neighbours are used
in voting the correct artwork id. This is due to the fact that the environment we are
testing the system in, has high variability in lighting conditions. Moreover we acquired
multiple poses for each artwork. It is clear that for each query only a few samples will
be in the similar pose/lighting conditions while increasing the amount of neighbours
will just add noisy data to the vote pool.

7.4. Temporal Processing Evaluation

In order to measure the effectiveness of the three strategies for temporal processing
described in Sec. 4.2, we perform an experiment where several of their combinations
are tested. The annotated video sequences are thus fed to a simulation of the system,
where each combination of output bounding box and label is tracked and compared to
the ground truth data. The thresholds are fixed at T = 0.1, M = 15 and P = 20. We
measure the number of detections where the artworks are correctly and incorrectly
labeled, and the number of times the system chose to output the “generic” artwork
label.
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Fig. 11. Recognition accuracy of combinations
of layer 3 and 4 with layers [3, . . . , 8].
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Fig. 12. Recognition accuracy of the best layer
combination (layers 3-4), varying the number of
nearest neighbors.

We report in Table I the result of the evaluation. In the first test (T1), we measure
the performance of the system without any additional criterion as baseline, i.e. the
frame by frame output of the recognition system. We observe that the system outputs
the correct artwork for the majority of the detections (∼ 70%), while about 30% were
labeled as an incorrect artwork. By adding the Distance criterion, we see in test T2
that a slightly lower amount of detections were correctly labeled, but about half of
the incorrect recognitions were considered generic, instead. This confirms that a large
amount of errors are made on farthest artworks, since they are more difficult to rec-
ognize. In test T3, we observe the outcome of the Consistency strategy. In this case,
almost all the incorrect artwork recognition are successfully exposed and classified
as generic artwork output. This is due to the uncertainty of the vision system that
rapidly shifts its prediction from frame to frame. In test T4, as seen in T2, adding the
Distance criterion to Consistency, reduces the Incorrect recognitions. While the Con-
sistency criterion by itself is able to almost nullify the incorrect recognitions, it is not
robust to sparse errors. In fact, the system often swings from the correct recognitions
to the generic label. This issue is resolved when combining this stringent strategy with
the Persistence one, in test T5. This is visible quantitatively in the gain of the number
of correct recognitions and the relative decrease of generic outputs, at the expense of
increasing the incorrect ones. Combining all the criteria, as in T6, leads to a very low
number of incorrect detections and a reasonable number of neutral artwork outputs,
confirming our intuition about the efficacy of the three strategies. With only 22 wrong
detections, the system predicts a wrong label approximately less than one cumulative
second every ∼ 5 minutes of video.

7.5. Voice Detection Evaluation

In this experiment we test the performance of the voice activity detection system on our
dataset. We consider two simple strategies to emit a classification per second, namely
Sample and Mean. The Sample strategy is just evaluating the classifier on a single
audio frame per second, sampled at the beginning of a new second. This has the ad-
vantage to require only a single evaluation of the net. The Mean strategy, instead,
consider all the predictions of net in a second and finally emits the mean of the values.
This is more robust to the fluctuations of the classifier, at the expense of running the
net continuously. With both strategy, in order to minimize the number of false posi-
tives, we measure the performance of the classifier varying the positive threshold.
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Table I. Performance by applying the three strategies for temporal
smoothing: C stands for Consistency, D for Distance and P for Persistence.
We report the number of detections where, respectively, the artwork was cor-
rectly recognized, the artwork was misplaced for another one and where the
system chose to output a generic “artwork” label.

Test Strategy Correct Incorrect Skipped
C D P

T1 ✗ ✗ ✗ 5,598 (∼70%) 2,358 (∼30%) 0 (0%)
T2 ✗ ✓ ✗ 5,334 (∼67%) 1,267 (∼16%) 1,355 (∼17%)
T3 ✓ ✗ ✗ 4,475 (∼56%) 36 (∼0%) 3,445 (∼43%)
T4 ✓ ✓ ✗ 4,363 (∼55%) 11 (∼0%) 3,582 (∼45%)
T5 ✓ ✗ ✓ 5,141 (∼65%) 61 (∼1%) 2,754 (∼35%)
T6 ✓ ✓ ✓ 4,966 (∼62%) 22 (∼0%) 2,968 (∼37%)
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Fig. 13. Receiver operating characteristic curve of the tested voice activity classifiers.

We report the receiver operating characteristic (ROC) curve of the two strategies
in Fig. 13. We observe that both strategies have a high area under the curve (AUC),
meaning that they correctly predict the presence of the voice most of the time. The
Mean strategy has a higher AUC and has always an higher true positive rate at the
same false positive rate than Sample. This confirms that the Mean strategy is more
robust than Sample.

8. USER EXPERIENCE EVALUATION

Modern tourist guides have their origins dating up to 17th and 18th centuries Grand
Tour, and their role has become a key component in modern tourism experiences and
applications. Guide functions can be highly specialized and require a lot of expertise
and interpersonal skills to satisfy tourist needs. [Cohen 1985] describes guide roles
as characterized by instrumental (guide), social (animator), interactional (leader) and
communicative (intermediator) functions. Instrumental functions represent services
capable to convey essential tourism information such as path finder to artworks lo-
cation and related infos. Interactional features offer the ability to create a relation
between the user and the contextual environment (e.g. informations about artworks).
Improving this ability also means improving interaction. Sociality involves all the ac-
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Table II. Functions comparison of our guide with respect to human and tradi-
tional audio guides

Type Instrumental Social Interactional Communicative

Human Guide ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Audio Guide ∗ – – ∗ ∗

SeeForMe ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

tivities aiming at engaging the users with collaborative and not isolated experiences.
Communicative functions facilitate access to artwork insights and targeted content,
e.g. pointing out objects of interest. All these functionalities are fulfilled at their best
by humans and modern audio guides have only partially replaced the complex role of
the human guide. On the other hand the use of technology has improved aspects such
as efficiency, sociality and autonomy in providing information communication under
the so-called smart tourism paradigm. In Table II we compare guide-role functions as
provided by human and traditional audio-guides with those available in our system.

The main differences between traditional audio guides and our system can be found
in the interactional and social aspects of the provided experience. In traditional audio-
guides the fruition of content is for the most part passive and the user has a low control
on the reproduction of content. As regard to this, SeeForMe offers a more user friendly
experience giving the possibility to interrupt the audio playback manually and auto-
matically, and to restart the reproduction from the last point. Playback control can
be achieved also using voice commands. Furthermore, activation of contents in audio-
guides is cumbersome: locations or room numbers have to be searched and inserted
manually reducing usability whilst SeeForMe allows automatic artwork recognition;
this fact results in further differentiation of the Instrumental function, even in case
of automatically triggered guides (e.g. those using RFID): an audioguide, being com-
pletely passive can not direct the visitor, while SeeForMe, highlighting the presence
of other artworks as shown in Fig. 8, can direct the visitor within the museum. As
for sociality, if it is true that social networking mechanisms are commonly provided in
tourism apps for mobile phones, these functionalities are intended for virtual or remote
users and not real companions. Indeed, audio-guides hinder communication between
visitors (especially group visitors) and make people feel isolated, causing them to stop
using devices and applications in order to join others. SeeForMe in this sense is more
social because it automatically understands the context detecting if the user loses at-
tention or simply is speaking with someone else, adapting the interaction with the
system consequently.

In order to assess the whole experience offered by the system in a real environ-
ment, we conducted an evaluation of its usability. According to ISO, usability is de-
fined as “the extent to which a product can be used by specified users to achieve spec-
ified goals with effectiveness, efficiency, and satisfaction in a specified context of use”.
However, there are several usability models and types of assessments, like ISO stan-
dards on quality models (ISO 9126), user-centered design (ISO 9241) or user-centered
approaches. A review of techniques for mobile application usability evaluation is pro-
vided in [Nayebi et al. 2012].

The usability study was performed with the popular Standard Usability Scale
(SUS) [Brooke 1996], that follows a user-centered approach. Testing a user interface
with SUS means, given a scenario of use and one or more tasks to solve, administer
a 10 point questionnaire to a group of users. SUS is a Likert scale [Trochim et al.
2006], therefore questions address extreme cases, with opposite meaning and alter-
nating positive with negative sentences. Answers to questions are numbers from 1
to 5, expressing all ranges from “Strongly Disagree” to “Strongly Agree”. This testing
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strategy has been proved effective in removing acquiescence bias. The alternation of
positive and negative items makes sure that users read it carefully. Nielsen states that
it is sufficient to collect 5 polls to find the 85% of design errors of an interface or expe-
rience [Nielsen and Molich 1990]; in these tests we recruited twelve persons, divided
in two groups of six people each.

We tested two different scenarios, supervised and unsupervised, in which users were
asked to perform two simple tasks: i) “Activate the audio-guide for one or more art-
works of your interest”, ii) “After the visit, use the app to find again the information
about one artwork you have seen”. In the former a group of people receives from the au-
thors of the paper a spoken detailed description of our system, thoroughly explaining
the Android app functionalities and also detailing insights on the recognition engine.
In the latter scenario instead, users are given the same two simple tasks but without
any explanation on the application functions.

After normalization SUS scores are expressed in the range [0 − 100]. They do not
represent percentages but can be interpreted with an adjective rating [Bangor et al.
2009]. A score over 68 means that the user interface or experience design is above
average [Sauro and Lewis 2012] and that tasks can be completed without too much
fatigue. Scores above 80 usually means that the interface is correctly designed and
that the user experience is enjoyable.

We obtained an average SUS of 74.0 for the unsupervised scenario and 79.5 for the
supervised scenario. The small gap in scores measured in the two scenarios, and their
closeness to 80, means that the user interface is easy to use and that the training pro-
vided by expert users is not strictly required to perform tasks correctly. Nonetheless,
considering that the user experience increased when users received a brief tutorial on
the features and technical details, means that there is some room for further improv-
ing the design of interface and user experience of our app.

Users, when interviewed, mostly agreed that the automatic start/stop of the guide
is the feature that makes the experience smooth. Regarding negative aspects of our
system, most of the points made by users were about the need to access menus to
change the language or other options.

9. CONCLUSION

We have presented a system running on the NVIDIA Jetson TK1 and on NVIDIA
Shield Tablet K1. Our approach jointly solves two problems: contextual analysis and
object recognition. We apply our efficient video processing pipeline and multi-sensor
analysis to improve museum experience. Our method allows to profile in real-time vis-
itor interests and to provide instantaneous feedback on the artworks of interest. We
exploit audio and sensor data to improve the user experience reducing the intrusive-
ness of the smart audioguide.

Our Android app, allows users to switch between a fully automated experience to a
more interactive mode. Moreover, after a visit is completed it is possible to for the user
to look back and listen, or read, again about the artwork that gathered his interest.

Usability testing revealed few pitfalls of our experience design, but users where sat-
isfied on average and provided some suggestions to improve the user interface further.
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