IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 11, NOVEMBER 2017

2521

Compact Hash Codes for Efficient Visual Descriptors
Retrieval in Large Scale Databases

Simone Ercoli, Marco Bertini

Abstract—In this paper, we present an efficient method for visual
descriptors retrieval based on compact hash codes computed using
amultiple k-means assignment. The method has been applied to the
problem of approximate nearest neighbor (ANN) search of local
and global visual content descriptors, and it has been tested on
different datasets: three large scale standard datasets of engineered
features of up to one billion descriptors (BIGANN) and, supported
by recent progress in convolutional neural networks (CNNs), on
CIFAR-10, MNIST, INRIA Holidays, Oxford 5K, and Paris 6K
datasets; also, the recent DEEP1B dataset, composed by one billion
CNN-based features, has been used. Experimental results show
that, despite its simplicity, the proposed method obtains a very
high performance that makes it superior to more complex state-of-
the-art methods.

Index Terms—Convolutional neural network (CNN), hashing,
nearest neighbor search, retrieval, SIFT.

1. INTRODUCTION

FFICIENT nearest neighbor (NN) search is one of the

main issues in large scale information retrieval for mul-
timedia and computer vision tasks. Also methods designed for
multidimensional indexing obtain a performance that is only
comparable to exhaustive search, when they are used to index
high dimensional features [1]. A typical solution to avoid an
exhaustive comparison is to employ methods that perform ap-
proximate nearest neighbor (ANN) search, that is finding the
elements of a database that have a high probability to be near-
est neighbors. ANN algorithms have been typically evaluated
based on the trade-off between efficiency and search quality,
but the inception of web-scale datasets have introduced also the
problems of memory usage and speed. For these reasons the
most recent approaches typically use feature hashing to reduce
the dimensionality of the descriptors, and compute Hamming
distances over these hash codes. These methods generally use
inverted files, e.g. implemented using hash tables, to index the
database, and require to use hash codes with a length of several

Manuscript received August 26, 2016; revised December 23, 2016; accepted
March 21, 2017. Date of publication April 25, 2017; date of current version
October 13, 2017. This work was supported in part by the “Social Museum and
Smart Tourism” under Project CTNO1_00034_231545, in part by the Office of
the Director of National Intelligence, and in part by the Intelligence Advanced
Research Projects Activity, via IARPA under Contract 2014-14071600011. The
associate editor coordinating the review of this manuscript and approving it for
publication was Prof. Zhu Li. (Corresponding author: Marco Bertini.)

The authors are with the Media Integration and Communication Center,
University of Florence, Florence 50139, Italy (e-mail: simone.ercoli @unifi.it;
marco.bertini @unifi.it; alberto.delbimbo @unifi.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2017.2697824

, Member, IEEE, and Alberto Del Bimbo, Member, IEEE

tens of bits to obtain a reasonable performance in retrieval, a
typical length is 64 bits. Their application to systems with rel-
atively limited memory (e.g. mobile devices still have 1-2 GB
RAM only) or to systems that involve a large-scale media index-
ing, that need to maintain the index in main memory to provide
an adequate response time, requires to use compact hash codes.

In this paper we present a novel method for feature hash-
ing, based on multiple k-means assignments. This method is
unsupervised, requires a very limited codebook size and obtains
a very good performance in retrieval, even with very compact
hash codes (e.g. also with 32 bits); it can be applied to hash
local and global visual features, either engineered (e.g. SIFT) or
learned (e.g. CNNGs). The proposed approach greatly reduces the
need of training data and memory requirements for the quan-
tizer, and obtains a retrieval performance similar or superior
to more complex state-of-the-art approaches on standard large
scale datasets. This makes it suitable, in terms of computational
cost, for mobile devices, large-scale media analysis and content-
based image retrieval in general.

The paper is organized as follows: in Section II we provide
a thorough review of works related to visual feature hashing
and indexing, highlighting the main differences of the proposed
method. Our approach is presented in Section III, including a
discussion about its computational complexity. Experimental
results on several large scale standard datasets of visual features
and images, and comparison with the current state-of-the-art,
are reported and discussed in Section IV. Finally, conclusions
are drawn in Section V.

II. PREVIOUS WORKS

Previous works on visual feature hashing can be divided in
methods based on hashing functions, scalar quantization, vector
quantization and, more recently, neural networks.

A. Hashing Functions

Weiss et al. [2] have proposed to treat the problem of hash-
ing as a particular form of graph partitioning, in their Spectral
Hashing (SH) algorithm. Li et al. [3] have improved the ap-
plication of SH to image retrieval optimizing the graph Lapla-
cian that is built based on pairwise similarities of images dur-
ing the hash function learning process, without requiring to
learn a distance metric in a separate step. Heo ef al. [4] have
proposed to encode high-dimensional data points using hyper-
spheres instead of hyperplanes; Jin et al. [5] have proposed a
variation of LSH, called Density Sensitive Hashing, that does

1520-9210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2522

not use random projections but instead uses projective func-
tions that are more suitable for the distribution of the data.
Du et al. [6] have proposed the use of Random Forests to per-
form linear projections, along with a metric that is not based
on Hamming distance. Lv et al. [7] address the problem of
large scale image retrieval learning two hashes in their Asym-
metric Cyclical Hashing (ACH) method: a short one (k bits)
for the images of the database and a longer one (mk bits) for
the query. Hashes are obtained using similarity preserving Ran-
dom Fourier Features, and computing the Hamming distance
between the long query hash and the cyclically m-times con-
catenated compact hash code of the stored image.

Paulevé et al. [8] have compared structured quantization al-
gorithms with unstructured quantizers (i.e. k-means and hi-
erarchical k-means clustering). Experimental results on SIFT
descriptors have shown that unstructured quantizers provide
significantly superior performances with respect to structured
quantizers.

B. Scalar Quantization

Zhou et al. [9] have proposed an approach based on scalar
quantization of SIFT descriptors. The median and the third quar-
tile of the bins of each descriptor are computed and used as
thresholds, hashing is then computed coding the value of each
bin of the descriptor with 2 bits, depending on this subdivision.
The final hash code has a dimension of 256 bits, but only the
first 32 bits are used to index the code in an inverted file; thus
differences in the following bits, associated with the remaining
bins of the SIFT descriptor, are not taken into account when
querying the index. On the other hand methods that follow this
approach, like the three following ones, do not require training
data. The method of [9] has been extended by Ren et al. [10],
including an evaluation of the reliability of bits, depending on
their quantization errors. Unreliable bits are then flipped when
performing search, as a form of query expansion. To avoid using
codebooks, in the context of memory limited devices such as
mobile phones, Zhou et al. [11] have proposed the use of scal-
able cascaded hashing (SCH), performing sequentially scalar
quantization on the principal components, obtained using PCA,
of SIFT descriptors. Chen and Hsieh [12] have recently pro-
posed an approach that quantizes the differences of the bins of
the SIFT descriptor, using the median computed on all the SIFT
descriptors of a training set as a threshold.

C. Vector Quantization

Jégou et al. [1] have proposed to decompose the feature space
into a Cartesian product of subspaces with lower dimensionality,
that are quantized separately. This Product Quantization (PQ)
method is efficient in solving memory issues that arise when
using vector quantization methods such as k-means, since it
requires a much reduced number of centroids to obtain a code
of the desired length. The method has obtained state-of-the-art
results on a large scale SIFT features dataset, improving over
methods such as SH [2] and Hamming Embedding [13]. This
result is confirmed in the work of Chandrasekhar ef al. [14], that
have compared several compression schemes for SIFT features.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 11, NOVEMBER 2017

However, its performance is dependent on the choice of the
subspaces used.

The efficiency and efficacy of the Product Quantization
method has led to development of several variations and im-
provements. The idea of compositionality of the PQ approach
has been further analyzed by Norouzi and Fleet [15], that have
built upon it proposing two variations of k-means: Orthogonal
k-means and Cartesian k-means (ck-means). Also Ge et al. [16]
have proposed another improvement of PQ, called OPQ, that
minimizes quantization distortions w.r.t. space decomposition
and quantization codebooks; He et al. [17] have proposed an
affinity-preserving technique to approximate the Euclidean dis-
tance between codewords in k-means method. Kalantidis and
Avrithis [18] have presented a simple vector quantizer (LOPQ)
which uses a local optimization over a rotation and a space de-
composition and apply a parametric solution that assumes a nor-
mal distribution. More recently, Guo et al. [19] have improved
over OPQ and LOPQ adding two quantization distortion proper-
ties of the Residual Vector Quantization (RVQ) model, that tries
to restore quantization distortion errors instead of reducing it.

A few works have addressed the problem of indexing.
Babenko and Lempitsky [20] have proposed an efficient simi-
larity search method, called inverted multi-index (IMI); this ap-
proach generalizes the inverted index by replacing vector quan-
tization inside inverted indices with product quantization, and
building the multi-index as a multi-dimensional table (Multi-
D-ADC). Another multi-index strategy has been proposed by
Zheng et al. [21], where complementary features, i.e. bina-
rized SIFT descriptors and local color features are indexed in
a coupled Multi-Index (c-MI), performing feature fusion at in-
dexing level for content-based image retrieval. More recently,
Babenko and Lempitsky [22] have addressed the problem of in-
dexing CNN features, observing that IMI is inefficient to index
such features, and proposing two extensions of IMI: the Non-
Orthogonal Inverted Multi-Index (NO-IMI) and the Generalized
Non-Orthogonal Inverted Multi-Index (GNO-IMI). Multi-scale
matching of SIFT and CNN features binarized with LSH, has
been recently addressed in the work of Zheng et al. [23], propos-
ing an indexing structure that uses compact pointers to associate
the local features with the regional and global ones.

D. Neural Networks

Lin et al. [24] have proposed a deep learning framework to
create hash-like binary codes for fast image retrieval. Hash codes
are learned in a point-wise manner by employing a hidden layer
for representing the latent concepts that dominate the class labels
(when the data labels are available). This layer learns specific
image representations and a set of hash-like functions.

Do et al. [25] have addressed the problem of learning binary
hash codes for large scale image search using a deep model
which tries to preserve similarity, balance and independence
of images. Two sub-optimizations during the learning process
allow to efficiently solve binary constraints.

Guo and Li [26] have proposed a method to obtain the binary
hash code of a given image using binarization of the CNN
outputs of a certain fully connected layer.

ERCOLI et al.: COMPACT HASH CODES FOR EFFICIENT VISUAL DESCRIPTORS RETRIEVAL

TABLE I
NOTATION TABLE

feature to be hashed

2

C; generic centroid

S; cluster

k number of centroids; length of the hash code

C; centroid associated to the j th bit of the hash code
D dimension of the feature

Zhang et al. [27] have proposed a very deep neural network
(DNN) model for supervised learning of hash codes (VDSH).
They use a training algorithm inspired by alternating direction
method of multipliers (ADMM) [28]. The method decomposes
the training process into independent layer-wise local updates
through auxiliary variables.

Xia et al. [29] have proposed an hashing method for image
retrieval which simultaneously learns a representation of images
and a set of hash functions.

A deep learning framework for hashing of multimodal data
has been proposed by Wang et al. [30], using a multimodal Deep
Belief Network to capture correlation in high-level space during
pre-training, followed by learning a cross-modal autoencoder in
fine tuning phase.

Lin et al. [31] have proposed to use unsupervised two steps
hashing of CNN features. In the first step Stacked Restricted
Boltzmann Machines learn binary embedding functions, then
fine tuning is performed to retain the metric properties of the
original feature space.

The method proposed in this paper belongs to the family of
methods based on vector quantization; compared to recent hash-
ing algorithms based on neural networks this allows to learn hash
codes with a much reduced computational cost, without loss in
performance. Unlike previous vector quantization approaches
it associates the features to multiple codebook words, reducing
quantization errors due to wrong associations to nearby code-
words. Another difference, considering in particular the family
of methods based on Product Quantization, is the fact that code-
words are associated to single bits of the hash and not to portions
of the feature; this avoids the need to partition features so to re-
flect the structure of the descriptor, as shown in [1].

III. THE PROPOSED METHOD

The proposed method exploits a novel version of the k-means
vector quantization approach, introducing the possibility of as-
signment of a visual feature to multiple cluster centers during the
quantization process. This approach greatly reduces the num-
ber of required cluster centers, as well as the required training
data, performing a sort of quantized codebook soft assignment
for an extremely compact hash code of visual features. Table I
summarizes the symbols used in the following.

The first step of the computation is a typical k-means al-
gorithm for clustering. Given a set of observations (xi, X,
..., X,) where each observation is a D-dimensional real vec-
tor, k-means clustering partitions the n observations into k(< n)
sets S = {S1,5,...,S;} so as to minimize the sum of dis-

2523

tance functions of each point in the cluster to the C, centers. Its
objective is to find

k
argming Z Z | x—C; H2 . (1)

i=1 x€S;

This process is convergent (to some local optimum) but the
quality of the local optimum strongly depends on the initial
assignment. We use the k-means++ [32] algorithm for choosing
the initial values, to avoid the poor clusterings sometimes found
by the standard k-means algorithm.

A. Multi-k-means Hashing

K-means is typically used to compute the hash code of visual
feature in unstructured vector quantization, because it minimizes
the quantization error by satisfying the two Lloyd optimality
conditions [1]. In a first step a dictionary is learned over a
training set and then hash codes of features are obtained by
computing their distance from each cluster center. Vectors are
assigned to the nearest cluster center, whose code is used as hash
code. Considering the case of 128-dimensional visual content
descriptors, like SIFT or the FC7 layer of the VGG-M-128
CNN [33], this means that compressing them to 64 bits codes
requires to use k = 264 centroids. In this case the computational
cost of learning a k-means based quantizer becomes expensive
in terms of memory and time because: i) there is the need of
a quantity of training data that is several times larger than k,
and ii) the execution time of the algorithm becomes unfeasible.
Using hierarchical k-means (HKM) makes it possible to reduce
execution time, but the problem of memory usage and size of
the required learning set affects also this approach. Since the
quantizer is defined by the k centroids, the use of quantizers with
a large number of centroids may not be practical or efficient: if
a feature has a dimension D, there is need to store k x D values
to represent the codebook of the quantizer. A possible solution
to this problem is to reduce the length of the hash signature, but
this typically affects negatively retrieval performance. The use
of product k-means quantization, proposed originally by Jégou
et al. [1], overcomes this issue.

In our approach, instead, we propose to compute a sort of
soft assignment within the k-means framework, to obtain very
compact signatures and dimension of the quantizer, thus re-
ducing its memory requirements, while maintaining a retrieval
performance similar to that of [1].

The proposed method, called multi-k-means (in the following
abbreviated as m-k-means), starts learning a standard k-means
dictionary as shown in (1), using a very small number k of
centroids to maintain a low computational cost. Once we ob-
tained our Cy, ..., C;, centroids, the main difference resides in
the assignment and creation of the hash code. Each centroid is
associated to a specific bit of the hash code

2—CjlI<d ™" bit=1
|z—C;||>6 4" bit=0

2524

where z is the feature point and § is a threshold measure given
by
k L
(= Tz =G5 D
k
%Z]’:l | x— C; |

n'" nearest distance ||z — C; ||

geometric mean

0= arithmetic mean

Vi=1,..k
3

i.e. centroid j is associated to the j** bit of the hash code of
length k; the bit is set to 1 if the feature to be quantized is
assigned to its centroid, or to 0 otherwise.

A feature can be assigned to more than one centroid using
two main different approaches:

i) m-k-means-t; - using (2) and one of the first two thresholds
of (3). In this case the feature vector is considered as belong-
ing to all the centroids from which its distance is below the
threshold. Experiments have shown that the arithmetic mean is
more efficient with respect to the geometric one, and all the
experiments will report results obtained with it.

ii) m-k-means-n, - using (2) and the third threshold of (3),
i.e. assigning the feature to a predefined number n of nearest
centroids.

We also introduce two variants (m-k-means-t, and m-k-
means-nsy) to the previous approaches by randomly splitting
the training data into two groups and creating two different
codebooks for each feature vector. The final hash code is given
by the union of these two codes.

With the proposed approach it is possible to create hash sig-
natures using a much smaller number of centroids than using
the usual k-means baseline, since each centroid is directly asso-
ciated to a bit of the hash code. This approach can be considered
a quantized version of codebook soft assignment [34] and, sim-
ilarly, it alleviates the problem of codeword ambiguity while
reducing the quantization error.

Fig. 1 illustrates the quantization process and the resulting
hash codes in three cases: one in which a vector is assigned to
a variable number of centroids (m-k-means-t;), one in which
a vector is assigned to a predefined number of centroids (m-k-
means-n1) and one in which the resulting code is created by
the union of two different codes created using two different
codebooks (m-k-means-t, and m-k-means-ns). In all cases the
feature is assigned to more than one centroid. An evaluation of
these two approaches is reported in Section I'V.

Typically a multi probe approach is used to solve the problem
of ambiguous assignment to a codebook centroid (in case of
vector quantization, as in the coarse quantization step of PQ
[1]) or quantization error (e.g. in case of scalar quantization, as
in [9], [10]); this technique stems from the approach originally
proposed in [35], to reduce the need of creating a large number
of hash tables in LSH. The idea is that if a object is close to
a query object g, but is not hashed to the same bucket of ¢, it
is still likely hashed to a bucket that is near, i.e. to a bucket
associated with an hash that has a small difference w.r.t. the
hash of ¢. With this approach one or more bits of the query hash
code are flipped to perform a query expansion, improving recall
at the expense of computational cost and search time. In fact, if
we chose to try all the hashes within an Hamming distance of

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 11, NOVEMBER 2017

11 0 1
€1 GG GGl

110

Fig. 1. Toy examples illustrating the proposed method: (top) features can
be assigned (green line) to a variable number of nearest clusters (e.g. those
with distances below the mean ¢, i.e., m-k-means-t1); (middle) features can
be assigned to a fixed number of clusters (e.g. the 2 nearest clusters, i.e., m-
k-means-n1); (bottom) hash code created from two different codebooks (m-k-
means-xy, where x can be either ¢ or n). If a feature is assigned to a centroid,
the corresponding bit in the hash code is set to 1.

1 we have to create variations of the original hash of ¢ flipping
all the bits of the hash, one at a time. This means that for a hash
code of length & we need to repeat the query with additional &k
hashes. In the proposed method this need of multi probe queries
is greatly reduced, because of the possibility of assignment of
features to more than one centroid. For example, consider either
Fig. 1 (top) or (middle): if a query point nearby f; or f, falls
in the Voronoi cell of centroid Cy, using standard k-means it
could be retrieved only using a multi probe query, instead the
proposed approach maintains the same hash code.

B. Computational Complexity

Let us consider a vector with dimensionality D, and desired
hash code length of 64 bits. Standard k-means has an assignment
complexity of kD, where k = 254, while the proposed approach
instead needs k' = 64 centroids, has a complexity of ¥'D and
requires k' D floats to store the codebook. Product Quantization

ERCOLI et al.: COMPACT HASH CODES FOR EFFICIENT VISUAL DESCRIPTORS RETRIEVAL

| At
S

Fig. 2. Sample images from the INRIA Holiday dataset. Left column shows
the query images, the other columns show similar images.

requires k* x D floats for the codebook and has an assignment
complexity of k* D, where k* = k'/™ , using typically k* = 256
and m = 8 values, for a 64 bit length [1]; in this case the cost
of the proposed method is a quarter of the cost of PQ.

IV. EXPERIMENTAL RESULTS

The variants of the proposed method (m-k-means-t,, m-k-
means-ny, m-k-means-to and m-k-means-ns) have been thor-
oughly compared to several state-of-the-art approaches using
standard datasets, experimental setups and evaluation metrics.

A. Datasets

BIGANN Dataset [1], [36] is a large-scale dataset commonly
used to compare methods for visual feature hashing and approx-
imate nearest neighbor search [1], [15], [16], [18], [20], [36],
[37]. The dataset is composed by three different sets of SIFT
and GIST descriptors, each one divided in three subsets: a learn-
ing set, a query set and base set; each query has corresponding
ground truth results in the base set, computed in an exhaustive
way with Euclidean distance, ordered from the most similar to
the most different. For SIFT1IM and SIFT1B query and base
descriptors have been extracted from the INRIA Holidays im-
ages [38], while the learning set has been extracted from Flickr
images. For GISTIM query and base descriptors are from IN-
RIA Holidays and Flickr 1M datasets, while learning vectors are
from [39]. In all the cases query descriptors are from the query
images of INRIA Holidays (see Fig. 2). The characteristics of
the dataset are summarized in Table II.

DEEP1B Dataset [22] is a recent dataset produced using a
deep CNN based on the GoogLeNet [40] architecture and trained
on ImageNet dataset [41]. Descriptors are extracted from the
outputs of the last fully-connected layer, compressed using PCA
to 96 dimensions, and /5-normalized. The characteristics of the
dataset are summarized in Table III.

2525
TABLE II
BIGANN DATASETS CHARACTERISTICS

vector dataset SIFT IM SIFT 1B GIST IM
descriptor dimensionality D 128 128 960
learning set vectors 100,000 100,000,000 500,000
database set vectors 1,000,000 1,000,000,000 1,000,000
queries set vectors 10,000 10,000 1,000
nearest vectors for each query 100 1000 100

TABLE III

DEEP1B DATASETS CHARACTERISTICS

descriptor dimensionality D 96

learning set vectors 358,480,000
database set vectors 1,000,000,000
queries set vectors 10,000

nearest vectors for each query 1

airplane an_éﬁ% w.!'E.ﬁ:
automobile EE“B.‘
v Sl WO ¥ DS
= EEGHSEEEs P

S L el R

o [o N i EIPEY o VI

oo [I R 1 O R

norse i IR SR 58 o I R T

s s Sl EE RS @

ok o T e B P o (L R
Fig.3. Sample images from the CIFAR-10 dataset.

CIFAR-10 Dataset [42] consists of 60,000 colour images
(32 x 32 pixels) in 10 classes, with 6,000 images per class (see
Fig. 3). The dataset is split into training and test sets, composed
by 50,000 and 10,000 images respectively. A retrieved image is
considered relevant for the query if it belongs to the same class.
This dataset has been used for ANN retrieval using hash codes
in [24], [29].

MNIST Dataset [43] consists of 70,000 handwritten digits
images (28 x 28 pixels, see Fig. 4). The dataset is split into
60,000 training examples and 10,000 test examples. Similarly to
CIFAR-10, aretrieved image is considered relevant if it belongs
to the same class of the query. This dataset has been used for
ANN retrieval in [24], [29].

Image retrieval datasets INRIA Holidays [38], Oxford 5K
[44] and Paris 6K [45] are three datasets typically used to evalu-
ate image retrieval systems. For each dataset are given a number
of query images, and the associated ground truth. INRIA Hol-
idays is composed by 1,491 images, of which 500 are used as
queries; Oxford 5K is composed by 5,062 images with 55 query
images, and Paris 6 K is made of 6,412 images with 55 query
images. We used the query images and ground truth provided

2526

ANy ITWRh~NO
Ml NAHYRWP~Q
v deoyLwN—
NN e cWN—O
RN eqrd N0
YR S ALNDRO
LN N LCW =0
L~ e RONND
NN R~
O~ aKhL e
NN Sl DN -
LSRN UL W NNO
SN AW ~O
~»~ o~V OsOARNW NSO
wRN W, -0

£

Fig. 4. Sample images from the MNIST dataset.

for each dataset, adding 100,000 distractor images from Flickr
100K [44].

B. Evaluation Metrics

The performance of ANN retrieval in BIGANN dataset is
evaluated using recall @R, which is used in most of the results
reported in the literature [1], [15], [16], [18], [20], [36] and it
is, for varying values of R, the average rate of queries for which
the 1-nearest neighbor is retrieved in the top R positions. In case
of R =1 this metric coincides with precision@]. The same
measure has been used by the authors of the DEEP1B dataset
[22].

Performance of image retrieval in CIFAR-10, MNIST, INRIA
Holidays, Oxford 5K and Paris 6K is measured following the
setup of [29], using Mean Average Precision

@ AveP
MAP:ZQIQM@ 4)

where

1
AveP = / p(r)dr ®)
0
is the area under the precision-recall curve and () is the number
of queries.

C. Configurations and Implementations

1) BIGANN: We use settings which reproduce top per-
formances at 64-bit codes. We perform search with a non-
exhaustive approach. For each query 64 bits binary hash code
of the feature and Hamming distance measure are used to ex-
tract small subsets of candidates from the whole database set
(Table II). Euclidean distance measure is then used to re-rank
the nearest feature points, calculating recall@R values in these
subsets.

2) DEEPIB: We use the CNN features computed in [22],
hashed to 64-bit codes. Searching process is done in a non-
exhaustive way, using Hamming distances to reduce the subsets
of candidates from the whole database set. After we have ex-
tracted a shortlist of candidates we perform a re-rank step based
on Euclidean distances and we calculate recall@R values.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 11, NOVEMBER 2017

ImageNet

Y
¥arnieme B
@e IIHI‘I:& 4 |5 -

EAdasNGL

t.ﬂﬂlﬂﬂﬂiﬂ‘l

Step 1: Supervised Pre-Training on ImageNet

Parameter transfer

Step 2: Fine tuning on CIFAR-10

Convolutional layers
CIFAR-10

BiELrvE)
R L |
L leg e 1 ~

Fig. 5. Framework used for the CNN feature extraction on CIFAR-10 [24]:
we use the values of the nodes of the FCh layer as feature (48 dimensions).

3) CIFAR-10: We use features computed with the framework
proposed in [24] (Fig. 5). The process is carried out in two steps:
in the first step a supervised pre-training on the large-scale Im-
ageNet dataset [46] is performed. In the second step fine-tuning
of the network is performed, with the insertion of a latent layer
that simultaneously learns domain specific feature representa-
tions and a set of hash-like functions. The authors used the
pre-trained CNN model proposed by Krizhevsky ef al. [46] and
implemented in the Caffe CNN library [47]. In our experiments
we use features coming from the F'C'h Layer (Latent Layer H),
which has a size of 48 nodes.

4) MNIST: We use LeNet CNN to compute our features in
MNIST. This is a network architecture developed by LeCun [48]
that was especially designed for recognizing handwritten digits,
reading zip codes, etc. It is a 8-layer network with 1 input layer,
2 convolutional layers, 2 non-linear down-sampling layers, 2
fully connected layers and a Gaussian connected layer with 10
output classes. We used a modified version of LeNet [47] and
we obtain features from the first fully connected layer.

We perform search with a non-exhaustive approach on both
CIFAR-10 and MNIST datasets. For each image we extract a
48-dimensional feature vector for CIFAR-10, and 500-
dimensional feature vector for MNIST, from the respective net-
work and then we generate a 48 bits binary hash code using
the proposed methods of Section III. Hamming distance is used
to select the nearest hash codes for each query and similarity
measure given by

A-B - Z;L:l AiB’i
A B \/222114?@?63)

where A; and B; are the components of the original feature
vectors A and B, is used to re-rank the nearest visual features.
i) Holidays, Oxford 5K, Paris 6K: We used CNN features
extracted using the 1024d average pooling layer of GooglLeNet
[40], that in initial experiments has proven to be more effective
than the FC7 layer of VGG [49] used in [50]. When testing on
a dataset, training is performed using the other two datasets.
Features have been hashed to 64 bits binary codes, a length that
has proved to be the best compromise between compactness and

similarity = cos (0) =

ERCOLI et al.: COMPACT HASH CODES FOR EFFICIENT VISUAL DESCRIPTORS RETRIEVAL

—[> PQ(ADC)
— PQ(IVFADC) |
PQ-RO
—# PQ-RR
—O- ck-means
— OPQ-P
—¥ OPQ-NP
-— |-OPQ
—»% LOPQ
RVQ
-~ RVQ-P
—t- RVQ-NP
~O—m-k-means-t1
—O—m-k-means-t2
—0O-m-k-means-n1 ||
—O—m-k-means-n2

Recall@R

0.1V : ! ! |
1 10 100 1000 10000
R
Fig.6. Recall@R on SIFT1M. Comparison between our method (m-k-means-

t1, m-k-means-n; with n = 32, m-k-means-to and m-k-means-no with n = 32),
the Product Quantization method (PQ ADC and PQ IVFADC) [1], Cartesian
k-means method (ck-means) [15], a non-exhaustive adaptation of the optimized
product quantization method (I-OPQ), a locally optimized product quantization
method (LOPQ) [18], OPQ-P, and OPQ-NP [16], [51], and PQ-RO, PQ-RR,
RVQ-P, and RVQ-NP [19].

—[> PQ(ADC)
~< PQ(IVFADC)
PQ-RO
-7 PQ-RR
—O- ck-means
- OPQ-P
—% OPQ-NP
-~ |-OPQ
-»% LOPQ
RvVQ
-~ RVQ-P
—f- RVQ-NP
O—m-k-means-t1
—0O—m-k-means-t2
—0O—-m-k-means-n1 -
—O—m-k-means-n2

1000 10000

Fig.7. Recall@R on GIST1M. Comparison between our method (m-k-means-
t1, m-k-means-n; with n = 48, m-k-means-to and m-k-means-no with n = 48),
the product quantization method (ADC and IVFADC) [1], Cartesian k-means
method (ck-means) [15], a non-exhaustive adaptation of the optimized product
quantization method (I-OPQ) [18], a locally optimized product quantization
method (LOPQ) [18], OPQ-P, and OPQ-NP [16], [51], and PQ-RO, PQ-RR,
RVQ-P, and RVQ-NP [19].

representativeness, and allow us to compare with a number of
competing approaches.

D. Results on BIGANN: SIFTIM, GISTIM

In this set of experiments the proposed approach and its vari-
ants are compared on the SIFT1M (Fig. 6) and GISTIM (Fig. 7)
datasets against several methods presented in Section II: Prod-
uct Quantization (ADC and IVFADC) [1], PQ-RO [19], PQ-RR
[19], Cartesian k-means [15], OPQ-P [16], [51], OPQ-NP [16],

2527

[51], LOPQ [18], a non-exhaustive adaptation of OPQ [16],
called I-OPQ [18], RVQ [52] , RVQ-P [19] and RVQ-NP [19].

ADC (Asymmetric Distance Computation) is characterized
by the number of sub vectors m and the number of quantizers
per sub vectors k£, and produces a code of length m x logo k™.

IVFADC (Inverted File with Asymmetric Distance Computa-
tion) is characterized by the codebook size k' (number of cen-
troids associated to each quantizer), the number of neighbouring
cells w visited during the multiple assignment, the number of
sub vectors m and the number of quantizers per sub vectors k*
which is in this case fixed to £* = 256. The length of the final
code is given by m x logs k™.

PQ-RO [19] is the Product Quantization approach with data
projection by randomly order dimensions.

PQ-RR [19] is the Product Quantization approach with data
projection by both PCA and randomly rotation.

Cartesian k-means (ck-means) [15] models region center as
an additive combinations of subcenters. Let m be the number
of subcenters, with h elements, then the total number of model
centers is k = A", but the total number of subcenters is h x m,
and the number of bits of the signature is m X logs h.

OPQ-P [16], [51] is the parametric version of Optimized
Product Quantization (OPQ), that assumes a parametric Gaus-
sian distribution of features and performs space decomposition
using an orthonormal matrix computed from the covariance ma-
trix of data.

OPQ-NP [16], [51] is the non-parametric version of OPQ,
that does not assume any data distribution and alternatively
optimizes sub-codebooks and space decomposition.

LOPQ (Locally optimized product quantization) [18] is
a vector quantizer that combines low distortion with fast
search applying a local optimization over rotation and space
decomposition.

I-OPQ [18] is a non-exhaustive adaptation of OPQ (Opti-
mized Product Quantization [16]) which use either OPQ-P or
OPQ-NP global optimization.

RVQ [52] approximates the quantization error by another
quantizer instead of discarding it. In this method several stage-
quantizers, each one with its corresponding stage-codebook, are
connected sequentially. Each stage-quantizer approximates the
residual vector of the preceding stage by one of centroids of its
stage-codebook and generates a new residual vector for the next
stage.

RVQ-P [19] is a parametric version of RVQ, where stage-
codebooks and space decomposition of RVQ are optimized us-
ing SVD.

RVQ-NP [19] is a non-parametric version of RVQ, using the
same techniques of RVQ-P, but optimizing a space decomposi-
tion for all the stages.

The parameters of the proposed methods are set as follows:
for m-k-means-t; we use as threshold the arithmetic mean of
the distances between feature vectors and centroids to compute
hash code; m-k-means-n; creates hash code by setting to 1
the corresponding position of the first 32 (SIFT1M) and first
48 (GISTIM) nearest centroids for each feature; m-k-means-
ty and m-k-means-no create two different sub hash codes for
each feature by splitting into two parts the training phase and

2528

o 0.6 u pe Z .7 P ~
® P M -
= -2y)
5o kil e
& G L
4 g
J3%% e —b PQ(ADC+R)
g s -+ PQ(IVFADC+R)
03] e T ck-means 1
2T el - -OPQ
02 ” — —O- Multi-D-ADC
& _-- + LOR+PQ
-0 LOPQ
0.1¥ ~O-m-k-means-t1
—O—m-k-means-n1
ol L L I J
1 10 100
R
Fig.8. Recall@R on SIFT1B. Comparison between our method (m-k-means-

t1, m-k-means-n; with n = 24), the product quantization method [36], a non-
exhaustive adaptation of the optimized product quantization method (I-OPQ)
[18], a multi-index method (Multi-D-ADC), and a locally optimized product
quantization method (LOPQ) with a sub-optimal variant (LOR+PQ) [18].

combine these two sub parts into one single code to create the
final signature. Since we have a random splitting during the
training phase, these experiments are averaged over a set of
10 runs.

The proposed method, in all its variants, obtains the best
results when considering the more challenging values of re-
call@R, i.e. with a small number of nearest neighbors, like 1,
10 and 100. When R goes to 1000 and 10,000 it still obtains
the best results and in the case of SIFTIM it is on par with
ck-means [15]. Considering GISTIM the method consistently
outperforms all the other methods for all the values of R, except
for R = 1 where RVQ-P [19] is better.

E. Results on BIGANN: SIFTIB

In this experiment we compare our method on the large scale
SIFT1B dataset (Fig. 8) against LOPQ and a sub-optimal variant
LOR+PQ [18], single index PQ approaches IVFADC+R [36]
and ADC+R [36], I-OPQ [16] and ck-means [15], and a multi-
index method Multi-D-ADC [20]. [36] differ from the standard
IVFADC [1] and ADC [1] in using short quantization codes to
re-rank the NN candidates. m-k-means-t; uses the same setup of
the previous experiment; m-k-means-n; uses the first 24 nearest
centroids for each feature.

Also in this experiment the proposed method obtains the best
results, in particular when considering the more challenging
small value of R for the recall@R measure (R = 1), with an
improvement between 10% and 20% with respect to the best
results of the compared methods.

F. Results on DEEPIB

Experiments on DEEP1B [22] are shown in Fig. 9. We use a
configuration with an hash code length of 64 bits for the m-k-
means-t, and m-k-means-n, variants. The comparison is made

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 11, NOVEMBER 2017

o
2 0.6
s e
& S E BT g
0.5 ,—D’"‘_,--—~“__—' J
i
0.4 P e
2% ~b- NO-IMI
BT T |
03} ¢ 2" GNO-IMI
e —O—m-k-means-t1
<t ~O-m-k-means-n1
0.2 L I
1 5 10
R
Fig. 9. Recall@R on DEEPIB. Comparison between our method (m-k-

means-t1, m-k-means-n; with n = 24), inverted multi-index (IMI) [22], non-
orthogonal inverted multi-index (NO-IMI) [22] and generalized non-orthogonal
inverted multi-index (GNO-IMI) [22].

TABLE IV
MAP RESULTS ON CIFAR-10 AND MNIST

Method CIFAR-10 (MAP) MNIST (MAP)
LSH [57] 0.120 0.243
SH [2] 0.130 0.250
1TQ [54] 0.175 0.429
BRE [56] 0.196 0.634
MLH [55] 0.211 0.654
ITQ-CCA [54] 0.295 0.726
KSH [53] 0.356 0.900
CNNH [29] 0.522 0.960
CNNH+[29] 0.532 0.975
ACH [7] 0.600 -
KevinNet [24] 0.894 0.985
m-k-means-t 0.953 0.972
m-k-means-to 0.849 0.964
m-k-means-n; 0.972 0.969
m-k-means-ns 0.901 0.959

Comparison between our method (m-k-means-t; , m-k-means-n; with n =
24, m-k-means-t5 and m-k-means-no with n = 24) with KSH [53], ITQ-CCA
[54], MLH [55], BRE [56], CNNH [29], CNNH+[29], KevinNet [24], LSH
[57], SH [2], ITQ [54]. Results from [7], [24], [29].

against IMI [22], NO-IMI [22] and GNO-IMI [22], for which
we report the results obtained by the authors using a rerank
approach for codes of 64 bits. Following the experimental setup
used in [22], we considered R = 1, R = 5 and R = 10 for the
recall @R measure.

The proposed method obtains best results in both configura-
tions (m-k-means-t; and m-k-means-n;) and considering R = 1
obtains a result approximately three times greater than the others
methods; for the other values of R the improvement is between
2 and 1.5x%.

G. Results on CIFAR-10, MNIST

In the experiments on CIFAR-10 [42] and MNIST [43] im-
ages dataset (Table IV) we use the following configurations for
the proposed method: hash code length of 48 bits (the same

ERCOLI et al.: COMPACT HASH CODES FOR EFFICIENT VISUAL DESCRIPTORS RETRIEVAL

length used by the compared methods), arithmetic mean for the
m-k-means-t, variant, n = 24 for m-k-means-n .

Queries are performed using a random selection of 1,000
query images (100 images for each class), considering a category
labels ground truth relevance (Rel(7)) between a query ¢ and
the i'" ranked image. So Rel(i) € {0,1} with 1 for the query
and i*" images with the same label and 0 otherwise. This setup
has been used in [24], [29]. Since we select queries in a random
way the results of these experiments are averaged over a set of
10 runs.

We compared the proposed approach with several state-of-
the-art hashing methods including supervised (KSH [53], ITQ-
CCA [54], MLH [55], BRE [56], CNNH [29], CNNH+[29],
KevinNet [24]) and unsupervised methods (LSH [57], SH [2],
ITQ [54)).

The proposed method obtains the best results on the more
challenging of the two datasets, i.e. CIFAR-10. The comparison
with the KevinNet [24] method is interesting since we use the
same features, but we obtain better results for all the variants
of the proposed method except one. On MNIST dataset the best
results of our approach are comparable with the second best
method [29], and anyway are not far from the best approach
[24].

H. Results on INRIA Holidays, Oxford 5K and Paris 6K

In this experiment we evaluate the effects of the method pa-
rameters, i.e. number of nearest centroids n for the m-k-means-
n1 method, and Hamming distance threshold (H). The proposed
approaches are compared with several state-of-the-art methods,
among which the recent UTH method [31]; while some of these
methods were originally proposed for engineered features, they
have been evaluated on CNN features (results reported from
[31]). Retrieval is performed using the coarse-to-fine approach
used in [24], where the hash is used to select a candidate list of
images and CNN descriptors are used to re-rank this list. For
the sake of brevity only some combinations of the parameters of
the proposed methods are reported. The m-k-means-n; method,
with an Hamming distance H > 6 and n = 6 greatly outper-
forms any state-of-the-art hashing method. Also m-k-means-t;
outperforms competing methods, although obtaining a smaller
improvement. In general both methods are robust with respect
to the parameters.

Of course using methods that use the full CNN descriptors,
without hashing, it is possible to obtain better results, for exam-
ple as in the schemes tested in the work by Wan et al. [58], or
using the global CNN descriptor proposed by Gordo et al. [59],
but this comes at the expense of much larger memory occupa-
tion and computational costs for retrieval (e.g. the descriptor
proposed by Gordo is 512 floats long). In this case the benefit
of using a hashing schema is to allow better scaling to larger
datasets and improved computational costs.

1. Results Varying Hash Code Length and n

In this experiment (Table V) we compare the behavior of re-
trieval performance for different lengths of the hash code (for
m-kmeans-t,) and for different values of n nearest neighbors (for

2529

TABLE V
MAP RESULTS ON HOLIDAYS, OXFORD 5K, AND PARIS 6K DATASETS

Method Holidays Oxford 5K Paris 6K
1TQ [54] 0.537 0.230 -
BPBC [60] 0.381 0.225 -
PCAHash [54] 0.528 0.239 -
LSH [61] 0.431 0.239 -
SKLSH [62] 0.241 0.134 -
SH [2] 0.522 0.232 -
SRBM [63] 0.516 0.212 -
UTH [31] 0.571 0.240 -
m-k-means-nq, (n = 6, H =10) 0.756 0.460 0.676
m-k-means-n; (n = 6, H=16) 0.756 0.461 0.678
m-k-means-n; (n = 10, H =10) 0.743 0.456 0.608
m-k-means-nq, (n = 10, H =16) 0.756 0.460 0.677
m-k-means-t; (n = 10) 0.683 0.362 0.480

The proposed methods method outperforms all the current state-of-the-art methods.
All hashes are 64 bit long.

b 3 g;; _:_:;_;’-—-j:r":

0.9 o ;’o, S
/ :,r' ”‘/
il
oA
F YU {,f

8
w

e B
- bt

I —>= m-k-means-t1(k=32)

| =1 m-k-means-t1(k=64)
m-k-means-t1(k=128)

-0~ m-k-means-n1(k=64 n=8)

0.1} | —— m-k-means-n1(k=64 n=16) -

»- m-k-means-n1(k=64 n=32)

1 5 10 20 50 100

R

Fig. 10. Experiments on SIFT1M with different signatures length and values
of n. We use k = 32, k = 64, and k = 128 for m-k-means-t| variant; for
m-k-means-n, we use k = 64 withn = 8, n = 16, and n = 32.

m-kmeans-n,). Experiments were made for SIFT1M for differ-
ent values of recall@R. Fig. 10 reports the results. We can ob-
serve how the performances are good for each signature length
and how they converge to 1 from recall @ 10 onward; differences
in performance are already small for R = 5. This means that our
binary coding method maintains a good representation along dif-
ferent signatures length and, for the m-k-means-n, variant, also
for different values of n.

V. CONCLUSION

We have proposed a new version of the k-means based hashing
schema called multi-k-means — with 4 variants: m-k-means-t;,
m-k-means-to, m-k-means-n, and m-k-means-ns — which uses
a small number of centroids, guarantees a low computational
cost and results in a compact quantizer. These characteristics
are achieved thanks to the association of the centroids to the
bits of the hash code, that greatly reduce the need of a large
number of centroids to produce a code of the needed length.
Another advantage of the method is that it has no parameters

2530

in its m-k-means-t; and m-k-means-t, variants, and only one
parameter for the other two variants; anyway, as shown by the
experiments, it is quite robust to variations of such parameter,
as well as hash code length.

Our compact hash signature is able to represent high di-
mensional visual features obtaining a very high efficiency in
approximate nearest neighbor (ANN) retrieval, both, on local
and global visual features. This characteristic stems from the
multiple-assignment strategy, that reduces the need of multi
probe strategy to retrieve hash codes that differ by few bits,
typically due to quantization errors, and results in better ap-
proximated nearest neighbour estimation using Hamming dis-
tance. The method has been tested on large scale datasets of
engineered (SIFT and GIST) and learned (deep CNN) features,
obtaining results that outperform or are comparable to more
complex state-of-the-art approaches. The m-k-means-n; variant
typically performs better than m-k-means-t,, especially when
dealing with modern CNN features.

ACKNOWLEDGMENT

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of ODNI, IARPA, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints
for Governmental purpose notwithstanding any copyright anno-
tation thereon.

V. APPENDIX

Experimental Results on BIGANN and DEEP1B Reported as
Tables. See Tables VI-IX here.

TABLE VI
Recall@R oON SIFT1M - COMPARISON BETWEEN OUR METHOD
(M-K-MEANS-t1 , M-K-MEANS-n1 WITH n = 32, M-K-MEANS-t5, AND
M-K-MEANS-n9 WITH n = 32), THE PRODUCT QUANTIZATION METHOD (PQ
ADC AND PQ IVFADC) [1], CARTESIAN K-MEANS METHOD (CK-MEANS)

[15], A NON-EXHAUSTIVE ADAPTATION OF THE OPTIMIZED PRODUCT

QUANTIZATION METHOD (I-OPQ), A LOCALLY OPTIMIZED PRODUCT
QUANTIZATION METHOD (LOPQ) [18], OPQ-P AND OPQ-NP [16], [51],

AND PQ-RO, PQ-RR, RVQ-P, AND RVQ-NP [19]

Method R@l R@10 R@100 R@1000 R@10000
PQ (ADC) [1] 0.224 0.600 0.927 0.996 0.999
PQ (IVFADC) [1] 0.320 0.739 0.953 0.972 0.972
PQ-RO [19] 0.177 0.501 0.854 N/A N/A
PQ-RR [19] 0.107 0.331 0.695 N/A N/A
ck-means [15] 0.231 0.635 0.930 1 1
OPQ-P [16], [51] 0.219 0.563 0.917 N/A N/A
OPQ-NP [16], [51] 0.242 0.627 0.938 N/A N/A
1-OPQ [18] 0.299 0.691 0.875 0.888 0.888
LOPQ [18] 0.380 0.780 0.886 0.888 0.888
RVQ [52] 0.264 0.659 0.949 1 1
RVQ-P [19] 0.397 0.821 0.983 N/A N/A
RVQ-NP [19] 0.271 0.686 0.958 N/A N/A
m-k-means-t 0.501 0.988 1 1 1
m-k-means-to 0.590 0.989 1 1 1
m-k-means-n; 0.436 0.986 1 1 1
m-k-means-no 0.561 0.986 1 1 1

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 11, NOVEMBER 2017

TABLE VII
Recall@R ON GIST1M - COMPARISON BETWEEN OUR METHOD

(M-K-MEANS-t1, M-K-MEANS-n1 WITH n = 48, M-K-MEANS-t5, AND

M-K-MEANS-n9 WITH n = 48), THE PRODUCT QUANTIZATION METHOD
(ADC AND IVFADC) [1], CARTESIAN K-MEANS METHOD (CK-MEANS) [15],
A NON-EXHAUSTIVE ADAPTATION OF THE OPTIMIZED PRODUCT QUANTIZATION

METHOD (I-OPQ) [18], A LOCALLY OPTIMIZED PRODUCT QUANTIZATION

METHOD (LOPQ) [18], OPQ-P AND OPQ-NP [16], [51],
AND PQ-RO, PQ-RR, RVQ-P, AND RVQ-NP [19]

Method R@l R@10 R@I100 R@1000 R@10000
PQ (ADC) [1] 0.145 0.315 0.650 0.932 0.997
PQ (IVFADC) [1] 0.180 0.435 0.740 0.966 0.992
PQ-RO [19] 0.034 0.056 0.136 N/A N/A
PQ-RR [19] 0.033 0.062 0.124 N/A N/A
ck-means [15] 0.135 0.335 0.728 0.952 0.985
OPQ-P [16], [51] 0.095 0.297 0.629 N/A N/A
OPQ-NP [16], [51] 0.089 0.277 0.642 N/A N/A
1-OPQ [18] 0.146 0.410 0.729 0.862 0.866
LOPQ [18] 0.160 0.461 0.756 0.860 0.866
RVQ [52] 0.095 0.276 0.656 0.936 1
RVQ-P [19] 0.309 0.700 0.950 N/A N/A
RVQ-NP [19] 0.107 0.314 0.678 N/A N/A
m-k-means-t 0.111 0.906 1 1 1
m-k-means-to 0.123 0.890 1 1 1
m-k-means-n; 0,231 0,940 1 1 1
m-k-means-ns 0,265 0,905 1 0,999 0,999
TABLE VIII

Recall@R ON SIFT1B - COMPARISON BETWEEN OUR METHOD
(M-K-MEANS-t1 , M-K-MEANS-n1 WITH n = 24), THE PRODUCT
QUANTIZATION METHOD [36], A NON-EXHAUSTIVE ADAPTATION

OF THE OPTIMIZED PRODUCT QUANTIZATION METHOD (I-OPQ) [18],
A MULTI-INDEX METHOD (MULTI-D-ADC), AND A LOCALLY
OPTIMIZED PRODUCT QUANTIZATION METHOD (LOPQ)

WITH A SUB-OPTIMAL VARIANT (LOR+PQ) [18]

Method R@1 R@10 R@100
PQ (ADC+R) [36] 0.656 0.970 0.985
PQ (IVFADC+R) [36] 0.630 0.977 0.983
ck-means [15] 0.084 0.288 0.637
1-OPQ [18] 0.114 0.399 0.777
Multi-D-ADC [20] 0.165 0.517 0.860
LOR+PQ [18] 0.183 0.565 0.889
LOPQ [18] 0.199 0.586 0.909
m-k-means-tq 0.775 0.917 0.928
m-k-means-nq 0.787 0.990 1
TABLE IX

Recall@R oN DEEP1B - COMPARISON BETWEEN OUR METHOD
(M-K-MEANS-t1, M-K-MEANS-n1 WITH n = 24), INVERTED
MULTI-INDEX (IMI) [22], NON-ORTHOGONAL INVERTED
MULTI-INDEX (NO-IMI) [22], AND GENERALIZED NON-
ORTHOGONAL INVERTED MULTI-INDEX (GNO-IMI) [22]

Method R@1 R@5 R@10
NO-IMI [22] 0.272 0.492 0.593
IMI [22] 0.241 0450 0.545
GNO-IMI [22] 0.276 0.508 0.613
m-k-means-t 0.694 0.892 0912
m-k-means-n, 0.768 0.988 0.999
REFERENCES

[1] H. Jégou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
pp. 117-128, Jan. 2011.

ERCOLI et al.: COMPACT HASH CODES FOR EFFICIENT VISUAL DESCRIPTORS RETRIEVAL

[2]
[3]

[4]

[9]
[10]

(1]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc. Neural
Inf. Process. Syst., 2009, pp. 1753-1760.

P. Li, M. Wang, J. Cheng, C. Xu, and H. Lu, “Spectral hashing with se-
mantically consistent graph for image indexing,” IEEE Trans. Multimedia,
vol. 15, no. 1, pp. 141-152, Jan. 2013.

J. P. Heo, Y. Lee, J. He, S. F. Chang, and S. E. Yoon, “Spherical hashing:
Binary code embedding with hyperspheres,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 11, pp. 2304-2316, Nov. 2015.

Z.Jin, C. Li, Y. Lin, and D. Cai, “Density sensitive hashing,” IEEE Trans.
Cybern., vol. 44, no. 8, pp. 1362-1371, Aug. 2014.

S. Du, W. Zhang, S. Chen, and Y. Wen, “Learning flexible binary code for
linear projection based hashing with random forest,” in Proc. 22nd IEEE
Int. Conf. Pattern Recog., Aug. 2014, pp. 2685-2690.

Y.Lv, W.W.Y.Ng,Z. Zeng, D. S. Yeung, and P. P. K. Chan, “Asymmetric
cyclical hashing for large scale image retrieval,” IEEE Trans. Multimedia,
vol. 17, no. 8, pp. 1225-1235, Aug. 2015.

L. Paulevé, H. Jégou, and L. Amsaleg, “Locality sensitive hashing: A
comparison of hash function types and querying mechanisms,” Pattern
Recog. Lett., vol. 31, no. 11, pp. 1348-1358, 2010.

W. Zhou, Y. Lu, H. Li, and Q. Tian, “Scalar quantization for large scale
image search,” in Proc. ACM Int. Conf. Multimedia, 2012, pp. 169-178.
G. Ren, J. Cai, S. Li, N. Yu, and Q. Tian, “Scalable image search
with reliable binary code,” in Proc. ACM Int. Conf. Multimedia, 2014,
pp. 769-772.

W. Zhou et al., “Towards codebook-free: Scalable cascaded hashing
for mobile image search,” IEEE Trans. Multimedia, vol. 16, no. 3,
pp. 601-611, Apr. 2014.

C.-C. Chen and S.-L. Hsieh, “Using binarization and hashing for ef-
ficient SIFT matching,” J. Vis. Commun. Image Represent., vol. 30,
pp. 86-93, 2015.

M. Jain, H. Jégou, and P. Gros, “Asymmetric Hamming embedding: Tak-
ing the best of our bits for large scale image search,” in Proc. ACM Int.
Conf. Multimedia, 2011, pp. 1441-1444.

V. Chandrasekhar et al., “Survey of SIFT compression schemes,” in Proc.
Int. Workshop Mobile Multimedia Process., 2010, pp. 35-40.

M. Norouzi and D. Fleet, “Cartesian k-means,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recog., Jun. 2013, pp. 3017-3024.

T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization for
approximate nearest neighbor search,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., Jun. 2013, pp. 2946-2953.

K. He, F. Wen, and J. Sun, “K-means hashing: An affinity-preserving
quantization method for learning binary compact codes,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., Jun. 2013, pp. 2938-2945.

Y. Kalantidis and Y. Avrithis, “Locally optimized product quantization for
approximate nearest neighbor search,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., Jun. 2014, pp. 2329-2336.

D. Guo, C. Li, and L. Wu, “Parametric and nonparametric residual vector
quantization optimizations for ANN search,” Neurocomputing, vol. 217,
pp. 92-102, 2016.

A. Babenko and V. Lempitsky, “The inverted multi-index,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., Jun. 2012, pp. 3069-3076.

L. Zheng, S. Wang, Z. Liu, and Q. Tian, “Packing and padding: Coupled
multi-index for accurate image retrieval,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog., Jun. 2014, pp. 1947-1954.

A.Babenko and V. Lempitsky, “Efficient indexing of billion-scale datasets
of deep descriptors,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
Jun. 2016, pp. 2055-2063.

L. Zheng, S. Wang, J. Wang, and Q. Tian, “Accurate image search with
multi-scale contextual evidences,” Int. J. Comput. Vis., vol. 120, no. 1,
pp. 1-13, Oct. 2016.

K. Lin, H.-F. Yang, J.-H. Hsiao, and C.-S. Chen, “Deep learning of binary
hash codes for fast image retrieval,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog. Workshops, Jun. 2015, pp. 27-35.
T-T. Do, A.-Z. Doan, and N.-M. Cheung,
with deep neural network,” CoRR, 2015.
http://arxiv.org/abs/1508.07148

J. Guo and J. Li, “CNN based hashing for image retrieval,” CoRR, 2015.
[Online]. Available: http://arxiv.org/abs/1509.01354

Z. Zhang, Y. Chen, and V. Saligrama, “Supervised hashing
with deep neural networks,” CoRR, 2015. [Online]. Available:
http://arxiv.org/abs/1511.04524

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1-122,
2011.

“Discrete hashing
[Online]. Available:

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

(371

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(501

[51]

[52]

(53]

[54]

2531

R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan, “Supervised hashing for image
retrieval via image representation learning,” in Proc. AAAI Conf. Artif.
Intell., 2014, pp. 2156-2162.

D. Wang, P. Cui, M. Ou, and W. Zhu, “Learning compact hash codes for
multimodal representations using orthogonal deep structure,” [EEE Trans.
Multimedia, vol. 17, no. 9, pp. 1404-1416, Sep. 2015.

J. Lin, O. Morere, J. Petta, V. Chandrasekhar, and A. Veillard, “Tiny
descriptors for image retrieval with unsupervised triplet hashing,” in Proc.
Data Compression Conf., 2016, pp. 397-406.

D. Arthur and S. Vassilvitskii, “k-means++: The advantages of care-
ful seeding,” in Proc. ACM-SIAM Symp. Discrete Algorithms, 2007,
pp. 1027-1035.

K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of the
devil in the details: Delving deep into convolutional nets,” in Proc. Brit.
Mach. Vis. Conf., 2014.

J. van Gemert, C. Veenman, A. Smeulders, and J.-M. Geusebroek, “Visual
word ambiguity,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 7,
pp. 1271-1283, Jul. 2010.

Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe
LSH: Efficient indexing for high-dimensional similarity search,” in Proc.
Int. Conf. Very Large Data Bases, 2007, pp. 950-961.

H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg, “Searching in one
billion vectors: Re-rank with source coding,” in Proc. Int. Conf. Acoust.,
Speech, Signal Process., 2011, pp. 861-864.

M. Norouzi, A. Punjani, and D. Fleet, “Fast exact search in Hamming
space with multi-index hashing,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, no. 6, pp. 1107-1119, Jun. 2014.

H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak
geometric consistency for large scale image search,” in Proc. Eur. Conf.
Comput. Vis., 2008, pp. 304-317.

A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A
large data set for nonparametric object and scene recognition,” I[EEE Trans.
Pattern Anal. Mach. Intell., vol. 30, no. 11, pp. 1958-1970, Nov. 2008.
C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., Jun. 2015, pp. 1-9.

J. Deng et al., “ImageNet: A large-scale hierarchical image database,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2009, pp. 248-255.
A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” M.S. thesis, Dept. Comput. Sci., Univ. Toronto, Toronto,
ON, Canada, 2009.

Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database of hand-
written digits,” Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object retrieval
with large vocabularies and fast spatial matching,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., Jun. 2007, pp. 1-8.

J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Lost in
quantization: Improving particular object retrieval in large scale image
databases,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2008,
pp. 1-8.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Neural Inf. Process.
Syst., 2012, pp. 1097-1105.

Y.Jiaetal., “Caffe: Convolutional architecture for fast feature embedding,”
in Proc. ACM Int. Conf. Multimedia, 2014, pp. 675-678.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,2015.
T. Uricchio, M. Bertini, L. Seidenari, and A. Del Bimbo, “Fisher encoded
convolutional bag-of-windows for efficient image retrieval and social im-
age tagging,” in Proc. IEEE Int. Conf. Comput. Vis. Workshops, Dec. 2015,
pp- 1020-1026.

T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization,” [EEE
Trans. Pattern Anal. Mach. Intell., vol. 36, no. 4, pp. 744-755, Apr. 2014.
Y. Chen, T. Guan, and C. Wang, “Approximate nearest neighbor search by
residual vector quantization,” Sensors, vol. 10, no. 12, pp. 11 259-11 273,
2010.

W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “‘Supervised hashing
with kernels,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2012,
pp- 2074-2081.

Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quantiza-
tion: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12,
pp- 2916-2929, Dec. 2013.

2532

[55]

[56]

[57]

[58]

[59]

[60]

M. Norouzi and D. J. Fleet, “Minimal loss hashing for compact binary
codes,” in Proc. Int. Conf. Mach. Learn., 2011, pp. 353-360.

B. Kulis and T. Darrell, “Learning to hash with binary reconstruc-
tive embeddings,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2009,
pp- 1042-1050.

A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimen-
sions via hashing,” in Proc. Int. Conf. Very Large Data Bases, 1999,
pp. 518-529.

J. Wan et al., “Deep learning for content-based image retrieval: A
comprehensive study,” in Proc. ACM Int. Conf. Multimedia, 2014,
pp. 157-166.

A. Gordo, J. Almazan, J. Revaud, and D. Larlus, “Deep image retrieval:
Learning global representations for image search,” in Proc. Eur. Conf.
Comput. Vis., 2016, pp. 241-257.

Y. Gong, S. Kumar, H. Rowley, and S. Lazebnik, “Learning binary codes
for high-dimensional data using bilinear projections,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., Jun. 2013, pp. 484-491.

[61]

[62]

[63]

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 11, NOVEMBER 2017

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proc. Symp. Comput.
Geom., 2004, pp. 253-262.

M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes from shift-
invariant kernels,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2009,
pp. 1509-1517.

V. Chandrasekhar, J. Lin, O. Morere, A. Veillard, and H. Goh, “Compact
global descriptors for visual search,” in Proc. Data Compression Conf.,
2015, pp. 333-342.

Authors’ photographs and biographies not available at the time of publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

