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ABSTRACT 

In this paper we present an efficient and effective method for 

visual descriptors hashing based on hierarchical multiple as­

signment within a k-means framework. The method has been 

used to address the problem of approximate nearest neighbor 

(ANN) retrieval, and it has been tested on local and global 

visual content descriptors, either engineered or learned. The 

proposed method has been compared to state-of-the-art meth­

ods on different standard large-scale data sets composed by 

millions of visual features: SIFT 1M and GIST 1M (BI­

GANN), and also on the recent DEEPIM dataset, composed 

by one million CNN-based features. Experimental results 

show that, despite its simplicity, the proposed method obtains 

an excellent performance. 

Index Terms- Image retrieval, approximate nearest 

neighbor retrieval, hashing, SIFT, CNN. 

1. INTRODUCTION 

The inception of web-scale visual archives, in which con­

tent is represented using high-dimensional feature vectors, 

calls for efficient and effective methods to perform retrieval. 

Nearest neighbor (NN) retrieval is one of the main tasks for 

large scale multimedia archives and for many computer vision 

tasks. Since even methods designed for high-dimensional fea­

tures indexing obtain a performance that is comparable to that 

of linear search [1], a solution to speed up retrieval is to com­

press the dimensionality of the descriptor. This is beneficial 

also to address the problem of storing image descriptors, ei­

ther in case of large-scale archives, or in case of systems with 

limited memory. In this approach, typically, an approximate 

nearest neighbor (ANN) search is performed computing the 

Hamming distance on binary features, obtained from feature 

hashing. In this way it is possible to compress features that 

consist of hundreds of floats (e.g. SIFT descriptors) or thou­

sands of floats (e.g. CNN descriptors) to a few bytes (e.g. 64 

bits). This reduction makes it possible to store large scale 

archives, e.g. of 1 billion images, in the main memory of a 

standard PC, and obtain a reasonable performance in terms of 

speed and retrieval. 
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In this paper we present a novel method for feature hash­

ing, based on k-means, that is based on a quantized version 

of soft assignment in which features are associated to mul­

tiple cluster centers, and where the selection of these clus­

ter centers is performed hierarchically to compress the bi­

nary descriptor from 4096 bits to 64 bits. The method is un­

supervised, requires a very limited training set and also the 

resulting code book size is very small, resulting in a small 

memory and computational cost that is suitable for large-scale 

archives. Evaluation has been performed on two large scale 

standard datasets, i.e. BIGANN and DEEP 1M, each one com­

posed by a million of features; using these datasets shows 

that the proposed method can be applied both to local and 

global visual features, both engineered (SIFT and GIST in BI­

GANN) and learned (CNN in DEEPIM). In terms of retrieval 

performance the proposed method obtains results that are bet­

ter or, in a few cases, comparable to those of more complex 

state-of-the-art approaches. 

2. PREVIOUS WORKS 

The main and most recent works related to visual feature 

hashing can be divided in methods based on vector quanti­

zation and its many variations and, with the advent of CNN 

descriptors, on neural networks. 

Vector Quantization. The Product Quantization (PQ) 

method, proposed by Jegou et al. [1], consists in the de­

composition of the feature space into a Cartesian product of 

subspaces with lower dimensionality, that are quantized sep­

arately. This approach solves the memory issues that arise 

when using simpler vector quantization methods such as k­

means, because it requires a much smaller number of cen­

troids. The method has obtained state-of-the-art results on 

a large scale SIFT features dataset, improving over previous 

methods such as Spectral Hashing [2] and Hamming Embed­

ding [3]. 

Building upon the success of the Product Quantization 

method, several other variations and improvements have been 

proposed. Norouzi and Fleet [4] have further explored the 

idea of compositionality of the PQ approach, building upon 

it two variations of k-means: Orthogonal k-means and Carte­

sian k-means (ck-means). The improvement of PQ proposed 
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by Ge et al. [5] , called OPQ, minimizes quantization distor­

tions w.r.t. space decomposition and quantization codebooks; 

He et al. [6] have approximated the Euclidean distance be­

tween codewords in k-means method, proposing an affinity­

preserving technique. Kalantidis and Avrithis [7] have pro­

posed a simple vector quantizer (LOPQ) using a local opti­

mization over a rotation and a space decomposition and ap­

plying a parametric solution that assumes a normal distribu­

tion. Guo et al. [8] have recently improved over OPQ and 

LOPQ methods, adding two quantization distortion proper­

ties of the Residual Vector Quantization (RVQ) model, with 

the goal of restoring, instead of reducing, quantization distor­

tion errors. Babenko and Lempitsky have recently proposed 

in [9] an efficient tree-based dynamic programming method, 

minimizing the compression error of the descriptors that are 

hashed. The authors have introduced a new dataset composed 

by 1 million CNN image descriptors. 

A few works have proposed the use of PQ to build in­

dexing structures. Babenko and Lempitsky [iO] have pro­

posed an inverted multi-index (IMI), i.e. an efficient similar­

ity search method that generalizes the standard inverted in­

dex by replacing vector quantization inside the inverted in­

dices with product quantization; the multi-index is built as 

a multi-dimensional table (Multi-D-ADC). The same authors 

have more recently addressed the problem of indexing CNN 

features [11] , observing the inefficiency of IMI to index such 

features, and proposing two extensions: the Non-Orthogonal 

Inverted Multi-Index (NO-1M!) and the Generalized Non­

Orthogonal Inverted Multi-Index (GNO-IMI). 

Neural Networks. Most of the vector quantization meth­

ods have been originally proposed and tested on engineered 

features, typically SIFT descriptors. Since the successful in­

troduction of CNN features also for image retrieval, and not 

only for classification, several approaches designed specifi­

cally for these features have been proposed. 

A deep learning framework for the creation of hash-like 

binary codes for image retrieval has been proposed by Lin et 

al. [12] . A hidden layer is used to represent the latent con­

cepts that dominate the class labels (when these labels are 

available). This layer learns specific image representations 

and, at the same time, a set of hash-like functions. also the 

hashing method proposed by Xia et al. [13] simultaneously 

learns a representation of images and a set of hash functions. 

The deep model proposed by Do et al. [14] , learns bi­

nary hash codes for image retrieval by preserving similarity, 

balance and independence of images. Two sub-optimizations 

during the learning process allow to efficiently solve binary 

constraints. 

The method proposed by Guo and Li [15] obtains the bi­

nary hash code of a given image using binarization of the 

CNN outputs of specific fully connected layers. 

The deep neural network model proposed by Zhang et 

al. [16] for supervised learning of hash codes (called VDSH), 

is based on a training algorithm inspired by alternating di-
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rection method of multipliers (ADMM, originally presented 

in [17] ). The training process is decomposed into indepen­

dent layer-wise local updates through auxiliary variables. 

Hashing of multimodal data has been addressed in the 

deep learning method by Wang et al. [18] , where a multi­

modal Deep Belief Network is used to capture correlation in 

high-level space during pre-training. This step is followed by 

learning a cross-modal autoencoder in a fine tuning phase. 

A two steps method for CNN features hashing has been 

proposed by Lin et al. [19] . In the first step binary embed­

ding functions are learned by Stacked Restricted Boltzmann 

Machines, then fine tuning is performed to retain the metric 

properties of the original feature space. 

3. THE PROPOSED METHOD 

The proposed method introduces a substantial variation of the 

multiple assignment k-means vector quantization approach 

introduced in [20] . This new methods treats the assignment of 

a visual feature to multiple cluster centers with a hierarchical 

process during the quantization process. As in this previous 

method we can, using small training data, greatly reduce the 

number of required cluster centers, but getting higher perfor­

mance. The result is a compact hash code of visual features. 

The computation is divided into three main steps. 

First step. Repeats the multi-k-means process presented 

in [20] in which we exploit a typical k-means algorithm to 

obtain a dictionary (Eq. 1) 

k 
argmins L L II x - Ci 112 

i=l xES, 

(1) 

where we try to minimize the sum of of distance func­

tions of each observations (x), where each observation is a 

D-dimensional float vector, e.g. a SIFT or CNN feature, to 

the Ck centers of the cluster. The final intent is to find a good 

partitioning into k sets S = {Sl, S2, ... , Sd. 
Once we obtain our k centroids, we use these points to create 

hash codes following the Eq. 2: 

{II x - Cj 11:s; t5 ;th bit = 1 II x - Cj II> t5 ;th bit = 0 
(2) 

where x is the feature point and t5 is a threshold measure 

given by: 

nth nearest distance II x - Cj II Vj = 1, ... , k (3) 

This means that the centroid j is associated to the jth bit 

of the hash code of length k, and the bit is set to 1 based on 

a predefined number n of nearest centroids. This first step is 

illustrated in Fig. 1. 

We used k = 4096 and n = 1024, so to have a very 

refined initial decomposition of the space of the descriptors. 
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Fig. 1. Illustration of the first step of the process: if a feature 

is assigned to a centroid (green line) the corresponding bit in 

the hash code is set to 1, otherwise (red line) it is set to O. The 

number of total centroids k is equal to 4096 while the number 

n of nearest centroids used as threshold is equal to lO24. 

The value of k is quite high to provide a good speedup in 

feature retrieval, and is reduced in the following step. 

Second step. During the second step of our process we 

compute a global histogram of the bins of the hash codes us­

ing this formula: 
m 

binc, = L !i(Oz) I;jz = 1, ... k (4) 

i=l 

where each binc, represents the position of each centroid, 

m is the number of the hash codes and Oz is the zth cen­

troid. Once we obtain the histogram we select only the first 

64 most populated bins, that correspond to the associated cen­

troids (Fig. 2). 

The goal of this step is to select the most representative 

centroids obtained in the previous step. 

Third step. In this step our intent is to find a final 

good partitioning of the descriptors space into k sets S = 

{ 81, 82, ... , 8 k} using the 64 centroids coming from the pre­

vious step (that are used as "seeds"), i.e. as starting point for 

a new re-training. In this case we are trying to obtain a bet­

ter decomposition of the descriptor space and consequently a 

better hash codes representation. The final number of centroid 

k is still 64, a figure typically used in the scientific literature, 

but if needed it can be further reduced (eg. to create hashes of 

just 32 bits). In this case we use the same approach presented 

in the step 1 to create the hash codes (2) but with a different 
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bin bin bin bin bin bin bin bin bin 
(, (2 . . .  (21 (22 (23 (24 C2S (26 (27 

I 
Fig. 2. Histogram generated during the second step of our 

process. Each bin binck is associated with the position of 

each centroid Ok. and contains the number of features that 

have been assigned to the centroid (remind that features are 

assigned to multiple centroids). 

threshold, which is computed using Eq. 5: 

1 
k 

<5 = k L II x - OJ II 
J=l 

(5) 

This step is represented in Figure 3, that shows how 

the feature indicated by x is assigned to the centroids 

01,03,05,06, . . .  ; each centroid is again associated with a 

specific bit position in the resulting hash code .. 

o 0 1 1 0 0 0 0 0  o 

Fig. 3. Assignment example during the third step after the 

re-training computation. The final length of our has codes is 

equal to 64. 

3. 1. Computational Cost 

Let us consider a vector with dimensionality D, and desired 

hash code length of 64 bits. Standard k-means has an assign­

ment complexity of kD, where k = 264. The proposed ap­

proach has three steps where in the first stage needs k' = 4096 



Table I. Datasets characteristics 
vector dataset SIFTIM GISTlM 
descriptor dimensionality D 128 960 
# learning set vectors 100,000 500,000 
# database set vectors 1,000,000 1,000,000 
# queries set vectors 10,000 1,000 
# nearest vectors for each query 100 100 

DEEPIM 
256 

100,000 
1,000,000 

1,000 
I 

centroids, the second stage is only an histogram calculation 

and the third step needs of k" = 64 centroids. This means 

that this approach has a complexity of (k' +k")D and requires 

(k' + k")D floats to store the code book. Product Quantiza­

tion requires instead k* x D floats for the codebook and has 

an assignment complexity of k* D, where k* = k1\m using 

typically k* = 256 and m = 8, for a 64 bit length. This 

means that in a three steps scenario PQ approach needs of a 

cost 40 x greater than our, while a standard PQ has a cost that 

is one order of magnitude smaller. The complexity of the pro­

posed method at query time, to hash a query descriptor, is the 

same of Product Quantization. 

4. EXPERIMENTAL RESULTS 

The proposed method has been thoroughly compared to sev­

eral state-of-the-art approaches using standard datasets, ex­

perimental setups and evaluation metrics. 

Datasets 

BIGANN Dataset [1,21] is a large-scale dataset commonly 

used to compare methods for visual feature hashing and ap­

proximate nearest neighbor retrieval [1,4,5,7,10,21,22]. The 

dataset comprises SIFT and GIST descriptors, and is com­

posed by three subsets, for each of which are provided pre­

defined learning, query and base set: For each query are pro­

vided the corresponding ground truth results in the base set, 

ordered from the most similar to the most different, computed 

in an exhaustive way with Euclidean distance. The SIFT 

query and base descriptors have been extracted from the IN­

RIA Holidays images [23], while the learning set has been 

extracted from Flickr images. GIST query and base descrip­

tors are from INRIA Holidays and Flickr 1M datasets, while 

learning vectors are from [24]. In all the cases query descrip­

tors are from the query images of INRIA Holidays. In this 

work we have used the SIFTIM and GISTIM sub sets. 

DEEPIM Dataset [9] is a recent dataset produced using a 

deep CNN based on the AlexNet [25] architecture and trained 

on ImageNet dataset [26]. Descriptors are extracted from the 

outputs of the last fully-connected layer, and to reduce its very 

high dimensionality they have been compressed to 256 di­

mensions using PCA, then they have been l2-normalized. 

The characteristics of all the datasets used in the experi­

ments are summarized in Table 1. 
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Evaluation Metrics 

The performance of ANN retrieval in BIGANN dataset is typ­

ically evaluated using recall@R, as shown in the results re­

ported in the literature [1,4,5,7,10,21]. It is defined, for 

varying values of R, as the average rate of queries for which 

the I-nearest neighbor is retrieved in the top R positions. In 

case of R = 1 this metric coincides with precision@1. The 

same measure has been used by the authors of the DEEPIM 

dataset [9]. In the following, all the results reported use re­

call@R to allow comparison with the other approaches. 

Configurations and Implementations 

B/GANN: A typical hash length used in the other approaches 

is 64 bits. We follow this choice and use settings which re­

produce top performances at 64-bit codes. We perform search 

with a non-exhaustive approach. For each query 64 bits bi­

nary hash code of the feature and Hamming distance mea­

sure are used to extract small subsets of candidates from the 

whole database set (Table 1). Euclidean distance measure 

is then used to re-rank the nearest feature points, calculat­

ing recall@R values in these subsets, an approach used also 

in [7, 10,20]. 

DEEP 1 M: We use the CNN features computed in [9] obtained 

from a convolutional neural network with an L2 normaliza­

tion and a PCA compression for a final dimension of D= 256 

and finally hashed to 32-bit codes. Searching process is done 

in a non-exhaustive way, using Hamming distances to reduce 

the subsets of candidates from the whole database set. Af­

ter we have extracted a shortlist of candidates we perform a 

re-rank step based on Euclidean distances and we calculate 

recall@R values, as in [11]. 

In all cases, both hashed codes and full descriptors have 

been stored in main memory. 

4. 1. Results on BIGANN: SIFTIM, GISTIM 

In these experiments the proposed approach is evaluated us­

ing the SIFTlM (Table 4) and GISTlM (Table 5) datasets, 

comparing it against several methods presented in section 2: 

Product Quantization (ADC and IVFADC) [l], PQ-RO [8], 

PQ-RR [8], Cartesian k-means [4], OPQ-P [5,27], OPQ-NP 

[5,27], LOPQ [7], a non-exhaustive adaptation of OPQ [5], 

called I-OPQ [7], RVQ [28] , RVQ-P [8] and RVQ-NP [8], 

m-k-means-t [20] using as threshold the arithmetic mean of 

the distances between feature vectors and centroids to com­

pute hash code. 

Since we have some randomness due to the k-means clus­

tering in the first and third step of the proposed approach, 

these experiments are averaged over a set of 10 runs. 

The proposed method, in all its variants, obtains the best 

results when considering the more challenging values of re­

call@R, i.e. with a small number of nearest neighbors, like 



Fig. 4. Recall@R on SIFTIM - Comparison between our 

method with competing state-of-the-art methods (see refer­

ences). 

Fig. 5. Recall@R on GISTlM - Comparison between our 

method with competing state-of-the-art methods (see refer­

ences). 

1, 10 and 100. When R goes to 1000 and 10,000 it still ob­

tains the best results and in the case of SIFT 1 M it is on par 

with ck-means [4]. Considering GISTlM the method consis­

tently outperforms all the other methods for all the values of 

R, except for R=1 where RVQ-P [8] is better. 

In general the use of the hierarchical approach outper­

forms the m-k-means-t method of [20], especially in the chal­

lenging low values of R; this effect is more visible in the case 

of the GIST 1M dataset. 

4.2. Results on DEEPIM 

Experiments on DEEP1M [9] are shown in Figure 6. We use 

a configuration with a final hash code length of 32 bits. Since 

the dataset is much newer than BIGANN, only a few methods 

have been tested on it, that we report. The proposed method 

is compared against PQ [21], OTQ [9], AQ [29] and OPQ [5] 

for which we report the results obtained by the authors using 

hash codes of 32 bits. Following the experimental setup used 

in [9], we considered R = 1, R = 10, R = 10 and r = 1000 
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for the recall@Rmeasure. 

The proposed method obtains similar result for recall@l re­

spect to the others approach; considering R = 1O,R = 100 

and R = 1000 it obtains a results considerably better than 

the others methods; Especially we obtain better results than 

m-k-means-t method [20] on all R values. 

Fig. 6. Recall@R on DEEP1M - Comparison between our 

method with competing state-of-the-art methods (see refer­

ences). 

5. CONCLUSION 

We have proposed a new version of the k-means based hash­

ing schema called hierarchical multi-k-means which uses a 

small number of centroids, has a low computational cost and 

results in a compact quantizer. These characteristics make it 

a good choice for large-scale multimedia applications. The 

hash signature computed with our proposed approach is able 

to represent high dimensional visual features more than the 

previous approach called multi-k-means [20] obtaining a very 

high efficiency in approximate nearest neighbor (ANN) re­

trieval, both on local and global visual features. The method 

has been also tested on large scale datasets of engineered 

(SIFT and GIST) and learned (deep CNN) features, obtaining 

results that outperform or are comparable to more complex 

state-of-the-art approaches. 
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