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Abstract

In this paper we propose a new method for human ac-

tion categorization by using an effective combination of

novel gradient and optic flow descriptors, and creating a

more effective codebook modeling the ambiguity of feature

assignment in the traditional bag-of-words model. Recent

approaches have represented video sequences using a bag

of spatio-temporal visual words, following the successful

results achieved in object and scene classification. Code-

books are usually obtained by k-means clustering and hard

assignment of visual features to the best representing code-

word. Our main contribution is two-fold. First, we define a

new 3D gradient descriptor that combined with optic flow

outperforms the state-of-the-art, without requiring fine pa-

rameter tuning. Second, we show that for spatio-temporal

features the popular k-means algorithm is insufficient be-

cause cluster centers are attracted by the denser regions of

the sample distribution, providing a non-uniform descrip-

tion of the feature space and thus failing to code other infor-

mative regions. Therefore, we apply a radius-based cluster-

ing method and a soft assignment that considers the infor-

mation of two or more relevant candidates. This approach

generates a more effective codebook resulting in a further

improvement of classification performances. We extensively

test our approach on standard KTH and Weizmann action

datasets showing its validity and outperforming other re-

cent approaches.

1. Introduction and previous work

Automatic human activity recognition methods are use-

ful for many applications such as video surveillance, video

annotation and retrieval and human-computer interaction.

For example, in video surveillance, an automatic action

classification system that alerts an operator of a possible

dangerous situation can reduce human effort and mistakes.

However, building a general human activity recognition

and classification system is a challenging problem, because

of the variations in environment, people and actions. In fact

environment variation can be caused by cluttered or mov-

ing background, camera motion, illumination changes. Peo-

ple may have different size, shape and posture appearance.

Semantically equivalent actions can manifest differently or

partially; for example, imagine the different ways of run-

ning or actions that can be only partially observed due to

occlusions.

Over the past decade, this problem has received consid-

erable attention. Existing action recognition approaches can

be classified as using holistic information or part-based in-

formation. An early work based on holistic representation

was proposed by Bobick et al. [1]. They proposed the mo-

tion history images, to encode short spans of motion. For

each frame of the input video the motion history image is a

gray scale image that records the location of motion; recent

motion results into high intensity values whereas older mo-

tion produces lower intensities. This representation can be

matched using global statistics, such as moment features.

Although this method is efficient, it is assumed to have a

well segmented foreground and background. Efros et al.

[5] created stabilized spatio-temporal volumes for each ob-

ject whose action is to be classified. For each volume a

smoothed dense optic flow field is extracted and used as

descriptor. This method is particularly suited for distant ob-

jects where detailed information of the appearance is un-

available. Yilmaz and Shah [29] used a spatio-temporal

volume, built stacking object regions obtained by a contour

tracking method, in consecutive frames. Descriptors encod-

ing direction, speed and local shape of the resulting surface

are generated by measuring local differential geometrical

properties. Gorelick et al. [9] analysed three-dimensional

shapes induced by the silhouettes and exploited the solu-

tion to the Poisson equation to extract features, such as

shape structure and orientation. These methods require ro-

bust tracking to generate the 3D volumes. Moreover most

of the holistic-based approaches are computationally expen-

sive due to the requirement of pre-processing the input data

(e.g. to perform background subtraction, shape extraction,

optic flow calculation, object tracking) and they perform

better in a controlled environment.

Part-based representations, that exploit interest point de-

tectors combined with robust descriptor methods, have been
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used very successfully for object and scene classification

tasks [7, 23, 28, 30]. Recently, part-based models have

been successfully applied to the human action classification

problem, because they overcome some limitations of holis-

tic models such as the necessity of performing background

subtraction and tracking. Laptev [12] proposed an exten-

sion to the Harris-Förstner corner detector for the spatio-

temporal case; interesting parts are extracted from vox-

els surrounding local maxima of spatio-temporal corners,

i.e. locations of videos which exhibit strong variations of

intensity both in spatial and temporal directions. The ex-

tension of the scale-space in the temporal dimension yields

a method for automatic scale-selection. Schüldt et al. [21]

successfully used these features for human action classifica-

tion by discretizing them into codewords and producing an

histogram of the occurring words for each shot. Dollár et al.

[4] have followed in principle the same approach of Laptev,

but suggested to treat time differently from space and to

look for locally periodic motion using a quadrature pair of

Gabor filters. Their approach produces a denser sampling

of the spatio-temporal volume but does not provide a scale-

selection criterion. Comparison of the experimental results

w.r.t. the approach of Schüldt et al. shows an improvement

on the same dataset. Niebles et al. [18] have then trained an

unsupervised probabilistic topic model on the same features

as Dollár et al., obtaining comparable classification perfor-

mance. More recently, Laptev et al. [13] have addressed the

human action recognition problem in more realistic video

settings. They also abandon the scale selection approach,

preferring a structural representation based on dense tem-

poral and spatial scale sampling inspired by spatial pyra-

mids [14], showing an improvement of the state-of-the-art

results. Finally, Willems et al. [26] proposed a new efficient

and scale-invariant spatio-temporal detector and descriptor,

extending the static SURF features.

All of these part-based approaches use the codebook

paradigm that allows classification by describing a video

as a bag of words, where video features are represented by

discrete visual codewords. These are defined beforehand in

a given vocabulary. A vocabulary, in the object and scene

classification domain, is commonly obtained by following

one of two approaches: an annotation approach [25] or a

data-driven approach [2, 23, 30]. The annotation approach

obtains a vocabulary by assigning meaningful labels to im-

age patches (e.g. sky, water, vegetation, etc.) while, in con-

trast, a data-driven approach applies vector quantization on

the features using typically k-means clustering. However,

despite of its popularity, this is not the optimal solution. Ju-

rie and Triggs [10] have shown that in k-means clustering

the centres are almost exclusively around the denser regions

in descriptor space and thus fail to code other informative

regions. They show that k-means works well for texture

analysis in homogeneous images, but the images that arise

in natural scenes have far less uniform statistics. For this

reason they proposed a scalable acceptance radius-based

clustering that generates better codebooks. Nevertheless, all

the previous part-based methods for human action recogni-

tion use the k-means algorithm for codebook creation. To

the best of our knowledge, few papers address approaches

to obtain an efficient codebook in human action recognition

area. Liu et al. [16] proposed a method to automatically

find the optimal number of word clusters by utilizing maxi-

mization of mutual information (MMI) between words and

actions. Initially they apply k-means and then MMI clus-

tering is used to discover a compact representation from the

initial codebook of words. They show an improvement of

the performance with the learned optimal number of words.

A different approach has been proposed by Mikolajczyk and

Uemura [17] that recently explored the idea of using a large

number of features represented in many vocabulary trees in-

stead of a single flat vocabulary.

Independently of the clustering algorithm, one of the

main drawback of the codebook approach, recently pointed

out in object and scene classification, is the hard assign-

ment of image feature vectors to codewords in the vocab-

ulary [19, 24]. This hard assignment is particularly criti-

cal because of two main issues. The first one (uncertainty)

refers to the problem of selecting the correct codeword out

of two or more relevant candidates; the second one (plausi-

bility) denotes the problem of selecting a codeword without

a suitable candidate in the vocabulary.

In this paper we describe a new method for classifica-

tion of human actions that relies on an appropriate quanti-

zation method, dealing with the ambiguity of the traditional

codebook model. Our main contribution is two-fold: i) the

definition of gradient and optic flow descriptors that, com-

bined together, outperform the state-of-the-art without re-

quiring fine parameter tuning; ii) a radius-based clustering

method and a soft assignment procedure that, considering

the information of two or more relevant candidates, are able

to generate effective codebooks showing a further improve-

ment of classification performances. The rest of the paper

is organized as follows. The interest point detector and de-

scriptors are presented in the next section. The techniques

for action representation and categorization, including the

codebook creation, are discussed in Sect. 3. Experimental

results, with an extensive comparison with state-of-the-art

approaches, are discussed in Sect. 4. Finally, conclusions

are drawn in Sect. 5.

2. Detector and descriptors

Following the approach commonly used for local interest

points in images, the detection and description of spatio-

temporal interest points are separated in two different steps.

Among the different spatio-temporal interest point detectors

available, the spatio-temporal corner detector proposed by
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Laptev et al. [12] provides a too sparse representation of the

actions. For this reason the spatio-temporal interest points

detector proposed by Dollár et al. [4], that is able to detect a

greater number of points, has received a large attention from

the scientific community and has been adopted in several

recent works [16, 18].

Detector. In our approach we have adopted the detector

proposed by Dollár et al. [4]. This detector applies two

separate linear filters to spatial and temporal dimensions,

respectively. The response function is computed as follows:

R = (I(x, y, t) ∗ gσ(x, y) ∗ hev(t))2

+ (I(x, y, t) ∗ gσ(x, y) ∗ hod(t))
2

(1)

where I(x, y, t) is a sequence of images over time,

gσ(x, y) is the spatial Gaussian filter with kernel σ, hev

and hod are a quadrature pair of 1D Gabor filters ap-

plied along the time dimension. They are defined as

hev(t; τ, ω) = − cos(2πtω)e−t2/τ2

and hod(t; τ, ω) =

− sin(2πtω)e−t2/τ2

, where ω = 4/τ , and they give a

strong response to the temporal intensity changes, in par-

ticular for periodic motion patterns. The interest points are

detected at locations where the response is locally maxi-

mum.

The main problem of this detector is the fact that it does

not cope with scale selection. However, both spatial and

temporal scales have to be considered when analyzing mo-

tion activity. The spatial scale is related to the ability to

detect more or less detailed visual features, while the tem-

poral scale is related to the ability to detect actions that are

performed at different speed. In order to cope with the lack

of scale selection we run the detector over a set of spatial

and temporal scales, to permit the recognition of the same

action at different distance and velocity. In particular the

spatial scales used are σ = {2, 4} and the temporal scales

are τ = {2, 4}. This approach has also some other desir-

able properties such as a reduced computational complexity

w.r.t. scale selection and the production of a richer descrip-

tion of the scene, using a larger number of interest points.

Descriptors. For each detected point a patch that contains

the volume that contributed to the response function is con-

sidered. The volume is proportional to the scale at which

the interest point is detected. Each volume is divided in

equally sized sub-regions, three for the spatial dimensions

and two for the temporal dimension. To obtain a representa-

tion for each spatio-temporal volume, we evaluate a descrip-

tor based on gradients on x, y and t direction and an optic

flow descriptor, considering also their combinations. This

is motivated by the fact that these two descriptors encode

different information. In fact the descriptor based on gradi-

ent encodes mostly the visual appearance of each volume,

while the optic flow descriptor encodes the motion informa-

tion. The two descriptors are presented in the following.

The gradient magnitude and orientations in 3D are:

M3D =
√

G2
x + G2

y + G2
t , (2)

φ = tan−1(Gt/
√

G2
x + G2

y), (3)

θ = tan−1(Gy/Gx). (4)

where Gx, Gy and Gz are respectively computed using fi-

nite difference approximations: I(x+1, y, t)−I(x−1, y, t),
I(x, y+1, t)−I(x, y−1, t) and I(x, y, t+1)−I(x, y, t−1).
We compute two separated orientation histograms quantiz-

ing φ and θ and weighting them by the magnitude M3D.

The φ (with range, −π
2
, π

2
) and θ (−π,π) are quantized in

four and eight bins respectively. The spatio-temporal gra-

dient is computed after smoothing the values extracted with

those of two adjacent scales, to increase the robustness of

the feature description. The overall dimension of the de-

scriptor is thus 3 × 3 × 2 × (8 + 4) × 2 = 432. This

construction of the three-dimensional histogram is inspired

by the approach proposed by Scovanner et al. [22], in which

they construct a weighted three-dimensional histogram nor-

malized by the solid angle value (instead of quantizing sep-

arately the two orientations) to avoid distortions due to the

polar coordinate representation. Moreover we do not re-

orient the 3D neighbourhood, since rotational invariance,

which is invaluable in object detection and recognition, is

not desired in an action categorization context. We have

found that our method is computationally less expensive,

equally effective in describing motion information given

by appearance variation, and showing a better performance

(see comparison results in Tab. 2).

The optic flow is estimated using the Lucas&Kanade al-

gorithm. Considering the optic flow computed for each cou-

ple of consecutive frames, the relative apparent velocity of

each pixel is (Vx, Vy). These values are expressed in polar

coordinates as in the following:

M2D =
√

V 2
x + V 2

y , (5)

θ = tan−1(Vy/Vx). (6)

We compute position dependent histograms as in the gra-

dient based descriptor but, being the optic flow two di-

mensional, only a single orientation histogram is stored for

each of the 18 sub-regions within the voxel. Every sam-

ple is weighted with the magnitude M2D, as is done for

the gradient-based descriptor. Then we have also added an

extra “no-motion” bin that, in our initial experiments, has

shown to greatly improve the performance. Thus the final

descriptor size is 3× 3× 2× (8 + 1) = 162.

We have finally analysed two possible combinations of

these descriptors: i) a weighted concatenation of the two
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Figure 1. Comparison of k-means and radius-based clustering on a synthetic dataset. (a) k-means clustering; (b) k-means clustering: detail

of a dense region that has been split in four clusters; (c) Radius-based clustering.

descriptors and ii) a concatenation of the histograms of the

bag-of-words that have been computed from the 3D gradi-

ent descriptor and from the histogram of optic flow. In the

first case the visual words, created according to the bag-of-

words paradigm, are computed from a vector that has higher

dimensionality, while in the second case the visual words

are computed differently for each descriptor and the SVM

classifiers are able to pick the best combinations of features,

practically resulting in an implicit feature selection.

3. Action Representation and Categorization

The spatio-temporal bag-of-words (BoW) model is built

through the creation of a discrete visual vocabulary (or

codebook) and then by assigning each feature to the cor-

responding codeword. First of all, it is required to perform

a vector quantization for large sets of feature vectors in a

high dimensional space. Typically this is performed through

clustering methods and the most common approach is the

use of k-means clustering, because of its simplicity and con-

vergence speed. The BoW approach then assigns each fea-

ture to the closest vocabulary word and a histogram of vi-

sual word frequencies is computed. The histogram is fed to

a classifier to predict the action category. The performance

of this model depends on the quantization method and on

the number of words that are selected.

3.1. Codebook Formation

The use of k-means clustering has some disadvantages:

i) the cluster centers are attracted by the denser regions of

the sample distribution, resulting more clustered near these

regions and more sparse otherwise, thus providing a more

imprecise quantization for the vectors laying in these latter

regions [10]. This effect, due to the assumption of uniform

distribution of the features in the descriptor space, is even

more pronounced in high dimensional spaces such as those

spanned by the spatio-temporal descriptors; a representa-

tion of this effect can be obtained visualizing a Voronoi

tessellation of the feature space, where Voronoi cells do

not uniformly cover the feature space as shown in Fig. 1.

Other disadvantages are: ii) the clustering is not very ro-

bust w.r.t. outliers, iii) the number of visual words has to be

known in advance, requiring an empirical evaluation of this

number.

Radius-based clustering. In order to overcome the lim-

itations of k-means clustering, we explore the idea of us-

ing an on-line radius-based clustering technique following

a mean-shift approach [3, 8]. In fact, as shown by Jurie

and Triggs [10], in the case of dense sampling image rep-

resentations, it is better to apply a radius-based clustering

method. This observation is interesting also for the human

action domain because, as previously introduced (Sect. 2),

the spatio-temporal features extracted by the Dollár detector

[4] can be considered as a dense representation; this fact is

even more pronounced using our multi-scale approach. In

this case the non-uniformity in the descriptor space, caused

by densely sampled patches, is better coded using a radius-

based method that is able to allocate centers more uni-

formly. An example of this effect is shown in Fig. 1 c.

The algorithm starts with an uniform random sub-

sampling Dn of the original dataset points D. Given a

radius R, mean shift clustering on Dn is used to find the

modes of the samples distribution. A new cluster center

is then allocated on the mode corresponding to the max-

imal density region. Data points of the original dataset D,

within a distance less than R from the center, are considered

members of this cluster and eliminated for the following it-

erations. This elimination prevents the algorithm from re-

peatedly assigning centers to the same high density regions.

Finally, the algorithm can be stopped when a “sufficiently”

large number of clusters (words) has been identified.

Visual words statistics. One of the assumption in text

categorization methods is that, given a natural language tex-

tual corpus, the words frequency distribution follows the

well-known Zipf’s law. This is a critical point because, con-

sidering this empirical evidence, we can consider words at

intermediate frequencies as the most informative for clas-

sification. Therefore it is interesting to see how the visual
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Figure 2. Log-log plots of visual words frequency using k-means

and radius-based quantization.

words are distributed in a visual corpus, as also noted in

[10, 20, 28]. In particular, we want to know whether their

distribution satisfies Zipf’s law. Fig. 2 shows the statistics

of visual words frequency using k-means and radius-based

quantization on our experimental dataset (see Sect. 4 for de-

tails). An “ideal” Zipf’s distribution must be a straight line

in log-log scale. The figure shows that the distribution of

visual words obtained by k-means quantization satisfies the

Zipf’s law only roughly. In fact, most of the bins has sim-

ilar frequencies and they are distributed more evenly with

respect to the expected power law. In contrast, the proposed

radius-based quantization shows a statistics that fit better

the expected distribution. This confirms the assumptions

discussed in the previous paragraph and confirms that this

approach models better medium density frequencies.

3.2. Codeword Assignment

Given a vocabulary, the traditional codebook approach

represents a video sequence containing an action by a his-

togram of codeword frequencies. In particular, for each

word w in the vocabulary V the frequency distribution in

a sequence is computed by:

FD(w) =
1

n

n∑
i=1

⎧⎨
⎩

1 if w = argmin
v∈V

(D(v, pi));

0 otherwise;
(7)

where n is the number of spatio-temporal patches in a se-

quence, pi is the ith spatio-temporal patch, and D(v, pi) is

the distance (usually Euclidean) between the codeword v
and the patch pi. This hard assignment, that takes account

only of the closest codeword, lacks to consider two issues:

codeword uncertainty (selection of the correct codeword

when two or more candidates are relevant) and codeword

plausibility (selection of a codeword when all codewords

are too far and not representative). We observe that, in our

case, the plausibility is less problematic, because the radius-

based clustering method that we employ is able to allocate

Walking

    KTH           Weizmann

Running

    KTH           Weizmann

Waving

    KTH           Weizmann

Figure 3. Sample frames from the KTH and Weizmann datasets

(Walking, Running and Waving actions).

the centers more uniformly. On the other hand, as noted

by van Gemert et al. [24], in a high-dimensional feature

space the codeword uncertainty issue becomes very urgent.

In fact, if we consider a codeword as a high-dimensional

sphere in feature space, most feature points in this sphere

lay near the surface and are close to the boundary between

different codewords. For this reason the distribution of the

codewords in a sequence has to contain the information

of two or more relevant candidates. This can be done by

smoothing the hard assignment of a spatio-temporal patch

to the codeword vocabulary using Gaussian kernel density

estimation, computing the uncertainty frequency distribu-

tion with:

UFD(w) =
1

n

n∑
i=1

Kσ(D(w, pi))∑|V |
j=1

Kσ(D(vj , pi))
(8)

where D is the Euclidean distance and Kσ is the Gaussian

kernel:

Kσ(x) =
1√
2πσ

exp

(
−1

2

x2

σ2

)
(9)

where σ is the scale parameter of the Gaussian kernel; this

parameter has to be tuned on the training set, because de-

pendent on the dataset, the features length and their range

values.

4. Experimental Results

We tested our approach on two datasets commonly used

for human action recognition: the KTH and Weizmann

datasets. The KTH dataset contains 2391 video sequences

showing six actions: walking, running, jogging, hand-

clapping, hand-waving, boxing. They are performed by

25 actors under four different scenarios of illumination,

appearance and scale change. The video resolution is

160 × 120 pixel. The Weizmann dataset contains 93 video

sequences showing nine different people, each performing
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ten actions such as run, walk, skip, jumping-jack, jump-

forward-on-two-legs, jump-in-place-on-two-legs, gallop-

sideways, wave-two-hands, wave-one-hand and bend. The

video resolution is 180× 144 pixel. An example of the dif-

ferences between the two dataset is shown in Fig. 3, where

sample frames selected from videos containing the same ac-

tion in the two sets are compared each other.

Two approaches were followed during the training

phase, due to the different sizes in the datasets. The SVM

classifiers used for the KTH dataset were trained on videos

of 16 actors and the performance was evaluated using the

videos of the remaining 9 actors. Measures have been taken

according to a five-fold cross-validation. Due to the small

size of the Weizmann dataset the classifiers were trained on

actions from eight actors and tested on the remaining one.

Measures have been taken using the leave-one-out cross-

validation. This setup is identical to the most recent works

in action recognition domain and thus is suitable for a direct

comparison [11, 13, 18, 27]. Classification is performed us-

ing non-linear SVMs with the χ2 kernel [30]:

Kχ2(p, q) = exp

(
− 1

2γ

N∑
k=1

(pk − qk)2

(pk + qk)

)
(10)

where N is the vocabulary size, p and q are histograms of

word occurrences. The value of the kernel parameter γ is

obtained by cross-validation on the training set. For multi-

class classification, we use the one-vs-one approach.

4.1. Evaluation of our descriptor

Table 1 evaluates the performance of our proposed

descriptors, comparing the performance of each descrip-

tor alone and the two possible combinations discussed in

Sect. 2. The experiments have been carried on using the

setup described above, and the quantization approach used

is k-means clustering (using 4000 words for KTH and 1000

for Weizmann), in order to be directly comparable with

other approaches. In the first two rows we report results

obtained using only one of the two descriptors, 3D gradient

in the first row and histogram of optic flow in the second.

In the third row are reported the results for the descriptor

that is obtained through a weighted concatenation of the two

descriptors, while in row four the descriptor is composed

by the concatenation of the histograms of the bag-of-words

that have been computed from the 3D gradient descriptor

and from the histogram of optic flow. The best result, on

both datasets, is achieved by the concatenation of the his-

tograms of the BoWs computed from both descriptors. This

is due to the fact that the performance of 3D gradient and

HoF are quite complementary (see Fig. 4). For example, the

action recognition performance for the boxing class on the

KTH dataset is better when using the 3D gradient instead of

the HoF description, while for handclapping is the opposite

Descriptor KTH Weizmann

3DGrad 90.38 ± 0.8 92.30±1.6

HoF 88.04 ± 0.7 89.74±1.8

3DGrad HoF combination 91.09 ± 0.4 92.38±1.9

3DGrad+HoF combination 92.10 ± 0.4 92.41 ±1.9
Table 1. Comparison of our descriptors, alone and combined, on

the KTH and Weizmann datasets.

(a) 3DGrad (b) HoF

(c) 3DGrad+HoF combination

Figure 4. Confusion matrices on the test set KTH actions.

case. It can be observed (Fig. 4 c) that the concatenation of

the histograms improves the performance for all the classes

except one, running class. In the Weizmann dataset we ob-

tain a smaller improvement, with the concatenation of his-

togram, probably caused by the smaller training set that is

available and the increased size of the representation.

4.2. Performances obtained by effective codebooks

In this set of experiments we evaluate the different code-

book creation approaches presented in Sect. 3. The datasets

used are the KTH and Weizmann with the same experimen-

tal setup described above, and the descriptor is the concate-

nation of the histograms of bag-of-words computed from

3D gradient and optic flow descriptors (3DGrad+HoF).

Fig. 5 compares the classification performances obtained by

the standard k-means and hard assignment approach - com-

monly used by previous works - with the proposed radius-

based clustering and soft assignment. The graph reports the

variation in accuracy w.r.t. the number of visual words, up to

the number of words (4000 for KTH, 1000 for Weizmann)

that were used in the previous experiments.

With a very low number of words the soft radius-based

clustering method has a lower performance than k-means,

since in this approach the words that are used are those that
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Figure 5. Comparison of classification accuracies on KTH and

Weizmann datasets using the combined descriptor (3DGrad+HoF)

and i) k-means based codebooks and ii) our effective codebooks

approach (i.e. radius-based clustering + soft assignment).

are more common (i.e. those that provide less discrimina-

tive information). However, this effect disappears rapidly

(above 1500 words for KTH and 400 words for Weizmann)

due to the more effective choice of the words, as discussed

in Sect. 3.2. The radius-based clustering extended so as

to account for codeword uncertainty outperforms k-means

clustering and classification results are improved in both

datasets; in particular, it has a better performance even with

a relatively low number of visual words (e.g. ∼ 2000 for

KTH and ∼ 500 for Weizmann). Indeed the radius-based

clustering better encodes sparser regions while the soft as-

signment is able to moderates uncertainty in the denser

ones, leading thus to more effective codebooks.

We report on Fig. 6 the final classification performance

on KTH and Weizmann datasets, obtained using the pro-

posed soft radius-based quantization, as confusion matrices.

Interestingly, the major confusion occurs between similar

classes (running-jogging on KTH and jump-skip on Weiz-

mann). The overall accuracy on KTH is 92.57% while on

Weizmann is 95.41%.

4.3. Comparison to state-of-the-art

In Table 2 we report a comparison of the average class

accuracy of our approach with state-of-the-art results, re-

ported by other researchers.

Results obtained on KTH using our combined descrip-

tor (3DGrad+HoF) united with the proposed effective code-

book formation outperform previous works based on stan-

dard BoW models [21, 4, 11, 13, 18, 26, 27], even those

that employ fine tuning of parameters or additional struc-

tural descriptors. Note that the previous state-of-the-art re-

sult (91.8%), achieved by Laptev et al. [13] using their best

combination of features, is obtained performing a greedy

(a) KTH (overall accuracy = 92.57%)

(b) Weizmann (overall accuracy = 95.41%)

Figure 6. Final confusion matrices on KTH and Weizmann.

search on different combination of descriptors (HoG and

HoF) and grids, which add structural information. Our re-

sults outperform also those of Kläser et al. [26] (91.4%)

that use a single 3D gradient descriptor but with a heavy

optimization of eight descriptor parameters, resulting in a

high dependence on the dataset used.

Also when considering the Weizmann dataset we outper-

form previous BoW-based works [11, 18, 22], and also the

results reported by Liu et al. [15] (90.4%) obtained com-

bining and weighting multiple features. However, we can-

not compare to results by Gorelick et al. [9] or Fathi and

Mori [6] because they use an holistic representation and

more data given by segmentation masks.

Method KTH Weizmann

Our method 92.57 95.41

Laptev et al. [13] 91.8 -

Dollár et al. [4] 81.2 -

Wong and Cipolla [27] 86.62 -

Scovanner et al. [22] - 82.6

Niebles et al. [18] 83.33 90

Liu et al. [15] - 90.4

Kläser et al. [11] 91.4 84.3

Willems et al. [26] 84.26 -

Schüldt et al. [21] 71.7 -
Table 2. Comparison of our method to state-of-the-art.
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5. Conclusions

In this paper we have presented a novel method for hu-

man action categorization based on a new descriptor for

spatio-temporal interest points, that combines appearance

(3D gradient descriptor) and motion (optic flow descriptor),

and on an effective codebook formation. We replaced the

traditional codebook quantization method using a radius-

based clustering algorithm and a soft assignment of features

descriptors to codewords. The approach was validated on

two popular datasets (KTH and Weizmann), showing results

that outperform state-of-the-art BoW approaches, without

requiring parameter tuning employed by the previous best

results. The proposed approach is modular and each contri-

bution of this paper can be adapted to any framework based

on interest points and BoW. Our future work will deal with

evaluation on real world videos.
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