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ABSTRACT
Deep learning has recently become the state of the art in many com-
puter vision applications and in image classification in particular.
However, recent works have shown that it is quite easy to create
adversarial examples, i.e., images intentionally created or modified
to cause the deep neural network to make a mistake. They are like
optical illusions for machines containing changes unnoticeable to
the human eye. This represents a serious threat for machine learn-
ing methods. In this paper, we investigate the robustness of the
representations learned by the fooled neural network, analyzing
the activations of its hidden layers. Specifically, we tested scoring
approaches used for kNN classification, in order to distinguishing
between correctly classified authentic images and adversarial ex-
amples. The results show that hidden layers activations can be used
to detect incorrect classifications caused by adversarial attacks.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation; • Computing methodologies→ Neural
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1 INTRODUCTION
Deep Neural Networks (DNNs) have recently led to significant
improvement in many areas of machine learning. They are the state
of the art in many vision and content-base multimedia indexing
tasks such as classification [18, 31, 36], recognition [32], image
tagging [21], video captioning [4], face verification [28, 30], content-
based image retrieval [1, 16], super resolution [10], cross-media
searching [7, 11], and image forensics [5, 39, 40].

Unfortunately, researchers have shown that machine learning
models, including deep learning methods, are highly vulnerable
to adversarial examples [12, 17, 25, 37]. An adversarial example is
a malicious input sample typically created applying a small but
intentional perturbation, such that the attacked model misclassifies
it with high confidence [12]. In most of the cases, the difference
between the original and perturbed image is imperceptible to a
human observer. Moreover, adversarial examples created for a spe-
cific neural network have been shown to be able to fool different
models with different architecture and/or trained on similar but
different data [25, 37]. These properties are known as cross-model
and cross-dataset generalization of adversarial examples and imply
that adversarial examples pose a security risk even under a threat
model where the attacker does not have access to the target’s model
definition, model parameters, or training set [19, 25].

Most of the effort of the research community in defending from
adversarial attacks had gone into increasing the model robustness
to adversarial examples via enhanced training strategies, such as
adversarial training [12, 26] or defensive distillation [27]. However,
studies have shown [25] that those techniques only make the gen-
eration of adversarial examples more difficult without solving the
problem. A different, less studied, approach is to defend from adver-
sarial attacks by distinguishing adversarial inputs from authentic
inputs.

In this work, we present an approach to detect adversarial exam-
ples in deep neural networks, based on the analysis of activations
of the neurons in hidden layers (often called deep features) of the
neural network that is attacked. Being deep learning a subset of
representation learning methods, we expect the learned represen-
tation to be more robust than the final classification to adversarial
examples. Moreover, adversarial images are generated in order to
look similar to humans and deep features have shown impressive
results in visual similarity related tasks such as content-based im-
age retrieval [13, 33]. The results reported in this paper show that,
given an input image, searching for similar deep features among
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Figure 1: Overview of our detection approach. The input image is classified by the CNN, but we consider the classification valid
only if the kNN score of the predicted class based on deep features (pool5) is above a certain threshold.

the images used for training, allows to predict the correctness of the
classification produced by a DNN. In particular, we use traditional
kNN classifiers scoring approaches as a measure the confidence
of the classification given by the DNN (see Figure 1). The experi-
ments show that we are able to filter out many adversarial examples,
while retaining most of the correctly classified authentic images.
The choice of the discriminative threshold is a trade-off between
accepted false positives (FP) and true positives (TP), where positive
means non-adversarial.

The rest of the paper is structured as follows. Section 2 reviews
the most relevant works in the field of adversarial attacks and their
analysis. Section 3 provides background knowledge to the reader
about DNNs, image representations (known as deep features), and
adversarial generation. In section 4 our approach is presented, while
in section 5 we describe the experimental settings we used to val-
idate it. Finally, section 6 concludes the paper and presents some
future research directions.

2 RELATEDWORK
2.1 Generation of Adversarial Examples
Szegedy et al. [37] firstly defined an adversarial example as the small-
est perturbed image that induces a classifier to change prediction
with respect to the original one. They successfully generated ad-
versarial examples through the use of the box-constrained Limited-
memory approximation of Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) optimization algorithm, and they proved that adversarial
examples exhibit cross-model and cross-training set generalization
properties. To overcome to the high computational cost of the L-
BFGS approach, Goodfellow et al. [12] proposed the Fast Gradient
Sign (FGS) method, which derives adversarial perturbations from
the gradient of the loss functionwith respect to the input image, that
can be efficiently computed by backpropagation. In [24], Nguyen et
al. used evolutionary algorithms and gradient ascent optimizations
to produce fooling images which are unrecognizable to human eyes
but are classified with high confidence by DNNs. Papernot et al.
[26] used forward derivatives to compute adversarial saliency maps
that show which input feature have to be increased or decreased to
produce the maximum perturbation of the last classification layer
towards a chosen adversarial class. In [23], Moosavi et al. presented
an algorithm to find image-agnostic (universal) adversarial pertur-
bations for a given trained model, that are able fool the classifier
with high probability when added to any input.

2.2 Defense Strategies for Adversarial Attacks
Different kinds of defenses against adversarial attacks have been
proposed. Fast adversarial generation methods (such as FGS) en-
able adversarial training, that is the inclusion in the training set
of adversarial examples generated on-the-fly in the training loop.
Adversarial training allows the network to better generalize and
to increase its robustness to this kind of attacks. However, easily
optimizable models, such as models with non-saturating linear ac-
tivations, can be easily fooled due to their overly confident linear
responses to points that not occur in the training data distribu-
tion [12]. In [14], the authors found that denoising autoencoders
can remove substantial amounts of the adversarial noise. However,
when stacking the autoencoders with the original neural network,
the resulting network can again be attacked by new adversarial
examples with even smaller distortion. Thus, the authors proposed
Deep Contractive Network, a model with an end-to-end training
procedure that includes a smoothness penalty. Similarly, in [27] a
two-phase training process known as distillation is used to increase
the robustness of a model to small adversarial perturbations by
smoothing the model surface around training points and vanishing
the gradient in the directions an attacker would exploit. Still, at-
tackers can find potential adversarial images using a non-distilled
substitute model. Papernot et al. [25] showed that successfully at-
tacks are possible even if the attacker does not have direct access to
the model weights or architecture. In fact, the authors successfully
performed adversarial attacks to remotely hosted models, and Ku-
rakin et al. [19] also showed that attacks in physical scenarios, such
as feeding a model with a printout adversarial example through a
digital camera, are possible and effective.

Detection of adversarial examples is still an open problem [26].
The most related work to ours is from Metzen et al. [22], that
proposed to add a parallel branch to the classifier and train it to
detect whether the input is an adversarial example. However, the
proposed branch is still vulnerable to adversarial attacks, and amore
complicate adversarial training procedure is needed to increase the
robustness of the whole system.

3 BACKGROUND
3.1 Deep Learning and Features
Deep learning methods are “representation-learning methods with
multiple levels of representation, obtained by composing simple
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but non-linear modules that each transform the representation at
one level (starting with the raw input) into a representation at a
higher, slightly more abstract level” [20].

Starting from 2012, deep learning has become state-of-the-art
in image classification given the excellent results in ILSVRC chal-
lenges based on ImageNet [15, 18, 31, 34, 36]. In the context of
Content-Based Image Retrieval, deep learning architectures are
used to generate high level features. The relevance of the internal
representation learned by the neural network during training have
been proved by many recent works [2, 6, 9, 20]. In particular, the
activation produced by an image within the intermediate layers of
a deep convolutional neural network can be used as a high-level
descriptor of the image visual content [2, 3, 8, 29, 31].

In this work, we employed the image representations extracted
using OverFeat [31], a well-known and successful deep convolu-
tional network architecture that have been studied for the analysis
of adversarial attacks to convolutional neural networks [38], and
for which implementations of adversarial generation algorithms are
publicly available (see Section 5). Specifically, we used the Fast Over-
Feat network pre-trained on ImageNet (whose code and weights
are publicly available at https://github.com/sermanet/OverFeat),
and we selected the activations of the pool5 layer as deep features
for images.

3.2 Adversarial Generation
In this subsection we provide a brief description of the two ap-
proaches we used in our work to generate adversarial images.

Box Constrained L-BFGS [37, 38]. Given an input image x and a
DNN classifier y = f (x), an adversarial example is generated find-
ing the smallest distortion η such that x ′ = x +η is misclassified by
the target model, that is f (x + η) , y. The adversarial perturbation
η is modeled as the solution of the following optimization problem:

minimize
η

| |η | | +C · H (y,yA)

subject to L <= x + η <= U ,

y = f (x + η)

(1)

where L and U are respectively lower and upper bound of pixel
values, f is the attacked classifier,H (y,yA) is the cross-entropy loss
computed between the output class probability distribution y and
the target adversarial distribution yA (which assigns probability 1
to the adversarial label and 0 to the remaining ones). The parameter
C controls the trade-off between the magnitude of η and its fooling
power. An adversarial perturbation is found by solving (1) using
the box-contrained L-BFGS optimization algorithm. A first feasible
value ofC is found with a coarse grid search and then tuned with a
binary search.

Fast Gradient Sign [12]. In the Fast Gradient Sign method, the
adversarial perturbation is proportional to the sign of the gradient
back-propagated from the output to the input layer. Mathematically
speaking, let θ be the parameters of a model, x the input to the
model, y the targets (the desired output) associated with x , and
J (θ ,x ,y) the cost function used to train the neural network. The cost
function can be linearized around the current value of θ , obtaining

an optimal max-norm constrained perturbation:

η = ϵ · siдn(∇x J (θ ,x ,y))
Note that the gradient can be computed easier using backpropaga-
tion. The adversarial input is given by x ′ = x + η.

4 DETECTING ADVERSARIAL EXAMPLES
In this work, we propose to detect adversarial examples analyzing
the representation learned in the hidden layers (deep features) of
the fooled convolutional neural networks. Being deep learning a
subset of representation learning methods, we expect the learned
representation to be more robust than the final classification to
adversarial examples. The recent renaissance of neural networks is
due to the ability of learning powerful representations that can be
used for classification but also for many other tasks such as recog-
nition [32], face verification [30], content-based image retrieval
[16], super resolution [10], cross-media searching [7, 11], etc. There
are two reasons why deep features should be more robust: first,
the adversarial generation algorithms are not meant to fool the
representation itself but only the final classification; second, adver-
sarial images are generated in order to look similar to authentic
ones for humans, and deep features have shown impressive results
in visual similarity related tasks such as content-based image re-
trieval [13, 33]. We decided to test kNN classifiers score assignments
because they rely on those similarity among the representations.

In particular, we perform a kNN similarity search among the
deep features obtained from the images used for training using as
query a given image classified by the DNN. We then use the score
assigned by a kNN classifier to the class predicted by the DNN as a
measure of confidence of the classification. Please note, we do not
rely on the classification produced by the kNN classifier, but we
only use the score assigned to the class predicted by the DNN as a
measure of confidence.

Given a set of labeled images X = {(xi , ci )} where xi is an im-
age and ci is its class label, a kNN classifier assigns labels to an
unknown image q considering the ordered results of its k nearest
neighbors NN (q,k) = {(x1, c1) . . . (xk , ck )}, obtained performing
a kNN search over X for a predefined distance function d(x ,y) be-
tween any two images. We define the distance function as d(x ,y) =
| |ϕ(x) − ϕ(y)| |2, where ϕ(x) is the deep feature extracted from the
image x using the DNN, and | | · | |2 is the L2 norm. A score s(q, c) is
assigned to every class c found in the retrieved nearest neighbors
of q as follows:

s(q, c) =
∑k
i=1wi1{ci = c}∑k

i=1wi
(2)

where q is a query image, c is the class for which we are computing
the score, ci is the groundtruth class of the i-th result in NN (q,k),
wi the weight assigned to the same i-th result, and 1{ci = c} has
value 1 if ci = c , 0 otherwise. In Table 1, we reportwi assignments
for famous variants of kNN classifiers.

Please note that our strategy does not make use of the class
predicted by the kNN classifier. Rather, to detect whether an input
image is an adversarial example, we first use the DNN to predict
the class, then we use the kNN classifier to obtain a score for the
class predicted by the DNN. The intuition is that while it is unlikely
that a class correctly predicted by the DNN has the highest kNN

https://github.com/sermanet/OverFeat
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kNN Weighted kNN d-Weighted kNN

wi = 1 wi =
1
i

wi =
1

d(q,xi )2
Table 1: Weighting functions for the various kNN classifiers

score among the scores of all the classes, it is implausible that a
correct classification has a very low score.

More formally, let x be the input image and cx the class predicted
by the DNN with a forward computation: cx = f (x). The kNN clas-
sifier is used to compute the score s(x , cx ) of the class cx predicted
by the DNN. We decide that the classification is reliable, i.e. it is not
an adversarial, if the score s(x , cx ) is above a predefined threshold.
The score s(x , cx ) is, basically, a measure of the confidence of the
classification given by the DNN. As anticipated, the choice of the
score threshold is a trade-off between false positives (FP) and true
positives (TP), where FP are the adversarial examples (negatives)
not detected using the specific threshold (false) and TP is the rate of
correctly classified authentic images (positives) successfully identi-
fied (true). Please note that we do not rely on additional models or
data other than the fooled DNN and its original training set for the
extraction of deep features or for the detection task.

As better detailed in next section, we used the OverFeat fast
network [31] pre-trained on ImageNet ILSVRC2012 as DNN con-
sidering pool5 as deep features.

5 EXPERIMENTAL SETTINGS
In this section, we describe the method and the performance mea-
sures we used to evaluate the proposed adversarial detection ap-
proach. Generated adversarials and other resources have been made
public available on the paper web page 1. Our method has been
evaluated as a binary classification of the correctness of the predic-
tion given by a DNN, in which a positive outcome means that the
prediction given by the DNN is trustful, while a negative outcome
indicates that the prediction given by the DNN is spurious and
have to be discarded. As reported in the previous section, we used
OverFeat fast network [31] for our experiments given that it is the
pre-trained network on ILSVRC2012 used in the papers in which
L-BFGS and Fast Gradient Sign (see Section 3.2) were presented.
As reported in Section 4, our approach performs a kNN similarity
search over the images that were used for training the attacked
DNN.

The images used for our experiments are taken from the
ILSVRC2012 validation set. In particular, we selected two subsets of
images based on the classification results. The first set is composed
by randomly selecting a correctly classified image for each of the
1, 000 ILSVRC classes, while the second set is composed by ran-
domly selecting a wrongly classified image (for which the network
has given a wrong prediction) for each of the same 1, 000 classes.
We could not select a wrongly classified image in the class coded
“n12057211” (yellow lady’s slipper, yellow lady-slipper, Cypripedium
calceolus, Cypripedium parviflorum) because all the instances of
this class in the validation set are correctly classified by OverFeat.
Thus, the two sets respectively count 1, 000 and 999 images. We
1http://deepfeatures.org/adversarials/

named those subsets respectively Authentic and Authentic Errors,
where ‘authentic’ stands for non-adversarial images.

For each image in the Authentic subset, we generated two ad-
versarial images using both box constrained L-BFGS2 and FGS3
algorithms. For both methods, we used the default parameters in
every generation and we randomly selected the target class, that is
the class we fool the network to predict. We observed that L-BFGS
algorithm failed to generate 8 adversarial images, in the sense that
the class prediction of the generated adversarial image was the
same of the original image. Those failures in the generation process
could be avoided tuning the parameters of the algorithm for each
input, but for sake of simplicity we discarded the failed adversarial
examples, ending up with two sets of adversarial images respec-
tively composed by 1000 images generated by FGS, and 992 images
obtained with L-BFGS. The generated adversarial images are made
publicly available4 to make easier to reproduce the experiments.

We extracted the activations of the pool5 intermediate layer of the
pre-trained OverFeat fast network [31] from the following sets of
images: Authentic, Authentic Errors, L-BFGS Adversarial, FGS Adver-
sarial and ILSVRC2012 train set. Activations of pool5 are composed
by 1024 6x6 feature maps. Following [35], we applied global average
pooling (GAP) to the pool5 feature maps, which acts as a structural
regularizer, obtaining an image representation of 1024 floats. For
the kNN classifier, we used the features extracted from ILSVRC2012
train set as labeled set X , and we defined the distance function
d(q,x) as the euclidean distance between the extracted features. We
chose k = 1, 000 to have a number of nearest neighbors of the same
order of magnitude of the number of images per class in the labeled
set. We tested also feature L2 normalization and dimensionality
reduction using PCA+Whitening with 256 dimensionality.

Given an input image x , we compute the kNN score s(x , c) for the
class c = f (x) predicted by OverFeat, and we discard this classifica-
tion if the score is below a certain threshold. We computed the kNN
score for each image in the FGS Adversarial, L-BFGS Adversarial
and Authentic Errors image sets, and for each set we measure the
ability to detect an adversarial input as the performance of a binary
classification problem (‘trustful’ / ‘spurious’ classification).

5.1 Results
In Table 2, we report the detection accuracy of our proposed ap-
proach for different settings. Accuracy of the binary ‘trustful’ /
‘spurious’ classification is evaluated in the equal error rate (EER)
setting, that is when we choose a threshold yielding equal false
positive and false negative rates. The best results were obtained
processing the deep features using PCA and Whitening. The three
scoring approaches considered revealed similar performance with
DW-kNN and W-kNN more effective in detecting L-BFGS and FGS,
respectively.

In Figure 2, we report the Receiver operating characteristic (ROC)
curves of the DW-kNN andW-kNN scoring approaches on adversar-
ial images and errors. The curves illustrate the performance of the
proposed binary classifier when varying the threshold on the score
s(x , f (x)). The results show that W-kNN is generally preferable

2https://github.com/tabacof/adversarial
3https://github.com/e-lab/torch-toolbox/tree/master/Adversarial
4http://deepfeatures.org/adversarials/

http://deepfeatures.org/adversarials/
https://github.com/tabacof/adversarial
https://github.com/e-lab/torch-toolbox/tree/master/Adversarial
http://deepfeatures.org/adversarials/
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Processing Score L-BFGS FGS Aggr. Errors

None
kNN 70.7 69.9 70.3 58.1

W-kNN 71.2 70.8 71.0 59.6
DW-kNN 71.0 69.9 70.4 58.6

L2Norm
kNN 79.2 74.3 76.7 60.7

W-kNN 81.4 76.4 78.9 62.9
DW-kNN 81.7 76.6 79.1 61.6

PCA
+ Whiten

kNN 86.4 83.4 84.9 62.9
W-kNN 85.9 83.8 84.8 65.0

DW-kNN 86.5 83.5 85.0 63.6

Table 2: Detection accuracy in the equal error rate (EER)
score threshold setting for various activation layers, score
functions, and features processing. We report results for
both type of adversarial (L-BFGS and FGS) and the aggre-
gated accuracy (Aggr.). In the last column, we report the de-
tection rate of erroneous classifications not due to adversar-
ial examples.
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Figure 2: Receiver operating characteristic (ROC) curves of
the binary classification (‘prediction is right’ or ‘prediction
is wrong’) for the various types of images. The curves are
obtained varying the discrimination threshold on the score
assigned by the DW-kNN classifier to the class predicted by
the CNN.

when low FP rate are requested while DW-kNN is more effective
when FP and TP are comparable.

In the following, we focus on the DW-kNN score. In Figure 3, we
report the true positive (for correctly classified authentic images)
and both false positive (for adversarial images and authentic er-
rors) rates distributions as a function of the discriminant threshold
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Figure 3: True positive and false positive rates using as
discrimination threshold between correctly and incorrectly
classified images the score assigned by the DW-kNN classi-
fier to the class predicted by the CNN. The pool5 layer has
been used as feature with PCA and Whitening processing.

applied on the score s(x , f (x)). The results show that using very
low discrimination score values (about 0.002), it is possible to cor-
rectly filter out more than 50% of the adversarial examples created
by L-BFGS and more than 40% of the ones created by FGS, while
retaining more than 98% of authentic images correctly classified.
As a positive side-effect, we also discard around 10% of images the
DNN would misclassify. The low threshold values reveal that while
the DW-kNN score would not be effective in classifying the images,
values below 0.003 are unlikely for authentic images.

The same results can be seen from the score densities reported in
Figure 4, in which we can observe a distinction between the score
densities of adversarial images and the ones of authentic images.
Some simple metrics on those densities (such as the mean) could
be computed on-line in the system hosting the model to isolate a
particular source of adversarial examples, hence denying the access
to the service to an attacker.

Finally in Table 3, we report some of the easiest and most difficult
adversarial examples to detect, together with the nearest neighbor
image in the kNN’s labeled set and the score s(x , f (x)). We observed
that higher kNN scores (which correspond to difficult adversarial
to detect) usually reflects inter-class visual similarities that are
independent from the adversarial nature of the input image.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we presented an approach to detect adversarial ex-
amples crafted for fooling deep neural network classifiers. We in-
spect the activations of intermediate layers for both adversarial
and authentic inputs, and we defined a classification confidence
score based on kNN similarity searching among the images used
for training. The proposed approach allows to filter about 80% of
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Method L-BFGS L-BFGS L-BFGS L-BFGS . . . FGS FGS FGS FGS

Actual
Class basenji Weimaraner wine bottle

kit fox,
Vulpes
macrotis

. . . agama jack-o’-
lantern

knee pad agaric

Adv.
Image . . .

DNN Pre-
diction

Arctic fox,
white fox,
Alopex lago-
pus

lorikeet pop bottle,
soda bottle

chow,
chow chow

. . .

worm fence,
snake fence,
snake-rail
fence, . . .

cellular tele-
phone,
cellular
phone,
cellphone, . . .

punching
bag,
punch bag,
. . .

Bouvier des
Flandres,
Bouviers des
Flandres

Predicted
Nearest

Neighbor
. . .

kNN
score s 0.13 0.10 0.08 0.08 0.00 0.00 0.00 0.00

Table 3: Adversarial images to which our best approach (pool5+PCA+DW-kNN) assigns the highest and lowest authenticity
score s. From top to bottom, rows respectively report: the generation method, the original class of an input, its adversarial
version, the class predicted by the DNN, the nearest neighbor image (in terms of L2 distance between average-pooled pool5
activations) belonging to the predicted class, and the DW-kNN score s for the predicted class. A low score indicates that the
adversarial is correctly detected while a high score means that our approach is wrongly confident about the prediction of the
CNN. The results show that high scoring adversarials examples often share some common visual aspects and semantic with
the predicted (adversarial) class, resulting in a more challenging detection.
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Figure 4: Density of the DW-kNN scores for both adversarial
and authentic images. We report densities of scores using
pool5 as feature and PCA+Whitening as processing.

adversarial examples retaining more than 90% of the correctly clas-
sified authentic images (see Figure 3). Moreover, some examples are
suggesting that hard adversarial examples are the ones for which
actual and target classes are similar or have similar visual patterns.

In future work, we plan to extend our analysis to other model archi-
tectures and other adversarial examples generated with different
algorithms.
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