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Abstract—Face analysis from 2D images and videos is a central
task in many multimedia applications. Methods developed to
this end perform either face recognition or facial expression
recognition, and in both cases results are negatively influenced
by variations in pose, illumination, and resolution of the face. Such
variations have a lower impact on 3D face data, which has given the
way to the idea of using a 3D morphable model as an intermediate
tool to enhance face analysis on 2D data. In this paper, we propose
a new approach for constructing a 3D morphable shape model
(called DL-3DMM) and show our solution can reach the accuracy
of deformation required in applications where fine details of the
face are concerned. For constructing the model, we start from a
set of 3D face scans with large variability in terms of ethnicity and
expressions. Across these training scans, we compute a point-to-
point dense alignment, which is accurate also in the presence of
topological variations of the face. The DL-3DMM is constructed
by learning a dictionary of basis components on the aligned scans.
The model is then fitted to 2D target faces using an efficient
regularized ridge-regression guided by 2D/3D facial landmark
correspondences in order to generate pose-normalized face images.
Comparison between the DL-3DMM and the standard PCA-based
3DMM demonstrates that in general a lower reconstruction error
can be obtained with our solution. Application to action unit
detection and emotion recognition from 2D images and videos
shows competitive results with state of the art methods on two
benchmark datasets.

Index Terms—Action unit detection, dictionary learning, dense
correspondence, emotion recognition, 3D morphable model.

I. INTRODUCTION

IN RECENT years, the analysis of human faces has become
increasingly relevant, with a variety of potential computer

vision and multimedia applications. Examples include human
identification based on face [1]–[3], emotional state detec-
tion [4], [5], enhanced human-computer interaction using fa-
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cial pose and expression [6]–[10], facial expression detection
for medical assistance or investigation [11], [12], prediction of
drivers cognitive load [13], [14], just to cite some of the most
studied.

Face recognition and facial expression recognition are central
in most of these applications. In a broad sense, face recognition
performs coarse grained (inter-class) face analysis, where face
variations that separate different identities are accounted for.
Convincing results have been obtained for 2D still images and
videos, where 2D large and heterogeneous corpora can be easily
collected, with the ultimate effect of making machine learning
tools work effectively [15]–[17]. Conversely, in applications
that recognize facial expressions or Action Units (AU), fine
grained (intra-class) face analysis is required, where subtle and
local variations of the face occur under the action of groups or
individual facial muscles. In this case, 2D data manifest more
evident limitations, and performing face analysis in 3D can be
convenient [18], [19]. However, acquiring high-quality 3D data
is more expensive and difficult than for 2D. For these reasons,
using 2D/3D solutions becomes a suitable alternative. Even a
limited amount of 3D data can indeed be exploited to produce
an enhanced 2D representation.

In this framework, a potentially interesting idea is that of
learning a generic 3D face model capable of generating new
face instances with plausible shape and appearance. This can
be done by capturing the face variability in a training set of 3D
scans and constructing a statistical face model that includes an
average component and a set of learned principal components
of deformation. Such a model would allow either to generate
new face instances, or deform and fit to 2D or 3D target faces.

Blanz and Vetter [20] first proposed to create a 3D morphable
model (3DMM) from a set of exemplar 3D faces and showed
its potential and versatility. 3DMM and its variants have been
used with some success in coarse grained recognition applica-
tions, such as pose robust face recognition [21], [22] and 3D face
recognition [23]. However, in the literature there are no convinc-
ing examples of 3DMMs applied to fine grained face analysis.
This is mainly related to the difficulty existing 3DMMs have
with coping with noise, local deformations and topology varia-
tions of the face. The ultimate motivation for this can be found
in the two elements that are at the base of constructing a valid
3DMM: the data used for training, and the statistical tools that
are applied to the data.

Intuitively, the capability of generating new face instances
with realistic traits mainly depends on the variance in the training
data. A training dataset that includes a significant sample of
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human face variability in terms of gender, ethnicity, age, and
facial expressions is a fundamental prerequisite. However, a
point-to-point dense correspondence is required to preserve the
anatomical meaning of every point across all the training scans.
This is a difficult task especially for expressive faces; in most
of the cases, the use of scans with large differences has not
been exploited to its full potential. On the other hand, PCA
has been the tool applied for capturing the statistical variability
in the training data in most state of the art works, with few
other solutions explored. While this is possible only for scans
in dense correspondence, if the correspondence is not accurate,
most principal components will include noise.

In this paper, we propose a new approach to the construc-
tion of a 3D Morphable Shape Model (note that, even though
we consider the sole shape component, throughout the paper
we will use the term 3DMM for our solution). The proposed
model is capable of capturing much of the large variability of
human faces, thus opening the way to its use in fine grained face
analysis. It is grounded in three distinct contributions:

1) a new method to establish a dense correspondence be-
tween scans even in the case of expressions that include
topological variations such as open/closed mouth;

2) a new approach to capturing the statistical variability in
training data that, instead of exploiting standard PCA,
learns a dictionary of deformations from the deviations
between each 3D scan and the average model computed
on the vertex positions of the densely aligned training
scans. We refer to this new model composed by the aver-
age model component and the learned basis of deviations
as DL-3DMM;

t3) the application of 3DMM to the fine grained tasks of AU
detection and emotion recognition from 2D images. To
this end, we also propose an efficient fitting approach
that only relies on the correspondence between 2D and
3D landmarks of the face, and avoids a costly iterative
optimization by estimating the model parameters through
a closed form solution.

In the experiments, we demonstrate the DL-3DMM com-
pares favorably with respect to the standard PCA-based 3DMM
in terms of reconstruction error. In addition, results show the
effective applicability of 3DMM to facial AU detection and
emotion recognition, with comparable performance to state of
the art 2D methods, even using off-the-shelf image descriptors
and learning solutions.

Some preliminary ideas of this work appeared in [24]. With
respect to [24], here we extend the dense alignment approach to
the whole face, and to the case where facial landmarks used for
face partitioning are automatically detected. In addition, we pro-
pose a new experiment that includes a cross-dataset comparison
and finally we demonstrate the applicability of our DL-3DMM
to AU detection and emotion recognition.

The rest of the paper is organized as follows: in Section II,
we review the state of the art on 3DMM construction and its
application in image face analysis; in Section III, we present the
method for determining dense correspondence between the 3D
scans of a training set with a large spectrum of face variations;
the DL-3DMM construction using dictionary learning is pro-

posed in Section IV; in Section V, we present the 3DMM fitting
method; Section VI introduces to the application of the 3DMM
to AU detection and emotion recognition; in Section VII, we
compare the DL-3DMM to the PCA-3DMM, and present their
results for AU detection and emotion recognition; finally, dis-
cussion and conclusions are reported in Section VIII.

II. RELATED WORK

In their seminal work, Blanz and Vetter [20] first presented a
complete solution to derive a 3DMM by transforming the shape
and texture from a training set of 3D face scans into a vector
space representation based on PCA. A gradient-based optical
flow algorithm was used to establish dense correspondence be-
tween pairs of 3D scans taking into account for texture and shape
values simultaneously. A reference scan was then used to trans-
fer correspondences across scans. However, the training dataset
had limited face variability (200 neutral scans of young Cau-
casian individuals were included), thus reducing the capability
of the model to generalize to different ethnicity and non-neutral
expressions. Despite these limitations, the 3DMM has proved
its effectiveness in image face analysis, also inspiring most of
the subsequent work, with applications to computer graphics
for face inverse lighting [25], [26] and reanimation [27], cran-
iofacial surgery [28], 3D shape estimation from 2D image face
data [29], 3D face recognition [23], pose robust face recogni-
tion [21], [22], etc.

The 3DMM was further refined into the Basel Face Model
by Paysan et al. [30]. This offered higher shape and texture
accuracy thanks to a better scanning device, and a lower num-
ber of correspondence artifacts using an improved registra-
tion algorithm based on the non-rigid iterative closest point
(ICP) [31]. However, since non-rigid ICP cannot handle large
missing regions and topological variations, expressions were not
accounted for in the training data also in this case. In addition,
both the optical flow used in [20] and the non-rigid ICP method
used in [23], [30] were applied by transferring the vertex index
from a reference model to all the scans. As a consequence, the
choice of the reference face can affect the quality of the detected
correspondences, and ultimately the final 3DMM. The work by
Booth et al. [15], introduced a pipeline for 3DMM construction.
Initially, dense correspondence was estimated applying the non-
rigid ICP to a template model. Then, the so called LSFM-3DMM
was constructed using PCA to derive the deformation basis on
a dataset of 9,663 scans with a wide variety of age, gender, and
ethnicity. Though the LSFM-3DMM was built from the largest
dataset compared to the current state-of-the-art, the face shapes
still were in neutral expression.

Following a different approach, Patel and Smith [32] showed
that Thin-Plate Splines (TPS) and Procrustes analysis can be
used to construct a 3DMM. Procrustes analysis was used to
establish correspondence between a set of 104 manually la-
belled landmarks of the face, and the mean coordinates of these
landmarks were used as anchor points. A complete deformable
model was then constructed by warping the landmarks of each
sample to the anchor points and interpolating the regions be-
tween landmarks using TPS. Finally, consistent resampling was
performed across all faces, but using the estimated surface
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between landmarks rather than the real one. In [33], Cosker
et al. described a framework for building a dynamic 3DMM,
which extended static 3DMM construction by incorporating dy-
namic data. This was obtained by proposing an approach based
on Active Appearance Model and TPS for non-rigid 3D mesh
registration and correspondence. Results showed this method
overcomes optical flow based solutions that are prone to tem-
poral drift. Brunton et al. [34], instead, proposed a statistical
model for 3D human faces in varying expression. The approach
decomposed the face using a wavelet transform, and learned
many localized, decorrelated multilinear models on the resulting
coefficients. In [35], Lüthi et al. presented a Gaussian Process
Morphable Model (GPMM), which generalizes PCA-based Sta-
tistical Shape Models (SSM). GPMM was defined by a Gaussian
process, which makes it inherently continuous. Further, it can be
specified using arbitrary positive definite kernels, which makes
it possible to build shape priors, even in the case where many
examples to learn an SSM are not available.

3DMM has been used at coarse level for face recognition and
synthesis. In one of the first examples, Blanz and Vetter [21]
used their 3DMM to simulate the process of image formation
in 3D space, and estimated 3D shape and texture of faces from
single images for face recognition. Later, Romdhani and Vet-
ter [36] used the 3DMM for face recognition by enhancing the
deformation algorithm with the inclusion of various image fea-
tures. In [37], Yi et al. used the 3DMM to estimate the pose
of a face image with a fast fitting algorithm. This idea was ex-
tended further by Zhu et al. [38], who proposed fitting a dense
3DMM to an image via Convolutional Neural Network. Grupp
et al. [39] fitted the 3DMM based exclusively on facial land-
marks, corrected the pose of the face and transformed it back to a
frontal 2D representation for face recognition. Hu et al. [40] pro-
posed a Unified-3DMM that captures intra personal variations
due to illumination and occlusions, and showed its performance
in 3D-assisted 2D face recognition for scenarios where the in-
put image is subjected to degradations or exhibits intra-personal
variations.

In all these cases, the 3DMM was used mainly to compensate
for the pose of the face, with some examples that performed
also illumination normalization. Expressions were typically not
considered. Indeed, the difficulty in making 3DMM work prop-
erly in fine face analysis applications is confirmed by the almost
complete absence of methods that use 3DMM for expression
recognition. Among the few examples, Ramanathan et al. [41]
constructed a 3D Morphable Expression Model incorporating
emotion-dependent face variations in terms of morphing pa-
rameters that were used for recognizing four emotions. Ujir and
Spann [42] combined the 3DMM with Modular PCA and Facial
Animation Parameters (FAP) for facial expression recognition,
but the model deformation was due more to the action of FAP
than to the learned components. In [43], Cosker et al. used a
dynamic 3DMM [44] to explore the effect of linear and non-
linear facial movement on expression recognition through a test
where users evaluated animated frames. Huber et al. [45] pro-
posed a cascaded-regressor based face tracking and a 3DMM
shape fitting for fully automatic real-time semi dense 3D face
reconstruction from monocular in-the-wild videos.

Fig. 1. (a) Face scan of the BU-3DFE with the 87 landmarks (in blue) and the
geodesic paths used to connect some of them (in black). These paths partition
the face into a set of non-overlapping regions. (b) Geodesic contour of the
cheek/zygoma region on the right side of the face. The geodesic contour is
resampled so that points on it (circles in the plot) are at the same geodesic
distance from each other. The interior of the region is also resampled using
linear paths on the surface (dots in the plot), which connect corresponding
points on opposite sides of the contour.

III. FINDING 3D DENSE CORRESPONDENCE

Given a training set, finding a dense point-to-point corre-
spondence between the vertices of 3D scans can be seen as
a sort of mesh re-parametrization where corresponding points
must have the same anatomical reference. The limited num-
ber of facial points detectable with sufficient accuracy, and the
presence of large regions with strong photometric variations,
self-occlusions, facial expressions and changes in the topology
of the face surface (as in the case of mouth-closed / mouth-open),
make this problem highly complex.

In our approach, similarly to Patel and Smith [32], we initially
rely on a set of landmarks to establish a correspondence between
salient points of the face [see Fig. 1(a)]. However, differently
from [32], where warping and TPS interpolation is applied be-
tween the average landmarks, we interpolate and sample the
scan surface, region-by-region, while maintaining a dense cor-
respondence. We first partition the face into a set of regions
using geodesic paths between facial landmarks, applying the
variant of the Fast Marching algorithm on triangular mesh man-
ifolds of [46], and resample the geodesics with a predefined
number of points posed at equal geodesic distance. As an ex-
ample, Fig. 1(b) shows (with circles), the sampled points of
the geodesic contour delimiting the cheek/zygoma region com-
prised between the nose and the face boundary on the right.
Hence, we sample the surface of the face regions so that points
of homologous regions are in dense correspondence across all
the training scans. This is obtained by using the geodesic con-
tour of the region to guide the dense resampling of its interior
surface. The idea here is to connect pairs of sampling points on
opposite side of a geodesic contour with a linear path on the sur-
face [47]. This line is then sampled at the desired resolution, as
illustrated in Fig. 1(b). Being based on the annotated landmarks
and their connections, this approach proved to be robust to fa-
cial expressions. In particular, the presence of landmarks which
delimit the internal and external border of the lips, makes it pos-
sible to maintain such region correspondence also across faces
with mouth-closed/mouth-open expressions. While the method
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of [32] is only able to estimate the real surface, in our case, we
are able to interpolate and sample the true surface of the face
scans, region-by-region, maintaining a dense correspondence
and do not require an average model as in [32]. With respect to
the solutions in [20], [30], [31] our approach does not require a
reference face model, that could request a new face parametriza-
tion. It only requires that training faces are labeled with a set
of landmarks, that is easily obtained with good accuracy using
available detectors both in 2D [48], [49] and 3D [50].

Learning a 3DMM requires a training set of 3D face scans
with high variability in terms of gender, age and ethnicity. Since
we aim to generalize to expressive data, including scans with
facial expressions is also important. To this end, we used the
publicly available Binghamton University 3D Facial Expression
dataset (BU-3DFE) [51] as training set. This dataset includes
a balanced sample of human face variability and facial expres-
sions and has been largely employed for 3D expression/face
recognition. In particular, the BU-3DFE contains scans of
44 females and 56 males, with age ranging from 18 to 70 years
old, acquired in a neutral plus six different expressions: anger,
disgust, fear, happiness, sadness, and surprise. Apart from neu-
tral, all the other facial expressions were acquired at four lev-
els of intensity, from low to exaggerated (2500 scans in total).
The subjects are distributed across different ethnic groups or
racial ancestries, including White, Black, Indian, East-Asian,
Middle East Asian, and Hispanic-Latino. The 83 facial land-
marks annotated and released with the BU-3DFE provide cor-
respondence across the training faces for a limited set of an-
chor points in correspondence to the distinguishing traits of
the face.

Four additional landmarks located in the forehead have been
derived from this initial set using anthropometric considerations
on face proportions [52]. The overall set of 87 landmarks is
shown with blue spheres on the face scan in Fig. 1(a). It is
evident that these landmarks delimit salient parts of the face:
the eyebrows, the eyes, the upper and lower lips, the nose, and
the face boundary. By connecting selected pairs of landmarks
through geodesic paths, we identified 12 regions in each side
of the face (comprising the super-orbitali, eyebrow, eye, cheek,
jaw and chin), plus 9 regions covering the middle part of the
face (including the lips, the region between the upper lip and the
nose, the nose, the region between the eyes, and the forehead).
As a result, each face was partitioned into 33 regions, each
delimited by a closed geodesic contour passing through a set of
landmarks, as shown in Fig. 1(a).

IV. DL-3DMM CONSTRUCTION

Once a dense correspondence is established across the train-
ing data, we build our DL-3DMM by learning a dictionary of de-
formation components exploiting the Online Dictionary Learn-
ing for Sparse Coding technique [53]. Learning is performed in
an unsupervised way, without exploiting any knowledge about
the data (e.g., identity or expression labels).

Let N be the set of training scans, as obtained in Section III,
each with m vertices. Each scan is represented as a column
vector fi ∈ R3m , whose elements are the linearized X , Y , Z

coordinates of all the vertices, that is

fi = [Xi,1 Yi,1 Zi,1 . . . Xi,m Yi,m Zi,m ]T ∈ R3m .

The average model m of the training scans is computed as

m =
1
|N |

|N |∑

i=1

fi . (1)

Then, for each training scan fi , we compute the field of devia-
tions vi with respect to the average model m

vi ← fi −m , ∀ fi ∈ N . (2)

In the classic 3DMM framework [20], new 3D shapes are
generated by deforming the average model m with a linear com-
bination of the principal components. In this work, instead, we
propose to learn a set of deformation components through dictio-
nary learning. In particular, the dictionary atoms are learnt from
the field of deviations vi . Then, we morph the average model
exploiting a linear combination of the dictionary atoms. Note
that the PCA model is also constructed on the training set vi .

Dictionary learning is usually cast as an �1-regularized least
squares problem [53]. However, since the learnt directions are
used to deform the average model, the sparsity induced by the �1
penalty can lead to a noisy or, in the worst case, a discontinuous
or punctured model. We thus decided to formulate the dictionary
learning as an Elastic-Net regression. The Elastic-Net is a type of
regression method that linearly combines the sparsity-inducing
�1 penalty and the �2 regularization. The �1 norm is known to
act as a shrinkage operator, reducing the number of non-zero el-
ements of the dictionary, while the �2 norm avoids uncontrolled
growth of the elements magnitude, while forcing smoothness.
By defining �1,2(wi) = λ1 ‖wi‖1 + λ2 ‖wi‖2 , where λ1 and λ2
are, respectively, the sparsity and regularization parameters, we
can formulate the problem as

min
w i , D

1
|N |

|N |∑

i=1

(
‖vi −Dwi‖22 + �1,2(wi)

)
(3)

where the columns of the dictionary D ∈ R3m×k are the ba-
sis components, wi ∈ Rk are the coefficients of the dictio-
nary learning, and k is the number of basis components of
the dictionary. The number of components (dictionary atoms)
must be defined a priori. Instead, the set of coefficients W =
[w1 , . . . ,wk ] ∈ Rk×k is obtained as the cumulated sum of the
coefficients at each iteration of the dictionary learning. The co-
efficients of the matrix W are in general concentrated on the
diagonal [53], and represent the contribution of the k-th basis
element in reconstructing the training vectors.

The above minimization can be rewritten as a joint optimiza-
tion problem with respect to the dictionary D and the coeffi-
cients W, and solved by alternating between the two variables,
minimizing over one while keeping the other one fixed [53].
The average model m, the dictionary D and the diagonal ele-
ments of the matrix W, namely the vector ŵ ∈ Rk , constitute
our Dictionary Learning based 3DMM (DL-3DMM).
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V. EFFICIENTLY FITTING THE DL-3DMM

Fitting a 3DMM to a 2D face image allows a coarse 3D recon-
struction of the face. To this end, estimating the 3D pose of the
face, and the correspondence between 3D and 2D landmarks are
prerequisites. In the following, both the average model and the
basis components of the learned dictionary will be represented
in R3×m , rather than in R3m , and we refer to them as m̂ and D̂,
respectively.

In order to estimate the pose, we detect a set of 49 facial
landmarks l ∈ R2×49 on the 2D face image using the technique
proposed in [48] (see Fig. 2). An equivalent set of vertices L =
m̂(Iv ) ∈ R3×49 is manually annotated on the average 3D model,
where Iv is the set of indices of the vertices corresponding to
the landmark locations. Under an affine camera model [22], the
relation between L and l is

l = A · L + T (4)

where A ∈ R2×3 contains the affine camera parameters, and
T ∈ R2×49 is the translation on the image. To recover these
parameters, firstly, we subtract the mean from each set of points
and recover the affine matrix A solving the following least
squares problem:

arg min
A

‖l−A · L‖22 (5)

for which the solution is given by A = l · L+ , where L+ is the
pseudo-inverse matrix of L. We can estimate the affine matrix
with a direct least squares solution since, by construction, facial
landmark detectors assume a consistent structure of the 3D face
parts so they do not permit outliers or unreasonable arrangement
of the face parts (e.g., nose landmarks cannot stay above the
eyes). Finally, the 2D translation can be estimated as T = l−
A · L. Thus, the estimated pose P is represented as [A,T] and
used to map each vertex of the 3DMM onto the image.

Using the learned dictionary D̂ = [d̂1 , . . . , d̂k ], we find the
coding that non-rigidly transforms the average model m̂ such
that the projection minimizes the error in correspondence to
the landmarks. The coding is formulated as the solution of a
regularized Ridge-Regression problem

arg min
α

∥∥∥∥∥l−Pm̂(Iv )−
k∑

i=1

Pd̂i(Iv )αi

∥∥∥∥∥

2

2

+ λ
∥∥α ◦ ŵ−1

∥∥
2

(6)
where ◦ is the Hadamard product. Since the pose P, the basis
components d̂i , the landmarks l, and m̂(Iv ) are known, we
can define X̂ = l−Pm̂(Iv ) and ŷi = Pd̂i(Iv ). By considering
their linearized versions1 X ∈ R98 and yi ∈ R98 with Y =
[y1 , . . . ,yk ], we can finally estimate the non-rigid coefficients
which minimize the cost of (6), in closed form as follows:

α =
(
YT Y + λ · diag(ŵ−1)

)−1
YT X (7)

where diag(ŵ−1) denotes the diagonal matrix with vector ŵ−1

on its diagonal. The term ŵ−1 is used to associate a reduced cost

1The dimension 98 results from the concatenation of the coordinates of the
49 landmarks.

to the deformation induced by the most relevant components.
Indeed, weighting the deformation parameters α with the in-
verse of the coefficients ŵ, reduces the cost of the deformation
induced by components d̂i with a large coefficient ŵi , while
the contribution of unstable and noisy components is bounded.
In the classic PCA model, the same principle applies, but in this
case the deformation components d̂i are represented by the PC,
while the vector ŵ corresponds to the eigenvalues associated to
the PC.

Note that the pose estimation and fitting steps are alternated;
we experimentally found that cleaner reconstructions can be
obtained by repeating the process while keeping a high λ. This is
motivated by the fact that the initial 3D and 2D landmark layouts
are likely to be very different due to the presence of expressions,
and the pose can be coarsely estimated. In this scenario, the non-
rigid deformation which fits the landmark locations is likely to
excessively deform the model in the attempt of compensating
also the error introduced by the pose. On the contrary, a high λ

avoids to some extent this behavior and permits refinement of
both the pose and the non-rigid deformation in the next step.
Thus, a balance is required between the number of steps and
the value of λ. We empirically found that the best configuration
is repeating the process 2 times, with λ ranging from 0.0001
to 0.05. More than 2 repetitions do not produce appreciable
improvement in the fitting.

A fitting example obtained using this solution is shown in
Fig. 2. As a result, the 3D model is deformed according to the
target face image, and the pose of the model can be normalized
to obtain a frontalized face image. The vertices of the model
can also be projected onto the rendered face; we can therefore
compute image feature descriptors in repeatable positions across
different faces exploiting the projected model vertices. The ul-
timate result of this procedure is an improved alignment of the
image descriptors, which has been proved relevant in several
face analysis applications [1], [54].

We exploit the technique presented in [55] to render a canon-
ical frontal view of the face; the knowledge of the 3D face shape
allows us to compute a pixel-wise inverse transformation, which
associates to each pixel a 3D location in the coordinate system
of the 3D model. Practically, once the 3D model is fit and pro-
jected onto the image, for each 3D vertex vj = (Xj , Yj , Zj ),
we know the coordinates (xj , yj ) of the pixel corresponding to
the projection of the vertex on the 2D image plane. Conversely,
many pixels of the image have not a direct map in 3D, since they
do not correspond to the projection of any 3D vertex. The 3D
locations of these pixels can be estimated by fitting a function
h(x, y) across all the scattered pixels for which the 3D to 2D
mapping is known. Then, defining Ω as the convex hull of the
projected 3DMM, the 3D position gu,v of each pixel (u, v) ∈ Ω
is estimated as

gu,v = h(u, v) , ∀ (u, v) ∈ Ω . (8)

This back-projection from the 2D image plane to the 3D
space permits us to associate the color of any pixel to a point
estimated on the 3D model. The resulting rendered image is
artifact free and also pixel-wise aligned across all the images
since the transformation is computed pixel-by-pixel (see Fig. 2).
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Fig. 2. Proposed 3DMM fitting and frontal face rendering: (left) the 3D head pose is estimated from the correspondence of 2D and 3D landmarks; (middle) the
average 3D model is deformed using the basis components; (right) then, a frontal face image is rendered. A subsampling of the mesh vertices back projected onto
the frontalized image is also shown. Note that, as a result of the fitting, no vertices fall inside the open mouth region.

Fig. 3. Example of fitting an expressive face with a 3DMM. The importance
of including expressive scans in the training set can be appreciated: a 3DMM
built without expressive scans fails in fitting the expressive face.

Moreover, the densely textured 3D model can also be used to
render a face image in an arbitrary pose.

VI. 3DMM-BASED FACIAL ANALYSIS APPLICATION: AU
DETECTION AND EMOTION RECOGNITION

To the best of our knowledge, 3DMMs have not been used
for the analysis of facial expressions; this can be reasonably
ascribed to the difficulty of including expressive scans in the
training data, which limits the capability of deforming a 3D
model accurately in the presence of facial expressions, as shown
in Fig. 3.

Facial expression analysis can be conducted mainly at two
different levels: a finer one, i.e., Action Unit (AU) detection,
which aims at detecting subtle movements of small parts of the
face; and a more holistic one, which tries to classify the emo-
tional state of the subject based on the whole face appearance,
i.e., Emotion recognition.

Facial AUs are defined by the Facial Action Coding System
(FACS) [56], which categorizes human facial movements based
on the face appearance changes induced by the activity of the
underlying muscles. The activation of an AU can thus be in-
ferred from the observation of a face image. The AU detection
task consists in deciding whether a particular AU is active or
not in a given face image. Using this definition, in the literature,
facial expressions have been systematically defined as the si-
multaneous activation of different AUs [57]. Facial expressions

share common characteristics in the resulting face appearance
and are also related to the emotional state of the subject showing
the expression. Despite the precise definition, it is common that
experts manually label face images referring to a set of stan-
dard discrete emotions, e.g., anger, fear, disgust, joy, happiness,
relief, contempt, sadness and surprise.

To perform AU detection and Emotion Recognition a pipeline
has been defined, which includes the following steps: 1) Im-
age alignment; 2) Feature extraction; 3) Classifier training; 4)
AU detection/Emotion recognition. The image alignment is per-
formed by fitting the 3DMM to the face image so as to render
a frontalized version using the method presented in Section V
and summarized in Fig. 2. The face images are then described
using LBP features [58], that are concatenated and projected
to a lower dimensional space. Finally, classification/detection
is performed using linear SVM classifiers, trained separately
for each AU or emotion. The choice of using baseline image
descriptors (LBP) and classifiers (LinearSVM) is motivated by
the fact that our final goal is to assess the improvement that can
be obtained using the 3DMM to enhance image description.

VII. EXPERIMENTAL RESULTS

The proposed DL-3DMM has been evaluated in three sets of
experiments. First, we investigate the modeling ability of the
DL-3DMM compared with its PCA-based counterpart in terms
of 3D to 2D fitting, and direct 3D to 3D fitting on the BU-3DFE.
Then, we evaluate a cross-dataset fitting between the BU-3DFE
and the Face Recognition Grand Challenge (FRGC v2.0) [59]
dataset, by training on one dataset and testing on the other
one, and vice versa. In both these experiments, two reference
projection matrices are defined: Pf

ref simulates a subject facing
the camera (front view); Ps

ref has been taken simulating a pose
with approximately 45◦ in yaw (side view). The 3DMM is fit
following the approach of Section V. For the direct 3D fitting,
instead, we remove the projection P from (6) so as to perform
the fitting directly in the original 3D space. Finally, we evaluate
the 3DMM in the tasks of AU detection and emotion recognition,
comparing it to baseline feature extraction approaches and state
of the art solutions.
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A. 3D Shape Reconstruction

We comparatively evaluate how the DL-3DMM and PCA-
3DMM fit to a set of test images. Experiments were performed
on the BU-3DFE, processed as illustrated in Section III so that
scans are densely aligned with the same number of vertices. To
train and test the 3DMMs, we split the scans into two halves
based on subject identity (so that train and test identities are
completely separated): one half of the scans is used to construct
the average model m̂, the deformation components d̂i , and the
weights ŵ for both the DL-3DMM and the PCA-3DMM; the
other half is used for test. This process is repeated 10 times
on each train/test partition, and results are averaged across the
trials.

To perform the 3D to 2D fitting, for each test scan we select
the set of landmarks through the indices Iv and project them
onto the 2D plane. These landmarks are used as a surrogate for
the landmarks detected on a face image and allow both avoiding
inaccuracies induced by detection and a misleading source of
error not directly ascribable to the fitting.

Since the 2D landmarks are generated from the 3D scans, the
original 3D data can be used as ground-truth of the model re-
sulting from the fitting process. Based on this, we computed the
3D reconstruction error by accumulating the vertex-to-vertex
Euclidean distance between the ground-truth scan and the de-
formed 3DMM. This measure exploits the knowledge of the
exact correspondence between all the vertices of the 3D scans
given by the dense alignment. Thus, the errors can be calcu-
lated by considering the distance between vertices with the same
index in the meshes, without requiring any nearest vertex search.
This is important, since in the presence of strong topological
changes as determined by expressive scans, finding meaningful
corresponding points for computing the errors is a complex task.

Reconstruction errors for three fitting conditions, namely, 3D-
2D front view, 3D-2D side view, and 3D-3D are reported in
Fig. 4(a), 4(b) and 4(c), respectively. The plots in the first row
of the Figure compare the results obtained with the DL-3DMM
and the PCA-3DMM as a function of the regularization param-
eter λ of (6) and for different number of components. The bar
graph in the middle row shows the effect of varying the regu-
larization parameter λ when the number of components is fixed
at its best performing number, while in the bottom row it is
shown the opposite, i.e., the effect of varying the number of
components at the best regularization value. Results show that
our DL-3DMM performs generally better than the PCA-3DMM.
In particular, the two methods show a quite different behavior
regarding the number of components used. For PCA-3DMM,
we observe that increasing the number of components degrades
the performance. This fact can be explained considering that
3D scans are noisy regardless of acquisition accuracy, and the
alignment process can mitigate such nuisances only to some
extent. Furthermore, it is likely that some PCs reflect less sig-
nificant characteristics of the data. These facts eventually cause
a drop of fitting accuracy due to the introduction of noisy and
ineffective components, although regularized by their eigenval-
ues. This behavior is consistent with the concept of compactness
of a model (i.e., the ability of explaining the most and signifi-

cant variability of the data with the fewest number of compo-
nents). On the opposite, the DL-3DMM improves its modeling
ability with a larger number of components. This behavior is
related to the fact that larger dictionaries allow more combi-
nations of the atoms thus covering a wider range of possible
deformations.

Results show that an optimal value of λ is about 0.01 and
0.001 for the DL and PCA methods, respectively. We point out
here that despite producing the minimum error, using low reg-
ularization values to fit the 3DMM can occasionally result in
noisy models; it is desirable instead to generate a model which
is as smooth as possible. It can be observed from Fig. 4 that the
reconstruction error is more stable across increasing λ values for
the DL-3DMM rather than for the PCA-3DMM. It is then pos-
sible to choose a larger regularization value to ensure a smooth
model, without renouncing modeling precision. This behavior
is accentuated for increasing number of DL components.

Apart from the increased accuracy, since the fitting is quickly
performed in closed form, we also note that the computational
time still is acceptable even for a large number of components.
We experimentally found that 2 repetitions of the whole fit-
ting process of Section V take 17, 31, 103 and 185 ms for,
respectively, 50, 100, 300, 500 components for both DL- and
PCA-based 3DMM. We also found that after model deforma-
tion, the pose estimate is improved of about 0.5 degrees, with a
final mean error of 5.0, 2.4, 4.1 degrees, respectively, for pitch,
yaw and roll angles.

In Fig. 5 we show some examples of the deformation obtained
using single dictionary atoms. Observe that DL components
result in localized variations of the model, with a remarkable
gap between different face parts. Moreover, by varying the mag-
nitude of the deformation applied to the average model it is
possible to generate new meaningful models. In Fig. 6 some ex-
amples of the 3DMM fitting, obtained using all the components,
are shown. Both the DL-3DMM and the PCA-3DMM are able
to model expressive faces but, nonetheless, our model has some
advantages: 1) using the optimal λ value it introduces less noise
in the resulting 3D model with respect to the PCA one; 2) if a
smoother model is desired, the regularization value can be in-
creased without sacrificing modeling ability. The PCA-3DMM,
on the other hand, is not able to fit the expression properly in
this case.

B. Cross-Dataset 3D Shape Reconstruction

We performed a cross-dataset fitting experiment using the
FRGC dataset in addition to the BU-3DFE. The FRGC v2.0
includes 4,007 scans of 466 subjects acquired with frontal view
from the shoulder level, with very small pose variations. About
60% of the faces have neutral expression, while the others show
spontaneous expressions of disgust, happiness, sadness, and
surprise. Scans are given as matrices of 3D points of size
480× 640, with a binary mask indicating the valid points of
the face. 2D RGB images of the face are also available and
aligned with the matrix of 3D points. Ground-truth landmarks
are not available in this dataset. To apply our alignment proce-
dure, we first run the landmark detector in [48] to extract 68
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Fig. 4. Reconstruction error on the BU-3DFE dataset: (a) 3D-2D fitting with front view; (b) 3D-2D fitting with side view; and (c) direct 3D-3D fitting. Each plot
in the first row reports the errors for both DL- and PCA-based 3DMM as a function of the regularization parameter λ and for different number of components. The
second row reports, for the best number of components, the effect of varying λ, while in the third row the effect of varying the number of components for the best
λ value is shown. Standard deviation is also reported for each bar. (a) 3D-2D fitting, front view. (b) 3D-2D fitting, side view. (c) 3D-3D fitting.

points from the 2D images (the detection failed on just 6 im-
ages). Since 2D images and matrices of 3D points are aligned
pixel-wise, the 2D landmarks position, plus 6 landmarks in the
forehead of the face, can be transferred to 3D scans. Then, the
alignment process described in Section III is applied. In order to
have a meaningful alignment between the two datasets, the same
partitioning described above has been applied to the BU-3DFE
considering a subset of 68 out of the 83 landmarks available as
ground truth and re-aligning the whole dataset.

In this experiment, the whole FRGC dataset was used to con-
struct the average model m̂, the deformation components d̂i , and

the weights ŵ, while all the models of the BU-3DFE have been
used for test. The same experiment was performed considering
the BU-3DFE as train and the FRGC for test. Reconstruction
errors obtained for both DL- and PCA-based 3DMM shape fit-
ting are reported in Fig. 7. It is possible to appreciate that when
the FRGC is used for train, the reconstruction error is higher for
both DL- and PCA-based 3DMM. A possible motivation for this
is that, though the FRGC dataset contains about four times the
number of identities of the BU-3DFE, it includes less intense
expressions. Comparing the results of the DL- and PCA-based
3DMM, they are very close, even though DL obtains a slightly



2674 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 12, DECEMBER 2017

Fig. 5. Example of the deformation obtained using single dictionary atoms. In column (a), the deformation heat-maps are reported; the models generated by
applying different deformation magnitudes are shown in the other columns.

Fig. 6. 3DMM fitting examples with both DL- and PCA-based 3DMM for
optimal or high regularization values. It is appreciable how our DL-3DMM both
introduces less noise in the 3D models and retains its modeling ability even for
high regularization values (face images from the CK+ dataset).

smaller error. On the other hand, when the BU-3DFE is used to
learn the deformation components, the error decreases of about
2 mm. We explain this with the fact that adding more heteroge-
neous expression variations in the training permits the model to
have a larger spectrum of deformations that ultimately result in
more accurate reconstructions.

C. Facial Action Unit Detection and Emotion Recognition

Using the pipeline of Section VI, in the following we re-
port experimental results obtained by applying 3DMM to AU
detection and emotion recognition.

State of the art methods for AU detection and emotion recog-
nition [54], [60]–[62] have been evaluated and compared mainly
on the Extended Cohn-Kanade (CK+) [57] and the Facial Ex-
pression Recognition and Analysis (FERA) [63] datasets. The
CK+ dataset contains image sequences of posed and non-posed
spontaneous expressions of 123 subjects (593 sequences in to-

tal). Each sequence has an average duration of about 20 frames,
with the initial neutral expression varying up to a peak. The peak
frame is AU-labeled, while an emotion label is associated to the
entire sequence. The FERA dataset contains video sequences of
7 trained actors portraying 5 emotions. As in [54], [62], we used
the training subset, which includes 87 videos ranging between
40 and 110 frames in length. Each frame is AU-labeled, while
there is a single emotion label for the entire sequence. In both
the datasets, the head pose is frontal in most of the sequences.

In the experiments, face images are described by LBP fea-
tures [58], with a radius of 10px, following four different
configurations:

1) Dense grid, DeGr: First, the face image is cropped. Then,
eyes position is retrieved from landmark detection, and
used to align the image to a common reference. In this
phase, in-plane rotations are compensated. Finally, the
image is resized to 200× 200 pixels, and LBP descriptors
are computed over 20× 20 non overlapping patches;

2) Landmarks, LM: LBP descriptors are computed over
patches centered in correspondence to 49 landmarks de-
tected on the original image using the method in [48];

3) DL-(O) or PCA-(O): LBP descriptors are computed over
patches localized by a subset of the vertices of the 3DMM,
projected onto the original image;

4) DL-(F) or PCA-(F): LBP descriptors are computed over
patches localized by a subset of the vertices of the 3DMM,
projected onto the frontalized image.

The first two solutions do not use the 3DMM; the third and
fourth, instead, perform local image description exploiting the
localization provided by the 3DMM vertices. We experimentally
found that a uniform subsampling of the vertices with step of 7 is
the best balance between the face descriptor dimension and the
patches overlap ratio. In fact, it is known that high dimensional
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Fig. 7. Cross-dataset reconstruction errors obtained using FRGC for train and BU-3DFE for test (top) or vice versa (bottom). (a) 3D-2D fitting with frontal
camera. (b) 3D-2D fitting with side camera. (c) Direct 3D-3D fitting. Each plot reports the errors for both DL- and PCA-based 3DMM as a function of the
regularization parameter λ, and for different number of components. (a) 3D-2D fitting, front view. (b) 3D-2D fitting, side view. (c) 3D-3D fitting.

face descriptors and a large overlapping ratio between patches
improve the effectiveness of the face description [64]. For each
modality, we concatenate the LBP extracted from a face so as to
form a unique descriptor, and reduce the descriptor dimension-
ality by applying PCA with a number of PCs that retain at least
the 95% of variance.

AU detection: According to the experimental setup suggested
in [57], [63], both for the CK+ and FERA datasets a leave-one-
subject-out cross validation has been performed. For the CK+,
only the neutral (first frame) and peak frames of each video
sequence were used (the peak frame is the only one labeled).
On the contrary, the FERA dataset comes with AUs labeled for
each frame. However, not all the frames of a sequence have
been used in the training phase since AUs are characterized
mainly by an onset, a peak, and an offset phase. As suggested
in [63], for each sequence, we consider the set of consecutive
frames labeled with the peak label, and take its middle frame as
corresponding to the peak phase.

Since the effect of each AU is limited to a portion of the
face, accordingly to [63], AUs have been divided into upper
and lower AUs corresponding to the upper half and lower half
of the face, respectively. To train the SVMs, we used only the
descriptors computed on points in the lower or upper part of
the face, depending on which AU is considered. Each SVM is
also trained independently, without accounting for the semantic

relationships between different AUs (e.g., if the AU associated to
the eyebrows raising is active, the AU associated to the eyebrows
lowering cannot be active).

In Tables I and II, we report the AU detection results for the
CK+ and FERA datasets, respectively. Detection performance
is measured in terms of F1-score (i.e., the harmonic mean of
precision and recall) and Area Under the ROC Curve (AUC).
Three main facts emerge evidently: First, localizing the descrip-
tors with either DL-3DMM or PCA-3DMM, rather than using
the regular dense grid improves the results, since the alignment
is more significant; Secondly, the greater number of points pro-
vided by the projected mesh allows the computation of more
descriptors, which improves the performance; Lastly, the align-
ment and consistency of the image representation provided by
our frontalization improves the discriminating power resulting
in higher overall results. This behavior is more evident for the
FERA dataset, which is more challenging than the CK+. In-
deed, the continuous and spontaneous nature of the sequences
included in the FERA dataset induces strong nuisances in the
resulting feature descriptors. The alignment and consistency
obtained with our representation, however, proved to be effec-
tive in reducing the complexity to be learned by the classifier,
increasing the overall results on both CK+ and FERA.

For the comparison between using DL or PCA for 3DMM
shape fitting, on the CK+ results are very close and this is in
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TABLE I
AU DETECTION ON CK+

AU F 1-score AUC

DeGr LM PCA-(O) DL-(O) PCA-(F) DL-(F) DeGr LM PCA-(O) DL-(O) PCA-(F) DL-(F)

1 77.6 75.8 84.8 81.2 84.9 83.2 95.4 95.4 98.4 98.0 98.6 98.2
2 81.2 79.2 81.4 79.7 79.4 77.2 96.7 94.2 97.6 97.3 97.5 96.9
4 71.0 67.0 77.7 79.9 80.6 79.3 92.9 91.9 95.9 96.3 96.6 97.0
5 72.5 81.3 78.2 78.7 79.6 79.1 95.7 98.0 96.6 96.1 97.8 97.5
6 68.4 66.4 67.7 72.2 70.5 68.8 94.8 94.0 95.2 95.0 95.6 95.6
7 58.2 60.7 60.0 64.8 65.1 64.9 87.7 91.8 90.1 91.4 90.1 91.9
9 85.9 91.7 88.9 90.7 90.3 92.1 99.4 99.5 99.6 99.6 99.6 99.6
11 45.1 36.1 30.8 32.3 41.7 40.6 91.2 89.1 92.8 92.6 92.9 94.5
12 85.2 81.5 85.1 84.4 85.9 84.1 98.5 98.4 98.8 98.5 98.9 98.5
15 71.3 60.2 74.0 73.2 77.6 76.1 94.7 94.9 95.5 95.4 96.2 96.5
17 80.5 73.8 83.1 84.7 83.0 82.8 95.9 94.2 97.1 97.5 97.9 97.9
20 74.7 76.0 81.5 81.7 85.4 83.6 97.7 96.5 98.4 98.0 98.6 98.5
23 52.8 69.9 58.5 64.1 69.3 65.1 91.2 95.0 94.7 95.4 94.7 94.8
24 58.3 58.8 62.7 64.5 59.7 62.8 88.6 92.8 91.9 93.0 93.0 93.7
25 88.3 92.8 92.3 91.1 92.6 91.1 97.9 98.8 99.0 98.8 99.0 98.9
26 41.5 37.6 33.7 35.5 38.1 30.8 91.6 89.0 89.6 88.8 89.7 90.2
27 89.1 90.9 89.5 89.4 90.7 91.9 99.6 99.8 99.8 99.8 99.8 99.8
Avg. 75.3 75.1 78.2 78.9 80.0 78.8 95.3 95.5 96.7 96.7 97.0 97.1

Comparison of different feature extraction modalities. Results are reported in terms of F 1-score and AU C . The average is weighted with respect to the
number of positive instances, as indicated in [57].

TABLE II
AU DETECTION ON FERA

AU F 1-score AUC

DeGr LM PCA-(O) DL-(O) PCA-(F) DL-(F) DeGr LM PCA-(O) DL-(O) PCA-(F) DL-(F)

1 47.7 55.9 64.8 63.8 65.3 70.2 77.7 78.8 83.0 81.9 85.1 83.9
2 56.2 54.7 62.0 62.6 61.3 65.6 63.5 71.0 80.7 79.1 79.2 85.8
4 17.4 32.2 25.8 20.0 26.1 29.5 48.2 53.1 46.5 51.8 52.1 54.7
6 55.5 52.6 60.8 57.0 66.7 66.3 73.0 77.3 76.3 72.9 81.0 80.0
7 48.3 55.8 45.5 47.7 52.9 52.0 71.1 66.8 57.5 57.0 62.1 64.9
12 39.2 55.1 55.2 55.9 58.0 59.3 66.5 62.9 64.8 66.5 63.9 64.9
15 68.5 65.0 77.2 77.1 79.7 80.4 73.8 81.5 84.6 82.7 85.8 87.5
17 26.4 25.8 36.9 42.6 31.1 33.1 60.5 66.9 65.3 69.9 58.8 61.7
Avg. 44.9 49.6 53.5 53.4 55.1 57.1 66.8 69.8 69.8 70.2 71.0 72.9

Comparison of different feature extraction. Results are reported in terms of F 1-score and AU C .

some way expected. In this dataset, for each sequence, we have
that only the peak frame is AU labeled. Furthermore, the ex-
pressions shown are also rather exaggerated, as appreciable in
the examples of Fig. 6. This makes the separation between the
activation of different AUs somewhat easy and localizing the
descriptors with sufficient precision becomes not crucial. This
is proved by the fact that results on this dataset tend generally to
saturate towards the maximum, with a rather small gap between
baseline methods (DeGr and LM) and the 3DMM. The FERA
dataset is instead much more challenging. The continuous and
spontaneous nature of the sequences makes the gap between
baseline methods (DeGr and LM) and the 3DMM increase sig-
nificantly, supporting the usefulness of the latter. Finally, results
show that DL performs better than PCA-3DMM on this dataset;
this is mainly motivated by the fact that the face variations are
more subtle and smooth and thus a better modeling improves
the classification performance.

In Tables III and IV we provide a comparison with the state
of the art in terms of average F1-score and AUC values. For

TABLE III
AU DETECTION ON CK+

Method F 1-score AUC

IF [54] 76.6 91.3
Wang et al. [65] 82.4 96.7
CjCRF [61] 80.7 94.9
PCA-(F) 80.0 97.0
DL-(F) 78.8 97.1

Comparison with the state of the art. Results
are reported in terms of F 1-Score and AU C .

the sake of completeness, results for the CjCRF method [61]
on FERA are also reported, though they have been obtained by
testing only on 260 frames out of the about 5000 total frames.
Our method obtains comparable performance with respect to
the state of the art on both datasets. Lower performance on the
FERA dataset is likely due to the fact that our solution uses off-
the-shelf descriptors and classifiers, and does not compensate



FERRARI et al.: DICTIONARY LEARNING-BASED 3D MORPHABLE SHAPE MODEL 2677

TABLE IV
AU DETECTION ON FERA

Method F 1-score AUC

Wang et al. [65] 52.3 -
Data-Free [66] 52.6 -
IF [54] 59.0 74.5
DICA [62] 59.1 -
CjCRF [61]* 59.6 -
PCA-(F) 55.1 71.0
DL-(F) 57.1 72.9

Comparison with the state of the art. Results
are reported in terms of F 1-Score and AU C .

TABLE V
EMOTION RECOGNITION ON CK+

Emotion DeGr LM PCA-(O) DL-(O) PCA-(F) DL-(F)

Anger 97.6 99.0 98.6 98.8 98.9 99.4
Contempt 99.8 99.6 99.9 99.7 99.8 99.9
Disgust 99.2 97.3 97.3 93.9 99.6 99.7
Fear 99.9 99.9 99.9 99.9 99.9 99.9
Happiness 98.2 99.9 99.7 99.2 98.6 99.0
Sadness 98.8 98.9 99.2 99.0 98.8 98.8
Surprise 98.1 99.6 99.4 99.3 97.6 99.4
Avg. 98.8 99.1 99.2 98.6 99.1 99.5

Comparison of different feature extraction modalities. Results are reported in terms of
AU C .

TABLE VI
EMOTION RECOGNITION ON FERA

Emotion DeGr LM PCA-(O) DL-(O) PCA-(F) DL-(F)

Anger 56.4 66.7 64.4 63.0 67.7 70.5
Fear 85.8 73.7 77.4 73.0 81.9 88.4
Joy 93.0 91.4 90.9 91.9 92.1 91.5
Relief 80.2 76.4 77.4 75.6 79.5 79.0
Sadness 81.1 78.0 81.0 80.7 86.2 81.5
Avg. 79.3 77.2 78.2 76.8 81.5 82.2

Comparison with the state of the art. Results are reported in terms of AU C .

directly for the influence of the identity in the training as is
explicitly done in [54], [62]. We believe that in this sense still
there is enough room for improvements.

Emotion recognition: Data used for emotion recognition have
some particular characteristics: as in the AU case, in the CK+
dataset each sequence has only two labels, one for the neutral
and one for the peak frame; in the FERA dataset instead, each
sequence is marked with a single label, representing the emotion
of the entire sequence. For the CK+ dataset, emotion recognition
is performed by considering the peak frames of each sequence
in both the train and test sets; for FERA, we subsample each
sequence and consider only 1 frame every 10.

In Tables V and VI, we report emotion recognition results
obtained using the four feature extraction methods presented
in Section VII-C. Consistent with the AU detection case, the
results on CK+ are saturated with a small gap between the solu-
tions that include the 3DMM and the others. However, the ones
that exploit 3DMM and frontalization are the best performing.
Results on FERA, instead, show that there is actually a tan-

TABLE VII
EMOTION RECOGNITION ON CK+

Emotion IF [54] PCA-(F) DL-(F)

Anger 96.4 98.9 99.4
Contempt 96.9 99.8 99.9
Disgust 96.0 99.6 99.7
Fear 95.5 99.9 99.9
Happiness 98.9 98.6 99.0
Sadness 93.3 98.8 98.8
Surprise 97.6 97.6 99.4
Avg. 96.4 99.1 99.5

Comparison with the state of the art. Results are
reported in terms of AU C .

TABLE VIII
EMOTION RECOGNITION ON FERA

Emotion IF [54] PCA-(F) DL-(F)

Anger 78.6 67.7 70.5
Fear 85.5 81.9 88.4
Joy 95.0 92.1 91.5
Relief 88.4 79.5 79.0
Sadness 84.8 86.2 81.5
Avg. 86.5 81.5 82.2

Comparison with the state of the art. Results are
reported in terms of AU C .

gible advantage in using the 3DMM for emotion recognition.
From Table VI we can see that DL-(F) and PCA-(F) are, respec-
tively, the best and the second best performing solutions, but
DeGr performs better than DL-(O) and PCA-(O). This behavior
can be explained considering that emotion recognition is based
on the observation of the whole face appearance. In this case,
localizing the descriptors precisely seems to become less im-
portant than having a consistent and pixel-wise aligned image
representation.

In Tables VII and VIII, we report our results in terms of
AUC in comparison with state of the art solutions, respectively,
for the CK+ and FERA datasets. We observe that our solution
outperforms the state of the art on the CK+ dataset, but scores
lower performance than [54] on FERA. As for AU detection,
this deficit of performance can be safely ascribed to the fact
that differently from [54], we do not compensate the identity
influence in the training.

VIII. DISCUSSION AND CONCLUSION

In this work, we proposed a dictionary learning based method
for constructing a 3DMM, and we have shown its effectiveness
on AU detection and facial emotion recognition. Compared to
traditional methods for 3DMM construction based on PCA, our
solution has the advantage of permitting more localized varia-
tions of the 3DMM that can better adapt to expressive faces. This
capability to account for fine face deformations also depends on
the inclusion in the training data of faces with large expression
variability. This required us to develop a new method to estab-
lish a dense, point-to-point, correspondence between training
faces. We also proposed an approach to effectively deforming
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the 3DMM, which includes pose estimation, regularized ridge-
regression fitting, and frontalized image rendering. The compar-
ative evaluation of the DL- with the PCA-based 3DMM shows a
clear advantage of the DL based solution in terms of 3D recon-
struction error. Also, we showed that the proposed framework
opens the way to the application of 3DMM to facial expression
analysis. In particular, we obtained effective results for AU de-
tection and emotion recognition, even using off-the-shelf image
face descriptors and machine learning methods.

A potential drawback of a 3DMM that includes expressive
scans is the difficulty in discriminating between components
modeling identity traits and components modeling facial move-
ments. Further investigation would be useful to determine: 1)
if more accurate vertex correspondences can be found by using
different landmark detectors that induce more uniform partition-
ing of faces (which would also improve visual appearance of our
models); 2) if an extended solution can be found that balances
the tradeoff between the efficiency of fitting against greater pre-
cision; and 3) if deviations beyond shape can be accounted for
in an extended 3DMM (for example by applying DL also to the
texture component of faces).
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