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Abstract In the last decade, demographic profiling from

facial imagery has grown in its importance in the com-

puter vision field. For demographic profiling, we usually

mean gender, ethnicity, and age identification from face

images. In this paper, we propose an efficient and effec-

tive profiling framework and we assess the quality of

the proposed approach comparing the results obtained

by our system with those achieved by other recently

published methods on large datasets of facial images

with different age, gender, and ethnicity. These results

show how a carefully engineered pipeline of efficient im-

age analysis and pattern recognition techniques leads to

state-of-the-art results at 20FPS using a single thread

on a 1.6GHZ i5-2467M processor.

Keywords Demographic Face Profiling · Age Estima-

tion · Gender Classification · Ethnicity Classification

1 Introduction

The analysis of face imagery offers the possibility to

identify many properties at different levels of speci-

ficity. Some of the most interesting are: gender, ethnic-

ity, and age. In this work, we will consider the union of

these three properties as demographic profiling. More

formally, the demographic face profiling task can be

defined as, given one or more subsequent samples of

face images, to obtain a single prediction on a set of

attributes (age, gender and ethnicity).

In the last decade, demographic profiling from fa-

cial imagery has grown its importance in the computer
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vision field. The process of gender, ethnicity, and age

determination (disjoint, partially joint, or joint) finds

several application areas. A person’s age could be ver-

ified to implement age-based access control and verifi-

cation, prior to physical access to a place or product

being sold or virtual access to a website is granted.

In the task of targeted advertising, as an example,

a digital sign can display commercials based on de-

mographics of audience walking past. Soft biometrics

makes use of ethnicity, gender, and age-based to in-

dex face images into huge-scale biometric databases for

faster retrieval.

Furthermore, the analysis of crowded environments

to identify the age, the gender, and the ethnicity dis-

tributions of the people is becoming strategic for the

retail chains. All the aforementioned applications have

real-time requirements, since attribute estimation must

be performed as fast as possible, and in certain cases

on devices with limited resources. The severity of this

requirement increases, especially if there is a limited

amount of time to make a decision. Taking as an exam-

ple the targeted advertising case, the temporal window

coincides with the time a person takes to walk past the

digital sign.

Face imagery exhibits many variations which may

affect the ability of a computer vision system to infer

such attributes. We can categorize these variations as

being caused by the human or the image capture pro-

cess. Factors related to the image capture process are

the head pose, the illumination, and the image quality

(blurring, noise, low resolution). Human factors are due

to the characteristics of a person, such as facial expres-

sions (surprise, neutral, happy/smiling, etc.), and the

accessories being worn (eye glasses, hat, etc.).

In real-world scenarios, a fixed camera will acquire

several shots of a person’s face from a video stream.
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This setting introduces an interesting potential for im-

proving attribute estimation accuracy, but also another

set of problems. Indeed, the final estimate can be com-

puted over a sequence of predictions. Although the avail-

ability of multiple face shots for each target introduces

a profile consistency requirement.

In case single person profiling is sought, the algo-

rithm must provide a one-to-one profile-person corre-

spondence, in order to output useful information. Also,

in the case where demographics of people are collected,

this correspondence is very relevant. Indeed, attribute

statistics may be influenced by the time a person per-

sist into the camera field of view, if predictions are not

grouped in a single profile.

First of all, detected faces must be associated across

different frames, maintaining identity information so to

enforce profile consistency. Moreover, to also obtain an

advantage, an image quality metric must be devised to

weight single-frame predictions. Indeed many errors are

often due to extreme face poses and occlusions.

1.1 Contribution

We propose a thoroughly and carefully engineered com-

puter vision and image processing pipeline for demo-

graphic profiling, which is suitable for real-time em-

bedded environments. We extend our previous contri-

bution [53], in many ways. First, we approach the full

demographic profiling problem, by predicting age, eth-

nicity and gender. Ethnicity and gender predictors are

often learned on imbalanced datasets. We therefore ap-

ply Truncated Isotropic Principal Component Analy-
sis Classifier (TIPCAC [50]) which allows us not to per-

form re-sampling on data. Second, we present a novel

method to incorporate semantic predictions from video

sequences. Finally, we report results on all three tasks

on two large scale datasets.

2 Related Work

Gender estimation is usually performed as a binary

classification problem [43]. Linear and non-linear classi-

fiers are employed using different kind of features such

as Local Binary Pattern (LBP), Gabor Wavelet, and

Scale Invariant Feature Transform (SIFT). LBP are of-

ten used as local features to predict Gender. In [5],

the authors exploit LBP with Support Vector Machines

(SVM) for multi-view gender classification. Eidinger et

al. [15] propose to extract four LBP patches and to

weight the reliability of each patch using a probabilistic

model to assess landmark estimation accuracy. A more

advanced method for gender estimation has been pro-

posed by Hassner et al. [29], which employes LBP and

a novel frontalization approach. In [59], the authors ex-

tract SIFT descriptors combined with global shape con-

texts of the face and they perform the final classification

using Adaboost. Gabor filters have been used to obtain

the simple cell units of the Biologically Inspired Fea-

tures (BIF) proposed by Riesenhuber and Poggio [48]

for object recognition and later extended by Meyers and

Wolf [41] for face processing and by Guo et al. [20] for

gender estimation. In [10], Cirne and Pedrini propose a

method for gender recognition based on a novel geomet-

ric descriptor built on a pre-defined face shape model.

Precisely, this technique extracts 68 fiducial points of

the face shape and it computes the pairwise Euclidean

distances to obtain a descriptor of 2278 values. This

approach, compared with other well-known geometric

methodologies, achieves promising results.

Compared to gender identification, ethnicity clas-

sification has received less attention by the computer

vision community. Ethnicity estimation is usually per-

formed as a multi-class classification problem. Since an

ethnic group or ethnicity is a category of people who

identify with each other based on common ancestral,

social, cultural or national experience1 many possible

ethnicity classes can be identified. To simplify the prob-

lem, it is recommended that the maximum amount is

less than 10. One of the most important problem in

ethnicity detection is the unbalanced characterization

of the standard datasets. This problem can affect the

quality of the final performance, since many classifica-

tion techniques are not able to deal with this specific

task. Another important problem is related to the fact

that many ethnic groups have strong visual similarity

between them, thus increasing the overlap between the

features that describe the classes and enhancing the

complexity of the classification.

Guo et al. conducted a large scale study on the

MORPH-II dataset analyzing the influence of gender

and age on the prediction of ethnicity [21]. They per-

formed an experiment using a balanced subset with only

White and Black subjects and also a more comprehen-

sive one with the whole dataset. They showed that to

develop an effective ethnicity estimation method is a

challenging task given the scarcity of annotated data

and the extreme bias of the existing ones.

Age estimation is the most investigated of the con-

sidered three tasks. It is usually performed as a multi-

class classification or as a regression problem. In the

first case, the age labels are quantized in a set of age

groups, e.g. {[16, 25], [26, 35] . . . [56, 65]}. Instead, in the

1 “ethnicity: definition of ethnicity”. Oxford Dictionaries.
Oxford University Press. Retrieved 28 December 2013.
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regression problem, the age is treated as a real num-

ber and a function is computed to minimize the age

estimation error. This approach has several advantages

over the multi-class classification task. First, the overall

data can be used to fit a single model. Second, the loss

function can be formulated more naturally penalizing

models proportionally to the error they commit.

Some interesting related works in age estimation ex-

ploit BIF. BIF are firstly proposed for age estimation

by Guo et al. [24] combined with a linear SVM. In their

work the authors use a pyramid of Gabor filters with

small sizes and they suggest to determine the number

of orientations and bands with an ad-hoc approach. In

[27] the author present a method that identifies different

facial components and extracts BIF features describing

these parts. Each component is classified into one of

four disjoint age groups using a decision tree and a fi-

nal regressor is trained to compute the age.

Chang et al. in [9] proposed an ordinal hyperplane

ranker on Active Appearance Models (AAM, [11]) that

exploits the distribution of the training labels. The key

idea is try to obtain multiple decisions on who is the

older of two people to finally determine the person’s

actual age.

In [30], Hou et al. present a novel loss function that

is able to better capture inter-class relationships clearly

present in age estimation as also in other real-life tasks.

In this work, they propose to train deep neural net-

works with the exact squared Earth Movers Distance

(also called Wasserstein distance). This loss uses the

predicted probabilities of all classes and penalizes the

miss-predictions according to a ground distance matrix

that quantifies the dissimilarities between classes.

Geng et al. propose two methods that exploit the

label distributions [19] of the face imagery. Instead of

considering each facial image as an instance with a sin-

gle age value, the authors consider each image as asso-

ciated with a label distribution. The label distribution

covers a certain number of class labels. In this way, this

approach guarantees that one face image can contribute

also to the learning phase of its adjacent ages.

Fu and Huang [18] proposed an age estimation frame-

work that is composed by two main modules, a dis-

criminative manifold learning approach followed by a

multiple linear regression. Precisely, the proposed man-

ifold learning algorithm (Conformal Embedding Anal-

ysis, CEA) is a supervised subspace learning method,

which incorporates the labeling information of both neigh-

borhood and class to each sub-manifold. Moreover, the

age estimation is performed as a multiple linear re-

gression problem in the manifold space. The authors

have experimentally shown that the better results are

achieved using a quadratic model function.

Ni et al. [46] present an automatic image and video

mining framework with the aim of building a cross-

ethnicity human age estimator based on facial informa-

tion. To achieve this goal the authors propose a robust

multi-instance regressor learning algorithm able to deal

with images with multiple face instances and possibly

noisy images and labels. To train their approach they

collect a large size human aging image dataset from

Flickr and Google Image.

Guo et al. propose to employ the kernel partial least

squares regression (KPLS) for age estimation [22]. The

strength of this approach is that KPLS simultaneously

performs the feature dimensionality reduction and learns

the aging function improving the final results in terms

of accuracy and reducing the time cost.

A comprehensive list of recent age estimation ap-

proaches can be found in [27].

There is very little work on face attribute estima-

tion from video. DeMirkus et al. [12] proposed a hier-

archical Bayesian method, but only addresses gender

estimation on video sequences. Their approach exploits

a multi-part face representation and a temporal mod-

eling to deal with the challenges generated by partial

occlusions, expression and pose variations, present in

unconstrained video sequences.

There are very few papers focusing on complete de-

mographic profiling. In some works ethnicity and gen-

der estimation are treated as a pre-processing to im-

prove age estimation, learning more specialized predic-

tors. As already highlighted in this section, in [20], [21]

Guo et al. investigate the variations of age estimation

performance under variations across race and gender.

They observe that crossing race and gender can re-

sult in significant error increases for age estimation.

To leverage the aging pattern of different gender and

ethnicity, they employ the feature presented in their

previous work [24] and they propose a 3-step method

learning separate classifiers for different combinations

of age and genders and applying the age estimator only

after predicting the gender and ethnicity of the subject.

In [36], Lapuschkin et al. compare four popular neural

network architectures (CaffeNet, GoogleNet, VGG-16,

and AdienceNet [37]), study the effect of pretraining,

and evaluate the robustness of different alignment pre-

processing, on gender and age estimation. Moreover, by

employing Layer-wise Relevance Propagation the au-

thors investigate which facial features are actually used

for age and gender prediction. In [61], Zhang et al. in-

troduce a very deep neural network architecture for age

group and gender estimation leveraging Residual Net-

works of Residual Networks (RoR, [62]). To reduce the

overfitting problems and to increase the performance,

the RoR model is pre-trained on ImageNet, fune-tuned
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Fig. 1: Our image representation pipeline. Face detec-

tion and landmark estimation (a) followed by dense

multi-scale SIFT extraction on the aligned face (b) and

Fisher Vector computation (c).

on the IMDB-WIKI-101 dataset and (finally) on Adi-

ence dataset.

More recently, a deep convolutional neural network

has been designed to handle the age and gender profil-

ing problem by Levi et al. [37]. In [13], Duan et al. ex-

tends their previous work [14] to propose a methodology

to ensemble Convolutional Neural Networks (CNNs)

and extreme learning machine (ELM, [31]) to perform

age estimation. Precisely, this approach combines, in a

hierarchical fashion, three CNNs (called Age-Net, Race-

Net, and Gender-Net) with ELM classifier and ELM re-

gressor. The CNNs are used to extract features, while

the final ELM regressor predicts age.

To the best of our knowledge, our work is the only

one addressing the whole demographic profiling spec-

trum, also dealing with video sequences. Moreover, we

attain real-time performance without specialized hard-

ware such as GPUs or ASICs. In this paper, we de-

scribe our demographic profiling system designed with

efficiency in mind. Different from previous works we use

a high-dimensional modern feature [57] (see Fig. 1) that

proves to be accurate yet efficient for age, gender and

ethnicity identification.

This paper is organized as follows: in Section 3 our

face representation is summarized; in Section 4 the em-

ployed face detection approach, the tracking method to

maintain associated the detected face, and the align-

ment technique are described; in 5 the approaches used

for gender, ethnicity, and age estimation are presented;

in Section 6 the achieved results on large datasets are

shown; in Section 7 our conclusions are highlighted.

3 Face Representation

We design our face representation inspired by recent re-

sults in image classification [54] and face recognition [56].

We build on our previous contribution on age estima-

tion [53]. We assume our face patches are aligned to

a common, fixed size, reference square. This assump-

tion is easily satisfied by our face extraction pipeline

described in Sec. 4.

As a local feature we use densely sampled SIFT

descriptors [39]. We compute descriptors at multiple

fixed scales, discarding orientation estimation. The use

of multiple scales helps in representing facial features

that may appear at different sizes, even on fixed size

face patches. Since we are computing the representa-

tion for aligned faces, we can exploit not just the local

image statistics but also local feature coordinates. SIFT

descriptor are pre-processed using PCA and preserving

64 components and then augmented with their x,y co-

ordinates, rescaled in [−1, 1].

To obtain a global face descriptor, we apply Fisher

Vector encoding to the aforementioned compressed and

augmented SIFT features. Fisher Vectors require a Gaus-

sian Mixture Model dictionary to be computed. We

learn this dictionary, and the PCA transformation, on

a set of 200K randomly drawn SIFTs from the training

set.

Given a Gaussian Mixture Model dictionary with

parameters µn,σn,ωn and given soft-assignments γ
(n)
m

for each of the M augmented SIFT feature xm ∈X, the

Fisher Vector is computed concatenating the following

gradients:

Gµn(X) =
1
√
ωn

M∑
m=1

γ(n)
m

(
xm − µn
σ2
n

)
, (1)

Gσn(X) =
1√
2ωn

M∑
m=1

γ(n)
m

(
(xm − µn)2

σ2
n

− 1

)
, (2)

where

γ(n)
m =

ωnpn(xm)∑D
j=1 ωjpj(xm)

, (3)

and pn is the nth Gaussian of the learned mixture and

X is the feature set of a face image. The size of our

descriptor is F×D×2, where F and D are local feature

and dictionary size. As an example, if we consider D =

128, since F = 66 our face signature size is 16896.

4 Face Detection, Tracking and Alignment

Our method performs profiling over a set of aligned

face patches. Alignment is required to compute the face

representation described in Sec. 3, where feature coordi-

nates, in a common reference, are exploited to improve

appearance descriptors. To gather a set of face patches,

we design an efficient processing pipeline.

In this section, we describe our image processing

pipeline, that precedes the face profiling step. As a first
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(a) Landmarks estimated
without equalization.

(b) Landmarks estimated
with equalization.

Fig. 2: Face landmark detection without (a) and with

(b) equalization on a challenging image. Nose land-

marks, marked in yellow, are wrongly localized without

equalization.

step, we apply a low-level image pre-processing to im-

prove the successive face detection and alignment steps.

For every detected face we compute a transformation

obtaining a consistent geometric reference for image

features. Moreover, a multi-target tracker is employed

to maintain association between different frames when

dealing with video sequences, instead of single facial

imagery.

4.1 Image Pre-Processing

Face misses are a critical issue, since they reduce the

effectiveness of our method. Face detection may fail in

case of highly saturated images, that may happen, for

example, when a camera is facing the entrance of a

building.

While often face normalization has the goal to lo-

cally normalize a face in order to obtain invariance to

illumination changes, we are mainly interested in com-

pensating sensor saturation in presence of strong light-

ing. Our goal is to detect as many faces as possible with-

out compromising real-time performance. Considering

our task and the real-time constraint we evaluated rank

and wavelet based normalization [55]. In a set of prelim-

inary experiments we found out that a basic histogram

equalization, is enough to improve face detection recall

and landmark localization.

In Fig. 2, it can be seen that detecting landmarks

in a highly saturate image, without any pre-processing,

results in poor accuracy. It can be noted that in Fig. 2a,

nose landmarks are wrongly localized, while in Fig. 2b

they have a more consistent location.

4.2 Face detection

Face detection is the most expensive step of our pipeline,

it requires an exhaustive, multi-scale, search over exam-

ined frames. To avoid trading accuracy for efficiency,

we apply a very simple yet effective linear classifier.

The model is trained with structural SVM on ∼3000

faces. Five face poses are considered in training: frontal,

profile-left, profile-right, frontal left-tilted and frontal

right-tilted. The structural SVM formulation of [35] is

efficient to train and obtains state-of-the art results

even with linear classifiers.

4.3 Face alignment

We apply a face alignment step to gain invariance to

face pose. This step is extremely important, since our

feature is computed from the joint statistic of intensity

and location of pixels. Faces are aligned and rescaled to

a common reference frame. Affinity based alignment is

used, which performs a non-uniform scaling along the

two dimensions. We estimate the rotation, translation

and scaling matrix mapping the eye-mouth triangle to

a canonical triangle: (0.2 · S, 0.2 · S), (0.8 · S, 0.2 · S),

(0.5 · S, 0.5 · S) where S is the square size. As high-

lighted by Fig. 3(b) all important facial features can be

recovered, which is not always possible using a simpler

rigid rotation.

A cascade of regression trees is used to estimate the

face shape. Trees are trained on pixel intensities and, for

each detected face, extract 68 landmarks[34]. Eyes and

mouth centers are robustly estimated using the median

of 20 and 6 landmarks for eyes and mouth respectively.

Faces are then remapped in a 100× 100 pixel rectangle

using the aforementioned affine tranform.

Using our alignment pipeline. we can effectively deal

with (±15◦) yaw variations, in case of higher pose vari-

ations, full 3D approach ought to be used [29]. Unfortu-

nately 3D frontalization is computationally expensive.

4.4 Face Tracking

We use a greedy association multi-target tracker. At

each frame a set of face detections Dt is generated ap-

plying the multi-pose face detector described in Sec. 4.2.

Considering the, possibly empty, set of tracks Tt−1 present

at the previous frame, we compute an association ma-

trix M such that Mij =
di∩tj
di∪tj also known as the in-

tersection over union measure. To track a person face,

we apply the function associate(·) described in Algo-

rithm 1.
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(a) Rotation alignment. (b) Affine transform alignment.

Fig. 3: Alignment results with rotation compensation and with affine alignment. In the face marked in red the

mouth is missing in the rotated image whilst using the affine compensation all important facial features are visible.

FUNCTION associate (Tt−1,Dt)

Data: Tt−1 : {t1 . . . tn},Dt : {d1 . . . dm},Mij =
di∩tj
di∪tj

Result: Tt
while maxij Mij > τ do

if not Aij ∧Mij > τ then

〈̂i, ĵ〉 ← arg maxij Mij ;
tî ← dĵ Aî: ← TRUE;

A:ĵ ← TRUE;

end

end
/* Unassigned detections initialize new tracks. */

Tt ← Tt−1 ∪ {d|Aij = TRUE};
/* Remove tracks not assigned for ω frames. */

Tt ← Tt−1 \ {ti|li > ω}

Algorithm 1: Data association algorithm. We asso-

ciate tracks and unassociated detection if IoU > τ

and remove a track if it is “dead” for ω frames. Ma-

trix A keeps track of associations and vector l counts

the amount of frames a track i is not associated with

any detection.

5 Profiling

In this section we present the approaches employed to

identify the gender, the ethnicity, and the age of the an-

alyzed subjects. Since these problems are respectively

a binary classification problem, a multi-class classifica-

tion problem, and a regression/multi-class classification

task, we have exploited different methodologies to im-

prove the quality of the final results. Precisely, in Sec-

tion 5.1 the approach for the gender classification is

described; in Section 5.2 the approach to estimate the

ethnicity is proposed; in 5.3 the methods for the age

estimation are formalized. Finally, in 5.4 we describe

how to apply our algorithm in real world scenarios ex-

ploiting video sequences.

5.1 Gender Estimation

In this section we describe the employed binary classifi-

cation method for gender identification. This approach

is particularly suitable when it is employed on binary

classification problems with high dimensional data and

when the distribution, that underlines the points, can

be well approximated by a Mixture of Gaussians (as in

our case).

The base implementation of T-IPCAC, called Isotropic

Principal Component Analysis Classifier (IPCAC), has

been presented in [51]. Given a set of N clustered points

sampled from an isotropic Mixture of Gaussians, the

Fisher subspace (Fs) corresponds to the span of the

class means; as a consequence, when a binary classifica-

tion problem is considered, Fs is spanned by unit vector

f = µA−µB

||µA−µB || , where A and B are the two classes, and

µA/B the class means.

IPCAC exploits this result by whitening2 the training

set PTrain = {p1 . . .pN}, computing f , and classifying

2 We call “white” a dataset of points sampled from a prob-
ability distribution with µ = 0, and Σ = I where I is the
identity matrix.
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a new point p as follows:

θ((W T
Df) · p− γ) = θ(w · p− γ);

γ = µ̄A + σA(µ̄B−µ̄A)
σA+σB

(4)

where θ(x) = A if x ≥ 0, θ(x) = B if x < 0, the matrix

WD represents the whitening transformation estimated

on the N training points, µ̄A = w · (µA − µ), µ̄B = w ·
(µB − µ), µ is the sample mean, and σA and σB are the

standard deviations of the whitened points projected on

w.

Unfortunately our classification task is character-

ized by a training-set cardinality almost equal to the

(high) space dimensionality. Under this setting the afore-

mentioned technique often fails obtaining low quality

results. To overcome this limitation, T-IPCAC [50] [52]

improves IPCAC by replacing the first step of data whiten-

ing by a ‘partial whitening’ process. Precisely, if the

points to be classified belong to a D dimensional space,

this method whitens the data in the linear subspace

πd = Span 〈v1, · · · ,vd〉, spanned by the first d � D

principal components, while maintaining unaltered the

information related to the orthogonal subspace (πd)
⊥ =

Span 〈vd+1, · · · ,vD〉.
Precisely, the linear transformationWD is estimated

as follows. The Truncated Singular Value Decomposi-

tion [28] is employed to estimate the first d << D prin-

cipal components3, obtaining the low-rank factorization

P ' UdQdV
T
d (where P is the matrix representing the

training set PTrain since it contains the training vec-

tors). The d largest singular values on the diagonal of

Qd, and the associated left singular vectors, are em-

ployed to project on the subspace SPd, spanned by

the columns of Ud, and to perform the whitening on

the points contained in P :

P̄Wd
= qdQ

−1
d P⊥SPd

= qdQ
−1
d U

T
d P = WdP (5)

where qd is the smallest singular value of the points pro-

jected in SPd. To obtain points whose covariance ma-

trix best resembles a multiple of the identity, the value

of the d largest singular values is set to qd instead of 1,

thus avoiding the gap between the d-th and the (d+1)-

th singular value. The obtained matrix Wd projects

and whitens the points in the linear subspace SPd;
however, dimensionality reduction during the whiten-

ing estimation might delete discriminative information,

decreasing the classification performance. To avoid this

information loss, this approach adds to the partially

whitened data the residuals R of the points in P with

respect to their projections on SPd:
R = P −UdP⊥SPd

= P −UdUT
d P (6)

P̄WD
=
(
qdUdQ

−1
d U

T
d + I −UdUT

d

)
P = WDP (7)

3 d is a parameter to be set. Usually a good value is d '
min(log22N,D)

where WD ∈ <D×D represents the linear transforma-

tion that whitens the data along the first d principal

components, while keeping unaltered the information

along the remaining ones.

Fs is estimated by exploiting the whitened class

means, µA and µB , obtained by the class means es-

timated in the original space µ̂A and µ̂B as follows:

µA = qdUdQ
−1
d U

T
d µ̂A + µ̂A −UdUT

d µ̂A (8)

The same calculation is done for µB . Using these quan-

tities we estimate f = µA−µB

‖µA−µB‖
. Then, we process an

unknown point p by transforming it withWD, and pro-

jecting it on f ; both these steps are performed by the

inner product w · p, where:

w = W T
Df = qdU

T
d Q

−1
d Udf + f −UT

d Udf (9)

Finally, given γ as in Equation (4), p is assigned to class

A if w · p ≥ γ, to class B otherwise. It is important to

notice that this thresholding approach is robust to un-

balanced classes as noticed in [52]. This is particularly

suitable for ethnicity classification (see next Section).

5.2 Ethnicity Estimation

To estimate ethnicity we have to deal with an unbal-

anced multi-class classification problem. For this rea-

son we have combined binary classifiers to obtain a

multi-class classification approach. Precisely, we have

employed a Decision Direct Acyclic Graph (DDAG, [47])

to combine TIPCAC classifiers. It is important to notice

that the combination of binary classifiers usually guar-

antees better results with respect to native multi-class

classification approaches. Furthermore, we have chosen

to employ DDAG+TIPCAC since it is fast to evaluate and

since TIPCAC maintains high accuracy levels also when

dealing with high unbalanced classes as shown in [52].

A Rooted Direct Acyclic Graph (DAG) is a graph

whose edges have an orientation, no cycles, and only

one root node. A Rooted Binary DAG has nodes which

have either 0 or 2 arcs leaving them. A DDAG is a method

that combines the results of one-against-one classifiers

to produce a multiclass classification. To this aim, con-

sidering a N -class problem, the DDAG is implemented

using a rooted binary DAG with K = N(N − 1)/2 inter-

nal nodes. Each node represents a classification model

trained on two of the K classes, and it produces a

boolean output value ({0, 1}). The nodes are arranged

in a binary tree with the single root node at the top,

two nodes in the second layer and so on until the final

layer of leaves. Considering each classifiers as a boolean

function, to perform a classification the DDAG proceeds

as follows: it starts at the root node and it evaluates
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the boolean function; the node is then exited via the

left edge, if the binary function is zero, or the right

edge, if the binary function is one; the next nodes bi-

nary function is then evaluated; the membership class

is the final leaf node reached through this process.

5.3 Age Estimation

Regression is the natural approach to solve age estima-

tion, indeed most of the existing state-of-the art meth-

ods employ it at some stage. Regression, when enough

data is available, allows to learn more general models,

also for labels that are not given at training time. More-

over predicting age by regression avoids errors due to

quantization of the age variable.

Considering the high dimensionality of our feature,

we can obtain good performance with a regularized lin-

ear regressor. Linear regressors have several advantages,

especially from an applicative point of view. First, mem-

ory foot print is reduced, requiring to memorize a single

weight vector; second, avoiding kernels or deep learning

based approach, the method is extremely efficient, re-

quiring only the computation of a dot product among

a face feature and the learned regressor.

We estimate a weight vector w and a bias b in order

to produce an age estimate given an image I and a

feature function φ(·):

age(φ(I)) = 〈w, φ(I)〉+ b (10)

We efficiently learn weights applying gradient based

learning to a regularized least square problem:

1

2
λ||w||2 +

1

n

N∑
i=1

(〈w, φ(I)〉+ b− yi)2
(11)

For large datasets stocastic gradient descent is accurate

and very efficient [4]. We set λ = 1/(C ·N)), where N

are the training samples, and tune the parameter C by

five fold cross-validation of MAE on the training set.

It is important to underline that in a specific exper-

imental test on age estimation (see Section 6.4 para-

graph a) we have employed the same methodology de-

scribed in Section 5.2. We have employed this approach

when the age labels are quantized in a set of age groups

since, under this setting, a regression technique is ex-

cessively penalized.

5.4 Profiling on video sequences

To cope with the issues raised by real-world scenarios,

in which a profiling algorithm should output a predic-

tion after observing a set of possibly noisy and mis-

aligned face patches, we introduce our approach for

video sequences.

We propose a smart strategy to aggregate predic-

tions based on an estimated quality, which we use as

a weight. In the following we introduce an image qual-

ity measure and the final decision model to incorporate

multiple frames into a single decision for a track ex-

tracted using the method in Section 4.4.

Consider a set of decisions Ya : {ya(1) . . . ya(T )}
for an attribute a performed on samples of a track T .

We compute a measure of quality for each sample, us-

ing symmetry. Face quality estimation is usually per-

formed measuring head pose, illumination and sharp-

ness[17,42]. Our feature is based on local gradient fea-

tures, which are robust to illumination issues. More-

over, it is not clear what lighting conditions are best to

perform face profiling. Head pose is the most important

cue for face quality, considering the fact that the ma-

jority of the datasets on which profilers can be learned

present mostly frontal images. Estimating the 3D pose

in real-time is a challenging problem and performing a

full 3D frontalization is expensive computationally.

Symmetry is a fast tool to verify the quality of a de-

tected face. It has two main advantages: first, it is com-

puted extremely fast by comparing original and flipped

version of aligned faces. Second, it accounts for both

the presence of partial facial occlusions and the yaw of

a face with respect to the camera; indeed, even when

alignment is applied, artifacts may appear when the de-

tected face is at an angle, which is more than 20◦off the

camera center.

Let I(t) be the imagery of an aligned face and Ilr(t)

its horizontally flipped version. We compute weights us-

ing the following:

wt = 1− |I(t)− Ilr(t)|
S2

We further normalize weights taking into account

the track length w′t = wt/|T |. We implement two differ-

ent strategies to make decision on track attributes ag-

gregating the weighted decisions of every single frame.

For categorical variables, we compute weighted histograms

of attribute value counts. Being bai =
∑N
k=1 wk the bin

accounting for attribute a having value i; decision on

the track is taken as ŷT = arg maxi bi.

For age, which is a continuous value, we use the

weighted median as a robust estimator to avoid the

mean being deviated by few outliers. This phenomenon

is already moderated by the use of weights, however we

found out this strategy to be more robust to noise.

The weighted median of an ordered set of ages {a1 . . . aT },
if weights are normalized, as in our case, is found as the
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element am for which:

m−1∑
i=1

wi <
1

2
and

|T |∑
i=m+1

wi ≥
1

2
.

In case
∑m
i=1 wi = 1

2 the median is found as am =
1
2 (am + am+l) where m+ l is the next profile with non

zero weight.

6 Experimental Results

We tested our approach on five datasets the MORPH-

II, Adience, Chalearn (LAP2015 and LAP2016) and the

McGill Faces datasets.

MORPH-II4 contains more than 55K facial images

with different gender and ethnicity. In Tab. 6 the de-

tailed statistics of gender and ethnicity are shown, whilst

in Fig. 6 the age distribution is summarized.

Adience5 is a challenging dataset collected from selfie

images posted on Flickr. It is composed by 26,580 pho-

tos of 2,284 subjects. Exact age is not reported, rather,

it is classified into 1 of 8 ranges.

Chalearn [16] is a competition to estimate apparent

age from face imagery. In Looking At People (LAP)

2015 competition a dataset6 of 5,000 images displaying

a single individual where collected. In LAP20167 8,000

images where collected. In both cases all images were

annotated by a multiple annotators and average and

standard deviation are released instead of ground truth

age values.

McGill8 was collected by DeMirkus et al. [12] which

acquired videos from 60 subjects. The public release

of the dataset accounts for 35 subjects. The dataset
contains videos of subjects performing natural actions

such as drinking from a cup, removing sunglasses, talk-

ing with arbitrary poses. The whole dataset accounts

for more than 10K face images. Results on this dataset

are especially interesting to test how our tracking based

profiling improves over framewise estimation.

We ran a set of experiments to evaluate the effect of

our system parameters. We used the challenging age es-

timation problem as a benchmark on MORPH-II. Con-

sidering the results reported in Sect. 6.3 and the ac-

curacy/efficiency trade-off, we used 128 Gaussians as

the codebook size, set the sampling stride to 6 and the

scales to 4 and 8 for all experiments in every dataset.

4 http://goo.gl/NKVCam
5 https://www.openu.ac.il/home/hassner/Adience/data.html
6 http://chalearnlap.cvc.uab.es/dataset/18/description/
7 http://chalearnlap.cvc.uab.es/dataset/19/description/
8 A video with showing the output of our algorithm on

every subject in this dataset is available as supplementary
material.

System FPS
Our Approach 20
Junyu Tech. 15
Zhuhau-Yisheng 10
MITRE 27
Tsinghua University 11
NEC 19
Cognitech 5

Table 1: FPS of commercial systems reported in [44,

45]. Algorithm timing is referred to the full evaluation

from pixel to prediction on gender and age prediction.

6.1 Timing

We run a set of benchmarks to evaluate the run time of

our method using a i5-2467M 1.60GHz CPU. The sys-

tem speed is mostly affected by the density of feature

sampling both in scale and size as can be seen in Figs.

4a and 4c since the sampling step quadratically affects

the amount of features extracted. Moreover, when us-

ing larger codebooks the amount of Gaussians has two

effects on the computational cost. First, Fisher Vector

embeddings require more time since the derivatives to

compute are depend linearly with the number of Gaus-

sians. Second, a larger codebook increases the feature

dimensionality and consequently the classification time,

although the classifier time is negligible with respect to

the feature extraction and embedding cost.

In Tab. 1 we have reported the FPS of some com-

mercial systems presented in [44,45]. On both techni-

cal reports Ngan et al. report the same plot for timing,

meaning that commercial algorithms are evaluated on

the full demographic profiling task, i.e. predicting age

and gender. We report our timing as the time needed

to detect, align a face and predict ethnicity, gender and

age. We are therefore solving all three tasks at once,

while the algorithms tested in these reports, to the best

of our knowledge, only address gender and age estima-

tion.

The best commercial frameworks obtain a perfor-

mance comparably to our approach, although it has to

be noted that the system that is used to test this algo-

rithms is a 6-cores Intel Xeon Processor X5690, which is

by far more powerful than our 1.6Ghz i5-2467M proces-

sor. Moreover their performance figures are measured

using multi-threading. This analysis confirms that our

method has state-of-the art performance.

6.2 Gender Estimation

We evaluate the gender estimation accuracy using mean

per class accuracy in order to deal with the imbalance

of some datasets.
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Fig. 4: Frame rate of the proposed processing pipeline for different dictionary size, sampling in space and scale.

We set scales=4,8 in (a) step=6 (b) and Gaussians=128 (c). Face detection and alignment is included.

Method Gender time (ms) GPU
Our 80.1 50 n
Levi et al. [37] 85.9 200 y
Eidinger et al. [15] 77.8 ? n
Hassner et al. [29] 79.3 ? n

Table 2: Gender estimation accuracy on the Adience

dataset compared with the state of the art. We report,

when available face profiling timing and if methods em-

ploy a high-end GPU to produce such timing.

6.2.1 Adience

On the challenging Adience dataset our method accu-

racy is comparable with those achieved by previously

published methods not using deep learning. On this bi-

nary task there are a sufficient amount of samples to

obtain a better predictor using CNN features. Although

our approach is still 4 times faster running on a single

threaded CPU (instead of multi-GPU cores) as shown

in Tab. 2.

6.2.2 Morph-II

In Tab. 3 we report our result on Morph-II. In this

dataset we have a very high accuracy in gender estima-

tion with a mean per class accuracy over 98%. However,

this dataset is easier than Adience and McGill, having

little or no variations in pose and illumination.

6.2.3 McGill

We report results on video sequences taken from McGill

dataset. Our method exploits a tracker thus allowing

to improve attribute prediction when performed on a

sequence. Tab. 4 for each accuracy result reports if the

temporal information has been used (Time column) and

Method Accuracy
KCCA [23] 98.5
KPLS [22] 98.4
Our 98.2
3-Step[22] 98.1
rCCA[23] 97.6
PLS [22] 97.4
CCA [23] 95.2

Table 3: Gender estimation accuracy on the MORPH-II

dataset compared with the state of the art.

what is the granularity of the evaluation (Evaluation

column).

In Tab. 4 we compare the gender prediction ob-

tained using the method described in Sect. 5.4 in the

two settings proposed by DeMirkus et al. [12].

In both settings, the accuracy is evaluated on a

per-frame basis. In the first setting, the temporal in-

formation is discarded and each frame is treated as an

independent image. In the second setting a tracker is

used and the temporal information is exploited. The

first setting evaluates the quality of the classifier and

the model; our method outperforms theirs by 5%. The

latter setting is a more realistic one, showing the per-

formance obtainable in a real world application; in this

scenario we again obtain a 5% improvement over the

method proposed by DeMirkus et al. [12].

Finally, we report two results not directly compara-

ble to [12]. Instead of evaluating a frame by frame cor-

rectness we evaluate on a per-track and per-sequence

basis. We found this settings more realistic since in a

typical non-cooperative scenario a person will walk to-

wards the profiling camera and the system will capture

one or more track of the subject. Our method applied

on the whole track has a slight improvement. Finally,

if all tracks predictions are combined through majority
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Time Evaluation DeMirkus Our Method
- Frame 0.6960 0.7451
X Frame 0.8524 0.8959
X Track - 0.9104
X Sequence - 0.9143

Table 4: Accuracy on gender estimation. We report ac-

curacy computed averaging profiling output on Frames,

Tracks and Sequences.

Fig. 5: Confusion matrix for ethnicity estimation on
MORPH-II.

voting for each sequence we obtain an even higher per-

formance. To the best of our knowledge, this results are

the state-of-the art on this dataset.

6.3 Ethnicity Estimation

Predicting people ethnicity has been addressed by few

works. In this section, we report a comparison with the

results achieved in [21] on the MORPH-II dataset. The

dataset is highly unbalanced having more than 75% of

black subjects. In Fig. 5 the confusion matrix for eth-

nicity estimation is shown.

We have obtained a mean per class accuracy of 89.61%

while Guo et al. have reported 82.3%. Our DAG-TIPCAC

classifier is able to deal better with this highly unbal-

anced dataset. The high bias is due to the fact that

this data contains few Hispanic and Asian samples and

this has an evident effect also on the lower accuracies

obtained on these two classes.

Finally, to address the real world setting of profiling

from video sequences we labeled with the four races of

MORPH-II the subjects in the McGill dataset and re-

ported results in Tab. 5. Ethnicity estimation is harder

than gender estimation, nonetheless integrating infor-

mation over time improves by 5% points. Accuracy es-

Time Evaluation Our Method
- Frame 0.6904
X Frame 0.7402
X Track 0.7424
X Sequence 0.7429

Table 5: Accuracy on ethnicity estimation. We re-

port accuracy computed averaging profiling output on

Frames, Tracks and Sequences.

timated on tracks and whole sequences is slightly supe-

rior.

6.4 Age Estimation

Age estimation can be defined as the prediction of the

exact age or as the prediction of an age class. Some

dataset do not provide the exact age value therefore we

evaluated our method using a classifier, reporting ex-

act age estimation accuracy and one-off age estimation

error. In case one-off error is employed, the age class

is considered correct, even if the predicted age range is

one of the two adjacent ones.

When a sufficient amount of data is available we

have assessed the quality of our method using the Mean

Absolute Error or MAE = 1
N

∑N
i=1 |age(φ(I))− yi|. In

certain evaluation protocols the apparent age is used,

collecting average µi and standard deviation σ of age

for each picture i from a set of annotators. In such cases

standardized error is used:

ε = 1− exp

(
− (age(φ(I))− µi)2

2σ2

)
(12)

6.4.1 MORPH-II

On this dataset we perform experiments using three

different setups in order to be comparable with recently

published results. The outcome of experiments in all

three settings are summarized in Table8

We replicated the experiments in [9,8] using a set of

5,492 pictures of people of Caucasian ancestry, averag-

ing the MAE over 30 runs. We used the same pictures

used by the authors.

Guo et al. perform experiments on a larger set of

images with a slightly more complex procedure [24,20,

22]. Considering the whole set W, a set S ⊂ W of ∼
21,000 images is formed from black and white individ-

uals keeping all the women and adding male subjects

mantaining the ratio between males and females to 3:1.

Set S is furtherly partitioned in two disjoint sets S1,S2

so that identities of people in one set are not allowed in
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Race Female Male Female and Male
Black 5,757 36,803 42,560
White 2,601 7,999 10,600

Hispanic 100 1,651 1,751
Asia 13 146 159
India 14 43 57
Other 2 3 5
Total 8,487 46,645 55,132

Table 6: MORPH-II dataset gender and ethnicity statis-

tics.
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Fig. 6: MORPH-II age distribution.

the other and vice versa. We trained our system on both

subsets Si and reported the average MAE computed on

W \ Si for i = 1, 2.

Finally, we use the setup proposed in [19]. The dataset

is split using 80% of identities for training and the re-

maining data for testing, running a 10-fold cross-validation.

Even if we do not stratify the sampling for gender and

ethnicity, we could check empirically that random iden-

tity sampling guarantees to keep age, gender and eth-

nicity distributions on training and testing sets.

Using MAE as a metric to assess performance can

be prone to misinterpretations. We therefore show a

more insightful analysis of our regression based age es-

timation on MORPH-II showing the Cumulative Score

curve (CS). The cumulative score curve CS(t) is defined

as the amount of samples for which the estimation error

is lower than a threshold t in years. Fig. 7 shows that

75% of the predictions have an error lower than 5 years.

We first report an analysis of how error varies de-

pending on parameters affecting the feature extraction

process. Table 7 shows MAE variation depending on

SIFT density, scales and codebook Gaussians using the

setting of [19]. Interestingly enough, the amount of scales

does not affect the error, while a too wider sampling or

too few Gaussians are detrimental to the accuracy. Set-

ting the SIFT sampling step to 4 instead of 2 does not

change the error while, increasing the extraction and

coding efficiency quadratically. Using 128 Gaussians in-

stead of 256 represents a good trade-off in order not to

sacrifice efficiency, as also results from Fig. 4.

Scales Sampling MAE
4,6,8,10 2 3.7

4,8 2 3.7
4,8 6 3.7
4,8 8 4.0

(a)

Gaussians MAE
16 4.2
64 3.8
128 3.7
256 3.6

(b)

Table 7: Mean absolute error varying sampling step,

scales and Gaussians. We used 128 Gaussians in (a) and

step=6 and scales=4,8 in (b). The algorithm is mostly

affected by the sampling step.

Error (years)
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Fig. 7: Cumulative Score curve on MORPH-II. The

curve CS(t) measure the percentage of samples have

an age predicted with an error lower than t.

Results presented in Tab. 8 are obtained with three

very different setups. The one proposed by Guo et al. is

the easiest, employing a single ethnicity[24,20,22]. Mul-

tiple ethnicities are taken into consideration in the sec-

ond and third setups. Chang et al. use only black and

white individuals[9,8] while Geng et al. use the whole

dataset [19]. We beat all previously reported result in

every setting, this shows that our age estimator works

in cross-racial and cross-gender settings, without any

specific precautions. Recently methods using ensemble

of large CNN models reported results in certain cases

improving MAE with respect to our results[26,13], with

a MAE of 4.0 and 2.6 respectively. We did not report

the results in Tab. 8 since the authors did not clarify

what is the data split they have used and results are

not directly comparable.

Cross-Domain Evaluation It is interesting to under-

stand how much age depends on ethnicity and gender.

In this setting, named cross-domain, we train on a sin-

gle demographic, e.g. Black Females, and test on the re-

maining ones. It can be seen that highest MAE is given

when both ethnicity and gender are swapped between

train and test set. Interestingly, all methods perform
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Approach Features Classifier MAE [9,8] MAE[24,20,22] MAE[19]
Our approach SIFT+FV L2L2 Regression 3.8 4.0 3.7
Geng et al. [19] AAM,BIF CPDNN - - 4.9
Geng et al. [19] AAM,BIF IIS-LLD - - 5.7
Huerta et al. [32] SURF/HOG CCA - - 4.2
Guo et al. [22] Holistic BIF Kernel PLS - 4.2 -
Guo et al. [20] Holistic BIF 3-Step - 4.5 -
Guo et al. [24] Holistic BIF Linear SVM - 5.1 -
Chang et al. [9] AAM Ordinal Hyperplane Ranker 6.1 -
Chang et al. [8] AAM Ranking SVM 6.5 - -

Table 8: Mean Absolute Error (MAE) in years compared with recently published methods. Our method obtains

results comparable with the state-of-the-art with a very low-weight processing pipeline.

Train Test Guo et al. [20] CpDA [25] Ours
WF BF 8.67 6.54 6.32

WM 7.72 5.57 4.94
BM 10.62 7.54 7.45

BF WF 9.15 6.41 5.16
BM 8.40 6.13 5.15
WM 8.79 6.23 6.06

WM BM 7.05 5.35 4.38
WF 9.13 6.70 6.66
BF 9.54 7.67 6.50

BM WM 6.86 5.10 4.69
BF 10.58 7.73 4.87
WF 12.81 8.73 5.19

Table 9: Mean Absolute Error(years), in cross-domain

setting, using the split proposed by [20], using only

Black(B) and White(W), Males(M) and Females(F)

better in cross-ethnicity setting than in cross-gender

setting.

6.4.2 Adience

We employ the five fold cross-validation using the folds

provided by the authors. In Tab. 10 we report age esti-

mation performance together with the timing of our ap-

proach. Our method achieves a good trade-off between

computational cost and age estimation error. Consider

that Levi et al. train a deep neural network on face

images. Deep convolutional networks need a sufficient

amount of data not to overfit and learn strong classi-

fiers. In the case of gender their method outperform

ours, although in the age class estimation we perform

better since our technique can leverage also lower amount

of data. Finally, comparing the timing our single-threaded

CPU based method is four times faster than the one

proposed by Levi which requires a high end GPU. Re-

cent results, exploiting larger deep architectures are

able to outperform our method, nonetheless they are

extremely demanding in terms of hardware both to at-

tain real-time performance and to be able to run larger

models such as VGG-16.

Method Age (exact) Age (1-off) time ms GPU
Duan et al. [13] 66.5 - ? y
Hou et al. [30] 64.0 96.6 ? y
Gürpinar et al. [26] 51.3 - ? y
Our 50.8 84.3 50 n
Leviet al. [37] 49.5 84.6 200 y
Eidinger et al. [15] 45.1 79.5 ? n

Table 10: Age class estimation accuracy of our method

compared with state of the art techniques. We report,

when available face profiling timing and if methods em-

ploy a high-end GPU to produce such timing.

6.4.3 LAP2015 and LAP2016

In this section we test our approach on the novel chal-

lenging datasets LAP2015 and LAP2016. To run a fair

comparison we report the ε-error and the time required

to extract features and classify an image. Most of the

competing approach are based on ensembles of fine-

tuned VGG-16 networks. VGG-16 has 150M param-

eters, can not be run on GPUs with less than 6Gb

of RAM even for small batch sizes and requires 31

G-Ops as reported in [7]. To make a fair comparison

in terms of required computational power we compare

timings obtained running on CPU the base architecture

reported in [16], also accounting for augmentation and

ensembling as in the case of the leading submission for

LAP2016 by OrangeLabs[6]. In case the CNN architec-

ture was not available or described in detail we did not

report the timing. Detection and alignment times are

kept out of the timing for competing methods. In our

case we report the full pipeline cost. Note that most of

these methods are also using Deep Convolutional Neu-

ral Network for detection and alignment.

On LAP2015 our approach is just below human per-

formance, but much faster, from 2X to 800X in case of

the best performing method which uses an ensemble of

20 CNNs. We have a similar performance on LAP2016

and also in this case we are from 800X to 3X faster then

competing approaches.
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Approach eps score time (s)
CVL ETHZ [49] 0.264975 40.0
ICT-VIPL [38] 0.270685 0.10
AgeSeer 0.287266 0.50
WVU CVL [63] 0.294835 0.10
SEU-NJU [60] 0.305763 0.50
human reference 0.34 -
Ours 0.354066 0.05
UMD 0.373352
Enjuto 0.374390 -
Sungbin Choi 0.420554 -
Lab219A 0.499181 -
Bogazici 0.524055 -
Notts CVLab 0.594248 -

Table 11: Age estimation results on LAP15 in terms of

ε-error and classification time for a single sample using

the same CPU.

Approach eps score time (s)
OrangeLabs[6] 0.2411 44.0
palm seu[33] 0.3214 2.00
cmp+ETH[58] 0.3361 0.50
WYU CVL 0.3405 -
ITU SiMiT[40] 0.3668 1.50
Ours 0.3684 0.05
Bogazici 0.3740 0.50
MIPAL SNU 0.4569 0.15
DeepAge 0.4573 0.50

Table 12: Age estimation results on LAP16 in terms of

ε-error and classification time for a single sample using

the same CPU.

6.4.4 McGill

In this experiment we report results on video for age

estimation. Considering that real age value were not

available we asked a set of 40 human annotators to ex-

amine a single frame from each video and express an

age for each subject. We handpicked frames to select

neutral expressions, small blur and a frontal pose to

avoid any bias. Annotators had an average standard

deviation of 4.47 years. We report MAE with respect

to the estimated mean. As it is shown in Tab. 13 the

behavior is consistent with Tab. 4 for gender, showing

a clear improvement from our tracking algorithm. Note

that MAE figures are higher in this dataset with respect

to MORPH-II due to pose and expression variation as

well as blur and varying lighting conditions.

7 Conclusions

We have proposed a demographic profiling algorithm

that estimates age, gender and ethnicity from face im-

agery. Our method is carefully designed to attain real-

time performance. We hence showed how an efficient

Time Evaluation Our Method
- Frame 8.5902
X Frame 7.1687
X Track 6.9439
X Sequence 6.2413

Table 13: MAE on age estimation in video. We report

MAE computed averaging profiling output on Frames,

Tracks and Sequences. Our method exploiting tracking

allows a reduction of more than 2 years of error.

image processing pipeline, combined with the latest gen-

eration hand-crafted features an classifiers can deliver

the sought result. Our system can run on a single thread

at approximately 20 FPS on a i5-2467M processor, clock-

ing a 1.6GHz. Our approach can indeed be speed up by

incorporating CUDA implementation of its core compo-

nents, e.g. using[3] for feature extraction and CuBLAS[1]

for classifiers and other linear algebra operations. Low

power single board GPU systems are nowadays avail-

able[2] but they are not comparable in terms of cost

with respect to their CPU-only counterparts.

To assess the quality of our framework we have tested

our approach on large datasets of people images with

different age, gender and ethnicity. Our method results

compared with those achieved by other recently pub-

lished approaches confirm the efficiency and the effec-

tiveness of the proposed framework.
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