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Abstract

We present a novel online self-supervised method for face identity learning from video streams. The method exploits
deep face feature descriptors together with a memory based learning mechanism that takes advantage of the temporal
coherence of visual data. Specifically, we introduce a discriminative descriptor matching solution based on Reverse
Nearest Neighbour and a memory based cumulative learning strategy that discards redundant descriptors while time
progresses. This allows building a comprehensive and cumulative representation of all the past visual information
observed so far. It is shown that the proposed learning procedure is asymptotically stable and can be effectively used
in relevant applications like multiple face identification and tracking from unconstrained video streams.

Experimental results show that the proposed method achieves comparable results in the task of multiple face track-
ing and better performance in face identification with offline approaches exploiting future information.

Keywords: Incremental Learning Cumulative Learning Multiple Object Tracking Face Recognition Lifelong
Learning Long Term Object Tracking

1. Introduction

Supervised machine learning is a very successful
learning paradigm in which a clear distinction is made
between the training phase and the testing phase. Once
a model is learned, it is no longer subjected to training
and inference on novel unseen data tacitly assumes that
the data distribution does not change over time. Once
the learning phase is concluded no classes other than
those used for learning can be predicted. Although, such
hard division between training and testing and the avail-
ability of large corpus of annotated data have demon-
strated exceptional achievements in learning the appear-
ance of objects from images [44], they remain critical
as linear improvements in performance require an ex-
ponential number of labeled examples [85]. In addition
to this, efforts to collect large quantities of annotated
images, such as ImageNet [21] and Microsoft COCO
[51] don’t have the necessary scalability and are hard to
be extended, replicated or improved. These issues may
also put a performance limit on models learned in this
way.

Drawing inspiration from biological systems, a possi-
ble attractive alternative would be incrementally to learn
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the object appearance from never-ending video streams
with no supervision, both exploiting the large quantity
of unconstrained videos available in the Internet and
the fact that adjacent video frames contain semantically
similar information. This not only provides a variety
of different viewing conditions in which objects can be
observed but it also overcomes the restrictive barrier be-
tween the training and testing phase being each frame
used for both training and testing. Specifically, each
frame on a video stream can be used for learning, the
following for testing and so on. Accordingly, never-
ending tracking multiple subjects in the video could,
at least in principle, support a sort of self-supervised
incremental learning of their appearance. This would
avoid or reduce the cost of annotation as time itself
would provide a form of self-supervision which does
not stop learning, but rather updates the learning model
over time by accumulating knowledge without forget-
ting the past, reaching increasingly better accuracy and
better data diversity as time advances.

However, this solution is not without problems. It is
practically not possible to store all the data seen so far
and re-learn a Deep Neural Network model periodically.
Removing past data to adequately incorporate the new
information without catastrophic forgetting, (i.e. per-
forming Continual Learning [65]), is still an open chal-
lenge [50, 78, 73, 75], especially when new knowledge



has to be incorporated in real time while tracking, with-
out the availability of labels and with data coming from
a stream which is often non-stationary [88, 2].

Single Object Tracking (SOT) [43] and Multiple Ob-
ject Tracking (MOT) [46, 57] are closely related to the
problem of learning from video streams but they have
substantial differences and divergent goals from incre-
mental and cumulative learning. While in SOT the ob-
ject appearance is learned only for detecting the ob-
ject in the next frame (the past information is gradually
forgotten [35, 19]), cumulative learning from a video
stream would require that all the past visual information
of the object observed so far is collected in a compre-
hensive and cumulative representation. This not only re-
quires tracking to be robust in the presence of very long
term occlusions due intermittent (re)appearance of ob-
jects or other severe appearance changes, but that incre-
mental learning is asymptotically stable so that it con-
verges to an univocal cumulative representation. More-
over, modern SOT approaches based on Deep Learning
are pre-trained on large video datasets [8, 86, 29, 48]
and typically do not perform any learning at runtime or
perform conservative updates [64]. Their extension to
handle cumulative learning remains not trivial and how-
ever prone to catastrophic forgetting. Long-term SOT
methods introduced in [37, 68] implement explicit tar-
get re-detection to reacquire the object after long term
occlusion, despite of their successful performance on
complex extended video sequences, their strategy for
learning the appearance model does not substantially
differ from those in SOT [42, 56].

Although MOT appears similar to the problem of
learning the appearance of objects from video streams,
major differences can be identified according to the
following four criteria:
(1) Motion Continuity and Data Association. Most
methods formulate MOT as a data association problem
integrating several cues such as appearance, position,
motion, and size into an affinity model to link track
fragments (i.e. tracklets) into final trajectories. To be
usefully exploited, this formulation implicitly requires
that the objects are continuously detected and the
camera is stationary, slowly moving or undergoing
short-term rapid motions [98, 52, 20]. The motion
continuity problem can be partially mitigated by the
introduction of learned appearance model (i.e. features)
trained on large corpus of data to perform short-term
re-identification [97, 77, 7]. Instead in long-term
re-identification after long occlusions, the continuity
of motion is no longer relevant to the problem of
data association [100]. When an object exits the field
of view and re-enters after an unknown long period

of time, re-association of the correct identity can be
related only to the appearance of the object observed
and the learned appearance model of all the objects
observed so far. Video streams with many shot changes
further reduce the relevance of motion continuity.
(2) Re-Id and Track deletion. MOT short-term re-
identification is typically achieved by storing the
appearance models of deactivated tracks for a fixed
number frames such that an object can be either
re-acquired or deleted (i.e. forgotten) [98, 7, 102].
However, simply setting a very large number frames
after which to delete tracks, would require the explicit
management of an undefined and large number of
track identities with their corresponding appearance
models undergoing cumulative learning. This issue
has not been systematically investigated and therefore
extending MOT approaches to include this long-term
re-identification learning scenario it is not straightfor-
ward.
(3) MOT Datasets. MOT has been extensively studied
with a prime focus on human body visual data where
it is not reasonable to assume that clothes remain
unchanged over very long-term periods of time as for
face data. Consequently, relevant MOT datasets do
not explicitly cover long-term re-acquisition and/or
extended appearance variations [47, 60].
(4) Learning Setting. MOT methods have either offline
or online processing mode [57] depending on whether
observations from future frames are or are not utilized
when handling the current frame. However, with the
terms “incremental” and “cumulative” the reference
here is to a learning setting rather then to a processing
mode [88, 54, 25]. The term “online” alone typically
used to characterize MOT methods does not reflect the
concept of lifelong adaptation and cumulative learn-
ing in never-ending data streams that have changing
statistics. In order to avoid confusion, we will refer
to this learning setting as Multiple Object Cumulative
Adaptation Learning (MOCAL).

Differently from SOT and MOT methods, in
this paper we present a novel online self-supervised
method that learns cumulative identity representations
adapted to all the visual information observed so far.
We evaluated our method on face visual data as it is
more intrinsically pertinent to this learning setting.
In order to focus on the aspects that distinguish our
approach from MOT, we used datasets as in video face
clustering [94, 87, 96, 100] that include large corpus of
face objects with abrupt motions, extended appearance
variations and very long-term occlusions.

Specifically, to achieve cumulative learning while
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handling the non-stationarity of the data stream, we
update a representative dataset and use it as a memory
of all the past visual information observed so far.
To this aim, CNN face features [66, 13] are stored
into a memory module and “distilled” based on their
redundancy so that a compact and complete appearance
representation of the individual identities is cumulative
learned over time. The memory module consists
of feature-identity pairs as recently introduced in
[90, 36, 71]. Extracted face features from the current
frame are used to both query and learn the memory
model according to a Reverse Nearest Neighbor strat-
egy [41]. The features returned by the memory are used
to determine the final prediction of the identities. To
avoid forgetting, no identity is explicitly deleted after
a fixed number of frames has passed. As the memory
increases, observed features are selectively removed
only if there is subsequent information in their locality
in representation space. This makes the representations
of each identity more compact and discriminative since
they are adapted to incorporate all the past data. When a
memory budget is met, new information is written into
the least used memory locations. It is further shown that
the proposed incremental procedure for learning the
memory module approximates asymptotically the case
of infinite accumulation of feature data. A preliminary
exploration of this work was presented in [69].

In the following, in Section 2, we cite the works that
are related to our approach. In Section 3 contributions
are provided. In Section 4 we expounded the approach
in detail, in Section 5, experimental results are given
and finally in Section 6 critical discussion and further
experiments are provided.

2. Related Work

In this section the general and methodological issues
raised in the introduction are examined in different bod-
ies of existing literature. MOCAL setting is closely
related to Continual Learning [15, 65] and Open-World
learning [6]. We will describe each of them briefly
highlighting the relationships/connections with our ap-
proach.

Continual Learning deals with the problem of se-
quentially learning a single model, preserving and
reusing the previous knowledge while learning the new
one. Instead Open-World learning deals with the prob-
lem of detecting new classes at test time (i.e. open-
set) to avoid incorrect assignments to known classes.
When new classes are incorporated in the model, then
Continual Learning meets the problem of Open-World.

In the open set evaluation protocol, learned face fea-
tures [67, 13] with distance thresholding have shown to
achieve reliable performance [40]. Our approach fol-
lows a similar strategy to detect novel identities also
exploiting the fact that a single video frame eventually
contains distinct face identities.

In Continual Learning, typically a sequence of tasks
is learned one at a time, with label supervision, with all
data of current task available and without revisiting past
tasks. Task boundaries and class identities are therefore
known at all times. This setting, is therefore not ap-
propriate in applications that learn incrementally from
unconstrained video streams. A recent and notable ex-
ception is provided by [2]. They learn face identities in a
self supervised way. First they obtain face tracklets and
then use this information to update the face represen-
tation. The tracks are then processed in chronological
order so as to generate a non-i.i.d. stream of data. In
our approach, representation is fixed and face-specific,
but it is directly adapted from the data coming from a
detector without requiring a multi-pass analysis of the
video. According to this, our method allows learning in
an online and cumulative fashion from an unconstrained
video stream.

2.1. Multiple Object Tracking
An alternative approach that partially accomplishes

the open-world and class-incremental learning (it does
not perform cumulative learning) is Multiple Object
Tracking (MOT) [46, 57, 17]. MOT exploits temporal
self-supervision to automatically generate labels with
data coming directly from the output of a detector. The
major issue encountered by MOT when applied to cu-
mulative learning is track management. Track identity
creation and deletion are managed by two thresholds: a
new identity is created when the object has been con-
stantly detected for a certain number of frames while
an identity is deleted if it is not associated for a dura-
tion of a predefined number of frames. The value of
these thresholds typically depends on both the accuracy
of detection models and the frame rate and are set in
the order of few seconds [102]. Track deletion basi-
cally precludes MOT methods to perform long-term re-
identification as required in MOCAL: objects that exit
and re-enter the field of view after few seconds are man-
aged as new identities. As a consequence, MOT meth-
ods cannot be directly applied to perform cumulative
learning nor to handle unconstrained video streams.

In [100], video face clustering is exploited to adapt
face appearance. Their method applies MOT in videos
consisting of pre-segmented shots taken from different
cameras. In order to take advantage of the continuity
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of the motion, each shot is processed independently to
estimate tracklets. Face appearance adaptation learn-
ing is achieved with a further pass over the face image
crops along the estimated tracklets by fine-tuning the
CNN feature representation according to the triplet-loss
[84]. This pass can be considered as addressing both
adaptive and cumulative learning of the feature repre-
sentation across the processed video. To overcomes the
track deletion limit of MOT the fine-tuned features are
then used in a final pass to cluster tracklets across mul-
tiple shots. The approach is similar to [2] except that
the adaptation is not performed incrementally. Our ap-
proach follows the same intents of both [100] and [2] but
formulates the problem as cumulative and online learn-
ing. Differently from [100] and [2] we can handle an in-
finite video stream. To this aim we leverage the success
of recent tracking-by-detection approaches [39, 9, 99].

Tracking-by-detection has become the leading MOT
paradigm exploiting both to the improved accuracy of
CNN based object detectors [74, 53, 34, 14] and CNN
feature representation [66, 13, 84, 91]. Performance
with respect to earlier methods has been largely im-
proved especially in the online processing modality. In
[99], both Faster R-CNN detections and features learned
using re-identification datasets [101] are combined ob-
taining a performance improvement by a margin of 30%
with respect to the state of the art, showing that having
higher-quality detections and feature representations re-
duces the need of complex association/tracking algo-
rithms. Other similar tracking-by-detection methods
have recently followed: [79, 93, 77, 7]. Specifically,
[7] further simplifies the tracking-by-detection MOT
paradigm by removing the optimal data-association step
and the motion model. Our method exploits this simpli-
fied paradigm.

Among MOT methods operating online not based
on tracking-by-detection, several interesting attempts
has been proposed recently to favor short-term iden-
tity preserving (i.e. occlusion between objects) against
the most favorable off-line methods exploiting future
information. A few methods have exploited Single
Object Tracking (SOT) to manage missing detections
[102, 16, 95, 24]. Tracks deletion and appearance for-
getting still limits the applicability of these methods in
the MOCAL setting. In particular [24] addresses track-
ing multiple faces that exit and re-enter the field of view.
The method exploits contextual relations (i.e. upper
body appearance and relative camera poses) according
to a graphical model to characterize the dependency be-
tween multiple objects. It consists of two phases: in
the first phase the graphical model is learned off-line
from some video sequences, in the second phase the ap-

pearance of face objects are learned online according to
the SOT model described in [35]. However this method
cannot handle an infinite video streams since it relies on
pre-segmented shots to exploit motion continuity.

2.2. Long-Term Single Object Tracking

Another relevant research subject to our learning set-
ting is long-term Single Object Tracking [37, 70, 12, 62,
89, 42, 56]. The aim of long-term SOT is to track a spe-
cific object over time and re-detect it when the object
leaves and re-enters the scene. Only a few works on
tracking have reported drift-free results on on very long
video sequences [37, 23, 70, 33, 30] among the few, and
only few of them have provided convincing evidence
on the possibility of incremental appearance learning
strategies that are asymptotically stable [37, 70]. How-
ever, all of these works perform incremental learning
only to detect the object in the next frame and gradually
forget the past information. In [100] authors evaluate a
MOT baseline in which multiple TLD trackers [37] ini-
tialized with the ground-truth bounding box in the first
frame are exploited. The baseline so defined can han-
dle unconstrained videos avoiding to segment them into
shots to exploit motion continuity.

2.3. Learning With a Memory Module

Inclusion of a memory mechanism in learning [45]
is a key feature of our approach. On domains that
have temporal coherence like Reinforcement Learning
(RL), memory is used to store the past experience with
some priority and to sample mini-batches to perform in-
cremental/cumulative learning [61] [83]. This makes
it possible to break the temporal correlations by mix-
ing more and less recent experiences therefore handling
the non-stationarity of data streams. More recently,
Neural Turing Machine architectures have been pro-
posed in [26, 27] and [81] that implement an augmented
memory to quickly encode and retrieve new informa-
tion. These architectures have the ability to rapidly
bind never-before-seen information after a single pre-
sentation via an external memory module. However, in
these cases, training data are still provided supervisedly
and the methods are not primarily designed for handling
video streams.

In [36] a memory module consisting of feature-value
pairs to perform predictions based on past knowledge
is proposed. Features are activations of the penultimate
layer of a deep neural network (i.e. the internal feature
representation), and values are the ground-truth targets.
The output of the penultimate layer of the neural net-
work is used as query to the memory module and the
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nearest neighbor returned by the memory is used as the
final network prediction. As the memory increases it
becomes more useful since it can give predictions that
leverage on knowledge from past data with similar fea-
tures. We use this basic strategy in which the feature-
value pair consists in a face specific feature and its as-
sociated identity. One main limitation of [36] is in the
lack of a mechanism to forget redundant observations
to make rooms to novel fresh data. The work [80] sug-
gests a memory based forgetting strategy based on the
principle of spatio-temporal locality. We follow a simi-
lar principle in which observations are forgotten if there
is subsequent information according to a distance ratio
criterion between deep features.

3. Contributions

Our contributions can be summarized as follows:

1. We present a novel online method for the task of
learning the appearance of face identities from un-
constrained video streams. As video streams are
infinitely long, this requires online accumulation
and preservation of all the past visual knowledge
observed so far.

2. We propose a memory module that achieves on-
line cumulative learning in two different ways. (a)
Avoiding the explicit deletion of object identities
after a fixed number of frames has passed. (b) Se-
lectively removing observed features depending on
whether subsequent information in their locality is
available in representation space.

3. The proposed method firstly addresses very long-
term object re-acquisition in online MOT process-
ing mode: when an object leaves the field-of-view
and then reappears, it is not treated as an unseen
object with a novel Id.

4. The proposed strategy is shown to be asymptoti-
cally stable. We argue this is a critical issue for
any system that claims to operate lifelong.

5. The proposed method referred as IdOL (Identity
Online Learning), performs comparably with of-
fline approaches exploiting future information in
the task of multiple face tracking in unconstrained
videos while it achieves better performance in the
face identification.

4. The proposed approach

The block diagram of the solution proposed is shown
in Fig.1. We used the state of the art Tiny Face Detec-
tor [32] for detection and the VGGFace features [67] to

Face 
Detection

Descriptor 
Extraction

Discriminative
Matching

no

yes

New Ids
Generation

Memory

Controller

6

1

Figure 1: Block diagram of the incremental identity learning with
basic workflow.

represent faces. A memory module is used to collect the
face features. In the ideal case (i.e. perfect invariance
of the representation), observations of the same subject
originate the same features. In the real case, we must ex-
pect that observations of the same subject under changes
of pose or illumination or partial occlusions originate
different (although correlated) features. The matching
module is a discriminative classifier that associates each
new observation to the most similar past observations
already in the memory. The memory controller has the
task of discarding redundant features: highly similar
features of the same subject having comparable distance
feature already in the memory module. Ideally, a new
identity should be created whenever a new individual is
observed that has not been observed before.

We loosely follow [36] and the memory module at
time t is represented as:

M(t) = {(x, Id, e,a)i}N (t)i=1 (1)

where i is the index of a memory element and x is a deep
feature, Id is the face identity associated, e is a value
referred to as eligibility that accounts for the relevance
of the item to be learned (discussed in the following), a
is a value that tracks the age from the last match, and
N(t) is the number of features in the memory at time t.
We extend the feature-value pair (i.e. x–Id) and the age
in [36] by adding a further scalar quantity.

The mechanisms of identity matching, construction
of the identity models, self-supervision using temporal
coherence and the asymptotic behavior of the method
are separately addressed in detail in the following sub-
sections.

4.1. Reverse Nearest Neighbor Matching

The Nearest Neighbor distance ratio criterion [55] al-
lows matching based on a discriminative rule between
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Figure 2: Nearest Neighbor (left) and Reverse Nearest Neighbor (right) matching with distances between the stored features and the observations.
The stored features xi in the grey area all have the same identity. ReNN can assess matching between xi and o1 according to the distance ratio
criterion.

the most and the second most similar sample. Unfor-
tunately, in our learning scenario, we cannot exploit
Nearest Neighbor with distance ratio criterion to assess
matching. Since it is likely that detected faces of the
same subject in consecutive frames have little differ-
ences from one frame to the following, similar features
having comparable distances to the nearest and the sec-
ond nearest will rapidly be stored in the memory mod-
ule. As a consequence, the distance ratios of observa-
tions to the nearest and the second nearest feature in
memory will be close to 1 and matchings are undecid-
able in most cases. To solve this problem, we propose
to use Reverse Nearest Neighbor (ReNN) with the dis-
tance ratio criterion [41].

With ReNN, each feature in memory is NN-matched
with the features of the observations in the incoming
frame and distance ratio is used to assess matching.
Fig. 2 explains this matching mechanism for a sample
case. The features o1 has the same identity as the xi in
the memory while o2 has a different identity. Due to the
fact that the xi are close to each other, the NN-distance
ratios of o1 and o2 to their nearest and second nearest xi
are are both close to 1 and both matchings result to be
NN-undecidable (Fig. 2-left). Instead, with ReNN, the
NN-distance ratios between the xi and o1 and o2 clearly
assess the matching with o1 (Fig. 2-right). The set of xi
that are ReNN matched to the observations at time t can
be written as:

M+ =
{
(x, Id, e,a)i ∈ M(t) |

d1
i

d2
i

< ρ̄
}

(2)

where d1
i

d2
i

is the distance ratio between xi and the nearest
and second nearest face features in the frame at time t
and ρ̄ is the distance ratio threshold.

4.2. Learning the Memory Module
Collecting matched features indefinitely will soon ac-

cumulate features in the memory module and a large

amount of redundant information will be included for
each identity model. To avoid such redundancy, we as-
sociate to each i-th feature-identity pair a dimension-
less quantity ei referred to as eligibility-to-be-learned
(shortly eligibility) that dynamically indicates the level
of redundancy of the feature to be learned as represen-
tative of the identity. Eligibility is set to 1 when the
feature is loaded into the memory and is decreased at
each match with the observations according to:

ei(t + 1) = ηi ei(t) with ηi =

[
1
ρ̄

d1
i

d2
i

]α
, (3)

where the matching threshold ρ̄ of Eq. 2 is used for
normalization and α to dilate the effect of the distance-
ratio. When doing this, we also reset the feature age
ai = 0. As the eligibility ei of a face feature xi drops
below a given threshold ē (that happens after a number
of matches), the feature is no more eligible to be learned
as representative of the identity and is removed from the
memory.

Eq. 3 down-weights eligibility as a function of the
distance ratio at a rate proportional to the success of
matching in consecutive frames. According to this, el-
igibility allows to take into account spatio temporal re-
dundancy in a discriminative way. The equation it is a
generalization of the Apollonious circle 1 to multiple di-
mensions. As shown in Fig. 3, features in regions close
to o1 and far from o2 (dark red) have low η and therefore
their eligibility is more down-weighted (they will have
higher chance to be replaced in the future). Features in
regions far from o1 and o2 (light red) have higher η and
their eligibility is less down-weighted and their chance
of not being discarded is higher. This asymmetry pro-
motes diversity in the open space and defines a learning

1Apollonius of Perga (c. 262 BC - c. 190 BC) showed that a circle
may also be defined as the set of points in a plane having a constant
ratio of distances to two fixed foci.
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Figure 3: Learning the memory module. The 2D shape of the den-
sity function (shown by level curves) down-weighting the eligibility
associated to each matched feature. Features xi in proximity of the
observed feature o1 have their eligibility decreased (low values of η)
to reflect their redundancy. The asymmetric shape of the density en-
courages more diversity in the open space far from the identity o2
rather than close.

schema well suited for the open world face recognition
scenario.

Our method operates on-line and does not require any
prior information about how many identity classes will
occur and can run for an unlimited amount of time.
However, if the number of identities increases indefi-
nitely the eligibility-based exemplar removal may not
be sufficient to avoid memory overflow. Similarly to
[82, 36], we remove from the memory the least recently
matched exemplars (those with the highest value of the
paramter a in Eq. 1), following the Least Recently Used
Access (LRUA) strategy. This also allows to remove
false positives by the detector that have not received
other matches for a long time.

4.3. Self-supervision

The cumulative learning mechanism of the mem-
ory module breaks the temporal coherence of the data
stream (i.e. non-iid) by mixing more and less recent re-
cent observations. Nevertheless temporal coherence is
used as form of self-supervision in the assignment of
novel identities to limit their fragmentation and prolif-
eration.

Assuming that faces of the same individual have sim-
ilar features in consecutive frames, in the case in which
an observation does not match the feature in memory,
its feature is included in the memory with a new identity
only if the same identity is assigned also in the follow-
ing frames (two consecutive identity assignments and at
least one matching in the following three frames was
experimentally verified to provide good results). With
this form of verification potential novel identities in the
current frame are included in the memory only if at least
one known identity is recognized. Since recognition is

obtained according to the RNN with the distance ratio
and since observations taken from a single frame derive
from distinct identities, the unmatched identities in the
current frame are known to be reasonably distant (i.e.
different) from the recognized ones and are considered
potentially novel.

In the case in which no observations match with fea-
tures in memory, new identities are assigned to the non-
matched observations only if the same situation persists
for a time interval.

ReNN matching can determine ambiguous assign-
ments when distinct face observations match with fea-
tures of the same identity, or an observation matches
with features of different identities in memory. In the
first case we assign no identity to the observations (i.e.
identities in the current frame are unique and therefore
duplicated Ids in the same frame are not allowed). In the
second case, we assign the most represented identity, i.e.
that with the largest number of features in memory.

The complete algorithm of our IdOL (Identity On-
line Learning) method for incremental identity learning,
is reported in pseudocode in Algorithm 1. We indicate
with O as the set of all the features extracted from the
bounding boxes reported by the face detector in the cur-
rent frame, and with M as the set of features in the
memory module. Correspondences betweenM and O
are computed in line 4 according to the Reverse Near-
est Neighbour matching. The sets M+ and O+ indi-
cate the elements that have established a direct corre-
spondence. The set Icurr will contain (if any) the iden-
tity labels of novel subjects (not present in the memory
model) detected in the current frame. It is initialized to
the empty set for each novel frame (line 8). In line 9 all
the matched observations M+ in the memory module
are updated according to Eq. 3 and have their age reset
to 0. Then, in line 10 potential identities I are predicted
and subsequently intersected with those predicted in the
previous frame Iprev to obtain the set Icurr of the iden-
tity labels estimated for the current frame (line 11). In
line 12 the estimated label identities together with their
observed features Ocurr will be added in to the mem-
ory module as novel Ids with their eligibility and age
values are set to 1 and 0 respectively. With an excess
of notation we denote 1 and 0 as arrays of elements of
value 1 and value 0 respectively. Their length is the
same as the number of elements in Icurr . In line 13 the
potential identity labels of the previous frame Iprev are
updated with those estimated in the current frame. In
line 19 the tnc counter is incremented when a frame has
no matched correspondences. It get reset to 0 the first
time a match occurs (line 14) or after that a number of
frames t̂nc are elapsed (line 16). In the latter case all the
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detected observations are declared as novel. In line 20
all observations from memory that are never matched
after being included are removed if their age is greater
than a given threshold ā.

Algorithm 1: IdOL - Identity On-line Learning
Input: The video stream.
Output: Assigned identities Icurr in the current frame.

1 repeat
2 Detect faces in the current frame;
3 Extract observations features O;
4 Establish correspondences:

M+↔ O+ = ReNN(M, O);
5 Identify non-matching memory elements:

M− = M \ M+;
6 Identify non-matched observations: O− = O \ O+;

// Case with matched observations
(eligibility updating and temporal
coherence verification)

7 if |O+ | > 0 then
// Initialize the set of identities to

be included in the memory
8 Icurr = ∅;

// Update the eligibility with the
matched observations

9 M =
{
(x, Id, ηe, 0)i | ∀ (x, Id, e, a)i ∈

M+
}
∪ M−;

// Assign known and novel identities to
the observations

10 I = MajorityId(M+↔ O+)
⋃

NewId(O−);
// Keep identities assigned in two

consecutive frames
11 Icurr = I ∩ Iprev;

// Include them in the memory module
with their observations

12 M = M ∪
{
(Ocurr, Icurr, 1, 0 )

}
;

// Keep the assigned identities for the
next frame

13 Iprev = I;
14 tnc = 0;

// Case with no matched observations
(novel identity assignment after a time
interval has elapsed)

15 else if tnc > t̄nc then
16 M = M ∪

{
(O, NewId(O), 1, 0 )

}
;

17 tnc = 0;
18 else
19 tnc = tnc + 1

20 M = M \
{
(x, Id, e, a)i ∈ M | ai > ā, ei = 1

}
;

21 M = M \
{
(x, Id, e, a)i ∈ M | ei < ē

}
;

22 M =
{
(x, Id, e, a + 1)i |∀(x, Id, e, a)i ∈ M

}
;

23 Apply LRUA;
24 until True;

4.4. Asymptotic Stability
The cumulative learning procedure described above

stabilizes asymptotically around the probability density
function of the features of each identity. This is guaran-
teed by the fact that the memory updating rule of Eq. 3

is a contraction that converges to its unique fixed point2

according to the Contraction Mapping Theorem [4]:

Banach Contraction Mapping Theorem
Let (X, d) be a complete metric space and M :
X 7→ X be a map (referred to as contraction)
such that

d(M(x),M(x ′)) ≤ c · d(x, x ′)

for some 0 < c ≤ 1 and all x and x ′ ∈ X .
Then M has a unique fixed point in X . More-
over, for any x ∈ X the sequence of iter-
ates x, M(x), M(M(x)), ...,M(...M(M(x))) con-
verges to the fixed point.

In our case, the memory updating mechanism of Eq. 3:

e(t + 1) = η e(t) with η =

[
1
ρ̄

d1

d2

]α
being η ∈ (0,1], satisfies the conditions of the theo-
rem above. It can be observed that the value e = 0 is
the fixed point of this equation and corresponds to the
case of an infinite accumulation of samples. In such a
case, the Nearest Neighbor classifier error is bounded by
twice the Bayes risk [18]. In our case, to have a finite
number of samples, a threshold ē close to 0 can be set
that approximates with continuity the case of the infinite
sample set.

5. Comparative evaluation

Our method is evaluated over publicly available
datasets, namely Music and Big Bang Theory [5] and
QMUL multi-face dataset [58]. We use the MOTA
(Multiple Object Tracking Accuracy) performance met-
ric defined as [60]:

MOTA = 1 −
∑

t (FNt + FPt + IDSt )∑
t GTt

(4)

where GTt , FNt , FPt and IDSt are respectively the num-
ber of ground truth objects, the number of false nega-
tives, the number of false positives and the number of
identity switches at each time t.

We compare our solution with the performance of the
offline methods in [100]:

- mTLD running the TLD tracker in each shot [38]

2A fixed point of a function is an element of the function’s domain
that is mapped to itself by the function.
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Table 1: IDS and MOTA comparative for the methods in [100] (Music dataset)

Apink BrunoMars Darling GirlsAloud

Method IDS ↓ MOTA ↑ IDS ↓ MOTA ↑ IDS ↓ MOTA ↑ IDS ↓ MOTA ↑

mTLD* 31 −2.2 35 −8.7 24 −22.0 9 −1.1
mTLD2* 173 77.4 278 52.6 278 59.8 322 46.7
ADMM* 179 72.4 428 50.6 412 53.0 487 46.6
IHTLS* 173 74.9 375 52.7 381 62.7 396 51.8
Siamese* 124 79.0 126 56.7 214 69.5 112 51.6
Triplet* 140 78.9 126 56.6 187 69.2 80 51.7
SymTriplet* 78 80.0 105 56.8 169 70.5 64 51.6

IdOL (VGGFace/VGG16-4096) 191 55.1 420 48.8 449 62.1 339 49.3
IdOL (VGGFace2/ResNet-2048) 178 61.4 375 59.4 432 63.0 315 55.0
IdOL (VGGFace2/SeNet-128) 177 62.6 367 60.1 427 64.2 306 55.8

HelloBubble PussycatDolls Tara Westlife

Method IDS ↓ MOTA ↑ IDS ↓ MOTA ↑ IDS ↓ MOTA ↑ IDS ↓ MOTA ↑

mTLD* 7 −3.5 24 3.1 130 1.4 20 −34.7
mTLD2* 139 52.6 296 68.3 251 56.0 177 58.1
ADMM* 115 47.6 287 63.2 251 29.4 223 62.4
IHTLS* 109 52.0 248 70.3 218 35.3 113 60.9
Siamese* 105 56.3 107 70.3 106 58.4 74 64.1
Triplet* 82 56.2 99 69.9 94 59.0 89 64.5
SymTriplet* 69 56.5 82 70.2 75 59.2 57 68.6

IdOL (VGGFace/VGG16-4096) 88 51.4 83 30.7 270 39.5 76 58.9
IdOL (VGGFace2/ResNet-2048) 92 49.1 80 33.7 257 42.3 70 64.1
IdOL (VGGFace2/SeNet-128) 85 51.5 77 35.2 254 42.5 68 63.9

* Values reported from [100]

- mTLD2 a modified versions of TLD that generates
shot-level trajectories [100]

- ADMM [22];

- IHTLS [3];

- Siamese, Triplet and SymTriplet methods [100],

All these methods operate offline (so they exploit both
past and future frames to learn identities). They ap-
ply the Headhunter version of DPM detector by [59]
and detections are then linked into shot-level tracklets.
Tracklets across shots are hence merged into trajectories
using Hierarchical Agglomerative Clustering [92]. The
Siamese, Triplet and SymTriplet methods [100] have a
sophisticated refinement of identity assignment. Track-
lets are used in pairs (in the Siamese) or triplets (in the
Triplet and SymTriplet) to fine-tune an AlexNet-based
CNN pretrained on the CASIA-WebFace and the de-
scriptor of the fine-tuned CNN is finally used to link
tracklets into shot-level tracklets. Comparison with
these methods were made over the Music and Big Bang
Theory datasets.

Tab. 1 provides a comparative overview of MOTA
and IDS scores for the videos of the Music dataset.

These are YouTube videos of live vocal concert record-
ings with very frequent shot changes (i.e. unconstrained
videos), views from different cameras and special ef-
fects. There are a limited number of annotated char-
acters in continuous fast movement. Faces have large
variations of appearance due to rapid changes in pose,
scale, makeup, illumination, camera motion and occlu-
sions. In total, there are 117,598 face detections and
3,845 face tracks annotations. Our IdOL method has
lower MOTA in most videos (although almost the same
of admm and ihtls). However, it has comparable IDS
for HelloBubble, Apink PussycatsDolls and Westlife
videos and lower IDS for Tara.

As feature representation is one of the main compo-
nent of our method, Tab. 1 reports performance evalu-
ated according to three different feature representations:

- 4096-dimensional feature learned from VGGFace
with VGG16 architecture [66] (VGGFace/VGG16-
4096)

- 2048-dimensional feature learned from MS-Celeb-
1M and fine-tuned on VGGFace2 dataset [13] with
SeNet [31] (VGGFace/SeNet-128)

- 128-dimensional feature learned from MS-Celeb-
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Figure 4: MOTA computed at each frame for the videos in the Music
dataset

1M and fine-tuned on VGGFace2 dataset with
ResNet [28] (VGGFace2/ResNet-2048) 3

As it can be noticed, performance follows the increas-
ing quality of the different feature representation evalu-
ated. This is due to the expressive power of more com-
petitive CNN architectures and the exploitation of richer
training datasets.

Fig.4 shows the plot of MOTA of our method com-
puted at each frame for the VGGFace/VGG16-4096 fea-
tures. Due to the incremental learning mechanism, at
the beginning there is not sufficient information avail-
able so the identity models are largely incomplete and
a large number of errors may occur. As more and
more observations are received that contain different
views and conditions of the faces, MOTA stabilizes. In
the Music dataset, asymptotic values of MOTA were
reached approximately after 1000 frames for all the
videos, despite of the different editing and contents.

In order to assess our method on longer video se-
quences also in conditions similar to surveillance con-
texts, we compared performance also on the Big Bang
Theory dataset. This dataset collects six episodes of Big
Bang Theory TV Sitcom, Season 1. These are much
longer videos (approx 20’ each) with indoor ordinary
scenes under a variety of settings and illumination con-
ditions. They contain a much larger number of identi-
ties with crowded scenes. Also in this case, faces have
large variations of appearance due to rapid changes in
pose, scale, makeup, illumination, camera motion and
occlusions.In total, there are 373,392 face detections
and 4,986 face tracks annotations.

Table 2 reports MOTA and IDS scores for the videos
of the Big Bang Theory dataset and Fig. 5 shows the

3Pretrained models are available at https://github.com/
ox-vgg/vgg_face2
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Figure 5: MOTA computed at each frame for the videos in the Big
Bang Theory dataset

plots of MOTA computed at each frame. It can be no-
ticed that considerations similar to those drawn for the
Music dataset hold also in this case, despite of the dif-
ferences between the two datasets. The presence of less
frequent cuts and less extreme conditions due to edit-
ing effects and camera takes than in the Music dataset
determines sensibly lower Identity Switch values and
closer MOTA values in almost all the videos. MOTA
plots have earlier convergence to their asymptotic val-
ues. They all share similar behavior due to the uniform
style of the series.

We further compare our solution with performance of
methods reported in [24]:

- Tracking-Clustering [11]

- Min-Cost Flow [72]

- CRF [24]

- M3 Networks [24]

Specifically Tracking-Clustering is a modified approach
of [11] in which the Haar cascade face detector is re-
placed with a DPM detector and Min-Cost Flow per-
forms offline optimal data association. Comparison
with these methods were made over the QMUL multi-
face dataset. This dataset consists of three single shot
video sequences with four subjects entering and exiting
the field of view, namely Frontal, Fast and Turning.
Although captured by a static camera, all three video
sequences contain intense face motions and occlusions.
In addition, subjects change their face poses frequently
in the Turning sequence and perform fast movements in
the Fast sequence.

Tab. 3 provides a comparative overview of MOTA
and IDS scores for the videos of the QMUL Multiple
Face Dataset. As can be noticed our approach consis-
tently outperforms the other four compared methods on
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Table 2: IDS and MOTA comparative for the methods in [100] (Big Bang Theory dataset)

bbt_s01e01 bbt_s01e02 bbt_s01e03 bbt_s01e04 bbt_s01e05 bbt_s01e06

Method IDS ↓ MOTA ↑ IDS ↓ MOTA ↑ IDS ↓ MOTA ↑ IDS ↓ MOTA ↑ IDS ↓ MOTA ↑ IDS ↓ MOTA ↑

mTLD* 1 −16.3 1 −7.6 5 −2.1 0 −15.9 1 −15.5 0 −3.9
mTLD2* 223 58.4 174 43.6 142 38.0 103 11.6 169 46.4 192 37.7
ADMM* 323 42.5 395 41.3 370 30.8 298 9.7 380 37.4 527 47.5
IHTLS* 312 45.7 394 42.4 376 33.5 295 13.3 360 33.8 515 43.2
Siamese* 144 69.0 116 60.4 109 52.6 85 23.0 128 60.7 156 46.2
Triplet* 164 69.3 143 60.2 121 50.7 103 18.0 118 60.5 185 45.4
SymTriplet* 156 72.2 102 61.6 126 51.9 77 19.5 90 60.9 196 47.6

IdOL 26 60.4 55 45.2 14 46.1 75 53.9 35 44.7 204 43.0

* Values reported from [100]

Table 3: IDS and MOTA comparative for the methods in [24] (QMUL
multi-face dataset)

Average

Method IDS MOTA

Tracking-Clustering* 23 61.8
Min-Cost Flow* 29 53.7
CRF* 20 65.2
M3 Networks* 17 68.8

IdOL (VGGFace) 10.0 81.5
IdOL (VGGFace2/SeNet) 2.3 87.5
IdOL (VGGFace2/ResNet) 2.3 87.2

* Values reported from [24]

both MOTA and IDS. Since the dataset is composed
by single shot videos, [24] can operate online as our
method (i.e. the offline shot segmentation pass is not
required).

6. Critical discussion and additional experiments

The MOTA score is a largely accepted metrics for
Multiple Object Tracking. However it has clear limita-
tions to assess the performance of cumulative learning
as in the MOCAL learning setting. In the following, we
discuss such limitations and perform additional evalua-
tions.

6.1. Influence of detection

MOTA produces a cumulative score considering
False Positives, False Negatives and Identity Switches.
Typically, the number of False Positives and False Neg-
atives are much larger than Identity Switches (see Ta-
ble 5 f.e.). False Positives of MOTA are essentially de-
termined by false positive detections, while False Neg-
atives are in part due to missed detections and in part to
the case in which no identity is assigned to a face ob-
servation. From the above it descends that MOTA score

can be largely influenced by the performance of the de-
tector.

While it can be presumed that a more effective detec-
tor has little influence on the performance of the MOT
methods reported in the comparison (these methods op-
erate off-line and most tracklets due to erroneous detec-
tions can be removed using the future information), the
effectiveness of the detector largely influences the per-
formance of online incremental identity learning, since
future information cannot be exploited in this case. A
key requirement for our task is therefore that the detec-
tor has as few False Positives and False Negatives as
possible. The Headhunter detector was verified being
clearly inadequate to this end. Table 4 shows the per-
formance gap of the IdOL method with the Headhunter
and the Tiny Face Detector, for the T-ara video of the
Music dataset (the detections of the Headhunter were
released only for this video by the authors). However,
since the Tiny Face detector is capable to detect also
very small-sized faces (say less than 40 pixels), given
the fact that most of these faces are not ground-truth
annotated in the Music and Big Bang Theory datasets
(see Figure 6 as an example), it happens that False Pos-
itives are counted whenever the detector detects a non
annotated face. Tables 5 and 6 show the increase of per-
formance achievable by the IdOL method in the ideal
condition of no False Positive detections, considering
the ground truth bounding boxes (left side).

False Positives of the detector have the additional
drawback of increasing identity switching and the num-
ber of wrong new identities. In the IdOL method, the
mechanism of Temporal Coherence verification limits
the proliferation of such new identities. The effects of
the Temporal Coherence verification are shown in Ta-
ble 7 for the Music dataset using the ground truth bound-
ing boxes as detections. While it may increase False
Negatives, it avoids the increase of Identity Switches.
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Table 4: Influence of detection: FP FN MOTA for different detectors (TARA video of Music dataset)

Tara

Method FP ↓ FN ↓ MOTA ↑

IdOL HeadHunter detector 1939 8592 25.6
IdOL Tiny-face detector 259 8259 39.5

Table 5: Influence of detection: IDS FN FP MOTA of IdOL using ground-truth bounding boxes versus Tiny Detector bounding boxes (Music
dataset)

Ground Truth Bounding Box Tiny Detector

Video IDS ↓ FN ↓ FP ↓ MOTA ↑ IDS ↓ FN ↓ FP ↓ MOTA ↑

Apink 130 2105 0 69.3 191 2627 446 55.1
BrunoMars 391 3644 0 75.8 420 4178 3950 48.8
Darling 361 2620 0 68.7 449 2278 887 62.1
GirlsAloud 469 4837 0 67.6 339 6691 1272 49.3
HelloBubble 160 707 0 83.4 88 2150 301 51.4
PussycatDolls 316 4697 0 64.9 83 7050 2764 30.7
Tara 542 5210 0 60.4 270 8259 259 39.5
Westlife 138 1433 0 86.2 76 3403 1198 58.9

6.2. Cluster Purity

The MOTA score computes a cumulative perfor-
mance score until the time of evaluation based on in-
stantaneous measures of False Negatives, False Posi-
tives and Identity Switches. According to this, if in a
sequence an Identity Switch occurs at a frame and the
new (incorrect) identity is confirmed in the following
frames, MOTA counts one Identity Switch only, at the
frame at which it occurred. Instead in the case above, to
assess the quality of online learning we should count as
many Identity Switches as the times the original iden-
tity has been mismatched. According to this, it appears
that MOTA is not fully adequate to measure the perfor-
mance of on-line identity learning. A better metrics is

Figure 6: Detections of the Tiny-face detector for a sample frame (Mu-
sic dataset). Most of the small bounding boxes are not annotated as
faces in the ground-truth. Ground-truth annotated faces are circled.

the Weighted Cluster Purity (WCP), defined as [100]:

WCP =
1
M

∑
c

mcpc (5)

where M is the number of identities detected in the
video, c the index of the cluster, mc the number of iden-
tity instances in the cluster and pc the cluster purity,
measured as the ratio between the most occurred iden-
tity in the cluster and mc .

Tables 8 and 9 present the WCP scores for the Music
and Big Bang Theory datasets, and compare the IdOL
method with respect to a few MOT methods of [100]. In
almost all the cases the IdOL method method has largely
better WCP scores. The lower score in the Apink video
with respect to Siamese, Triplet and Symtriplet methods
can be ascribed both to the ethnicity bias of the VG-
GFace features and to the effect of fine tuning on these
methods.

Fig. 7 and 8 show the WCP plots for the videos in
the Music and the Big Bang Theory datasets. At each
frame WCP is calculated from the beginning up to that
frame. It can be noticed that for the Big Bang Theory
plots rapidly converge to the asymptotic values (each
cluster contains a sufficiently complete description of
the identity and features of different identities have been
discarded). In some videos of the Music dataset, the
presence of very frequent discontinuities and extreme
conditions makes less effective the mechanism for keep-
ing identity switches low.
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Table 6: Influence of detection: IDS FN FP MOTA of IDoL using ground-truth bounding boxes versus Tiny Detector bounding boxes (Big Bang
Theory dataset)

Ground Truth Bounding Box Tiny Detector

Video IDS ↓ FN ↓ FP ↓ MOTA ↑ IDS ↓ FN ↓ FP ↓ MOTA ↑

bbt_s01e01 218 1361 0 96.0 26 4631 10 875 60.3
bbt_s01e02 178 3947 0 86.3 55 5525 10 914 45.2
bbt_s01e03 191 6999 0 79.6 14 9668 9285 46.1
bbt_s01e04 341 2345 0 92.1 75 8615 7054 53.9
bbt_s01e05 381 3130 0 89.8 35 9919 9009 44.7
bbt_s01e06 559 5449 0 87.4 204 15 872 11 103 43.0

Table 7: Influence of Temporal Coherence: IDS FN MOTA of IDoL using Temporal Coherence versus IdOL without Temporal Coherence (Music
dataset)

IdOL with Temporal Coherence IdOL without Temporal Coherence

Video IDS ↓ FN ↓ MOTA ↑ IDS ↓ FN ↓ MOTA ↑

Apink 130 2105 69.3 265 1558 74.9
BrunoMars 391 3644 75.8 741 2301 81.8
Darling 361 2620 68.7 655 2017 72.0
GirlsAloud 469 4837 67.6 897 3927 70.6
HelloBubble 160 707 83.4 295 358 87.5
PussycatDolls 316 4697 64.9 884 3787 67.3
Tara 542 5210 60.4 1025 4436 62.4
Westlife 138 1433 86.2 274 1105 87.9

Fig. 14 shows sample frames of the Big Bang Theory
and Music videos with the detected faces and their as-
signed identities. For each video two frames are shown
where the same persons are taken in different condi-
tions, with large appearance variations due to partial
occlusions (Figs. 14b, 14c, 14h, 14g), pose changes
(Figs. 14a, 14c, 14e, 14f), aspect change (Figs. 14d, 14e)
and in-plane rotations (Figs. 14g). It can be noticed that
the learning mechanism is able to distinguish the same
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Figure 7: Weighted Cluster Purity computed at each frame for the
videos in the Music dataset

identity also in the presence of such large variations.
Fig. 14i evidences the effect of the ethnicity bias of the
VGGFace features. In this case, the method is not able
to predict unique identities for the faces and does not
make any identity assignments.

The plots in Fig. 9 show the number of identities
learned by the IdOL method at each frame in compari-
son with the ground truth for the videos of the Big Bang
Theory dataset. For the sake of comparison we also
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Figure 8: Weighted Cluster Purity computed at each frame for the
videos in the Big Bang Theory dataset
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Table 8: Weighted Cluster Purity score comparative. Music dataset.

Method Apink BrunoMars Darling Girls Aloud Hello Bubble Pussycat Dolls T-ara Westlife

VGG-Face* 0.24 0.44 0.20 0.31 0.29 0.46 0.23 0.27
Siamese* 0.48 0.88 0.46 0.67 0.54 0.77 0.69 0.54
Triplet* 0.60 0.83 0.49 0.67 0.60 0.77 0.68 0.52
SymTriplet* 0.72 0.90 0.70 0.69 0.64 0.78 0.69 0.56

IdOL (VGGFace/VGG16-4096) 0.51 0.96 0.73 0.89 0.59 0.98 0.72 0.99
IdOL (VGGFace2/ResNet-2048) 0.72 0.92 0.78 0.92 0.47 0.97 0.74 0.99
IdOL (VGGFace2/SeNet-128) 0.73 0.91 0.79 0.93 0.48 0.98 0.78 0.95

* Values reported from [100]
Table 9: Weighted Cluster Purity score comparative. Big Bang Theory dataset.

Method bbt_s01e01 bbt_s01e02 bbt_s01e03 bbt_s01e04 bbt_s01e05 bbt_s01e06

VGG-Face* 0.91 0.85 0.83 0.54 0.65 0.46
Siamese* 0.94 0.95 0.87 0.74 0.70 0.70
Triplet* 0.94 0.95 0.92 0.74 0.68 0.70
SymTriplet* 0.94 0.95 0.92 0.78 0.85 0.75

IdOL 0.99 0.99 0.94 0.94 0.99 0.97

* Values reported from [100]

show the plot of a Baseline approach that performs 1-
Nearest Neighbor matching (i.e. forward) with thresh-
olding of the distance value. For this baseline a maximal
number of memory elements for each identity is used
and elements are removed randomly when the identity
budget is met (the best result of experiments with dif-
ferent distance thresholds and max memory elements
is reported). As can be noticed, the number of iden-
tities estimated by the Baseline method increases with
time while our approach closely follows the number of
identities of the ground-truth. The results confirm the
effectiveness of the IdOL method to learn an unknown
number of identities.

6.3. Scaling and Asymptotic Stability

As the number of identities grow, online learning of
identities becomes more challenging. In order to ver-
ify the behavior of the IdOL method in this case, we
concatenated the six sequences of the Big Bang Theory
dataset to form a single longer sequence of about two
hours, and manually annotated all the subjects up to a
total number of 99 different identities.

Fig. 10a and Fig. 10b respectively show the num-
ber of features in memory at each time instant and the
number of ground-truth identities that showed up until
then. It can be noticed that the number of features in
memory follows the same trend as the number of iden-
tities. Fig. 10c shows the MOTA plot on the whole se-
quence (dark bold line) and the MOTA plots calculated
for each video segment (colored lines). As the obser-
vations are accumulated, all the identities are progres-

sively learned and MOTA keeps stable despite that the
number of identities has been increased of one order of
magnitude with respect to the individual sequences. The
MOTA fluctuations due to the insufficient information
that were observed at the beginning of each sequence
are no more present and the MOTA score is higher than
the MOTA of the individual video segments in most
cases. In Episode 4 (e04), a high number of new iden-
tities joins and MOTA is temporarily lower due to the
increased complexity of learning.

6.4. Ablation Study

To demonstrate the effectiveness of the solution we
conduct an ablation study in comparison with a base-
line in which identities are never explicitly deleted when
they exit the field of view. The Baseline uses memory
and Reverse Nearest Neighbour as IdOL,and randomly
forgets features when a memory budget is met (three
different budget values |M| are evaluated: 100, 500,
1000 and 1500 elements). The Baseline does not use
the learning mechanism of Eq.3. Since features are ran-
domly deleted in the baseline to maintain the memory
budget, performance values are averaged over 100 tests.

We also consider the effect of different representa-
tions, using the features discussed in section 5. The
QMUL multi-face dataset is used for the ablation as it
provides specific types of appearance variation of the
four subjects. Effects of viewing conditions are con-
sidered by evaluating performance for the three videos
of the dataset, separately and concatenated in different
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Figure 9: Number of identities learned at each frame for the videos in the Big Bang Theory dataset: Ground-truth, IdOL and Baseline.
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Figure 10: Big Bang Theory 2 hours sequence (184298 frames) ob-
tained by linking the videos of the 6 Episodes: (a) IdOL number of
features in memory; (b) ground-truth number of identities (cumula-
tive); (c) IdOL MOTA computed at each frame for the whole sequence
(black bold line) and each Episode (colored lines).

order. This latter allows to evaluate cumulative learn-
ing with curricula of different complexity. The aver-
age performance values are also reported in both cases.
Results for the three videos of the dataset, separately
evaluated are shown in Tab. 10a. For the Baseline,
the performance increases with the size of the memory
and with the quality of the feature representation. The
IdOL method scores the best results overall with a sub-
stantially lower number of features stored in the mem-
ory. The difference is particularly evident in the case
of the VGGFace2/SeNet-128 feature representation. In
this case the number of features in memory is one or-
der of magnitude smaller than with VGGFace/VGG16-
4096. VGGFace2/SeNet-128 and VGGFace2/ResNet
score the best performance. This depends on the CNN
architecture used, the VGGFace2 training dataset and
on the lower feature dimension. Since the IdOL match-
ing procedure is based on distance ratio, under reason-
able assumptions of feature distribution, the distance
ratio between the nearest and the farthest neighbors to
a given features in high dimensional space is almost 1
[10, 1] so making the criterion less discriminative than
it is in a lower dimensional space.

Results for learning curricula of different complex-
ity obtained by concatenating the three videos of the
QMUL multi-face dataset (Fast→ Frontal→ Turning,
Frontal → Turning → Fast and Turning → Frontal
→ Fast), are shown in Tab. 10b and Fig. 11. Re-
sults in Tab. 10b confirm the conclusions derived for
Tab. 10a. Fig. 11 compares IDF14 and MOTA of the

4IDF1 is the ratio of correctly identified detections over the aver-
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three curricula with IDF1 and MOTA of the individ-
ual sequences (bold and dotted lines, respectively). It
clearly appears the increase of both MOTA and IDF1 by
cumulative learning from the previous sequences. Fea-
tures learned from the VGGFace2 dataset (green and
red) show better performance than features trained with
the VGGFace one (blue). With gradual increasing of
complexity of the curriculum Frontal → Turning →
Fast in Fig. 11a, IdOL is however able to improve the
performance of the Turning sequence also on the weak-
est VGGFace/VGG16-4096 representation. On the con-
trary, as shown in Fig. 11b, starting with Turning does
not improve the performance on the Frontal. As shown
in Fig. 11c, similar behaviour of Fig. 11a is observed
when the Fast video sequence is moved to the the be-
ginning.

Finally Fig. 12 shows a direct comparison between
the Baseline with |M| = 500 and IdOL both using
the VGGFace2/SeNet-128 feature representation. IdOL
and the Baseline concluded the processing with 392 and
500 elements, respectively showing that with a compa-
rable number of features, our method does not change
substantially MOTA and IDF1 over time.

The performance evaluations we reported use param-
eters values that correspond to typical conditions ob-
served in most real sequences. We use the following
values: ρ̄ = 1/1.6 = 0.625. This setting has the follow-
ing interpretation: in order to asses the match, the sec-
ond nearest neighbour must be 1.6 times more distant
than the first nearest neighbor. The eligibility threshold
ē, used to delete a feature, is set according to the length
of the processed video as the length have a direct im-
pact on feature diversity on the memory module. We
set: ē = 0.5 for all the videos in the Music dataset and
QMUL multiface-dataset, ē = 0.9 for each single BBT
video, ē = 0.99 for the concatenated BBT. The value α
in Eq. 3 is set to α = 0.001 for all the datasets.

6.5. Computational Issues

An evident drawback of ReNN is that in practice
a huge number of features (those accumulated in the
memory module) is matched against a relatively small
set of features (those observed in the current image).
Due to that, deciding matching by sorting is pro-
hibitively expensive and tree-based data structures [63]
cannot be used effectively since the number of the pro-
totypes in the image is orders of magnitude smaller
than the number of prototypes in the memory. How-
ever, this drawback can be easily solved by computing

age number of ground-truth and computed detections [76].
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Figure 11: Effects of cumulative learning: performance plots of
MOTA and IDF1 over the three curricula (bold) and the individual
sequences (dotted) of the QMUL multi-face dataset. Plots are shown
for different feature representations: VGGface/VGG16 (blue), VG-
GFace2/SeNet (green) VGGFace2/ResNet (red). Learning perfor-
mance shows some dependency on initial learning: in the end, learn-
ing is clearly improved with curricula starting with the Frontal and
Turning sequence; does not improve when curricula starts with the
Fast. Effects of the quality of features are clearly evident.

the first and second minimum distance through consec-
utive applications of linear search with GPU implemen-
tation. In this way, we can exploit the very efficient
CUDA matrix multiplication kernel for the computa-
tion of the squared distance matrix and GPU parallelism
[49]. Fig. 13 shows scaling of performance on Intel
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Table 10: Ablation study: Baselines with fixed memory budget (100, 500, 1000, 1500 features) versus the IdOL method. MOTA IDF1 and IDS are
evaluated for different feature representations (VGGFace/VGG16, VGGFace2/SeNet, VGGFace2/ResNet). (a) performance values over the three
sequences of the QMUL multi-face dataset; (b) Performance values evaluated over the three curricula. Average performance values of the three
cases are also presented.

Feature Representation Fast Frontal Turning Average
Dataset/Architecture Dim MOTA IDF1 IDS |M | MOTA IDF1 IDS |M | MOTA IDF1 IDS |M | MOTA IDF1 IDS

BASELINES (Tiny Face Detector)

VGGFace/VGG16 4096 67.526 0.683 10 100 66.261 0.727 16 100 41.502 0.509 11 100 58.430 0.640 12.3
VGGFace2/SeNet 128 76.005 0.750 6 100 63.996 0.683 22 100 43.165 0.513 14 100 61.055 0.649 14.0
VGGFace2/ResNet 2048 76.401 0.745 9 100 64.310 0.697 18 100 50.227 0.618 14 100 63.646 0.687 13.7

VGGFace/VGG16 4096 77.572 0.709 13 500 84.046 0.849 26 500 70.758 0.729 36 500 77.459 0.762 25.0
VGGFace2/SeNet 128 77.258 0.759 11 500 83.073 0.850 38 500 74.979 0.775 32 500 78.436 0.795 27.0
VGGFace2/ResNet 2048 76.518 0.751 17 500 83.987 0.854 38 500 75.839 0.779 43 500 78.781 0.794 32.7

VGGFace/VGG16 4096 78.053 0.706 12 1000 84.670 0.859 25 1000 72.358 0.737 36 1000 78.361 0.767 24.3
VGGFace2/SeNet 128 77.328 0.765 14 1000 86.261 0.901 54 1000 87.659 0.878 68 1000 83.749 0.848 45.3
VGGFace2/ResNet 2048 76.466 0.753 22 1000 86.375 0.887 49 1000 86.892 0.847 66 1000 83.244 0.829 45.7

VGGFace/VGG16 4096 77.989 0.706 12 1123 87.925 0.881 28 1500 73.752 0.743 35 1500 79.889 0.777 25.0
VGGFace2/SeNet 128 77.328 0.765 14 1123 86.292 0.907 55 1500 87.859 0.882 66 1500 83.826 0.851 45.0
VGGFace2/ResNet 2048 76.466 0.753 22 1123 86.389 0.891 54 1500 88.575 0.859 68 1500 83.810 0.834 48.0

IdOL (Tiny Face Detector)

VGGFace/VGG16 4096 79.138 0.886 4 785 87.152 0.933 6 1501 78.079 0.871 20 1705 81.457 0.897 10.0
VGGFace2/SeNet 128 80.259 0.892 0 203 90.104 0.951 2 321 92.323 0.960 5 323 87.562 0.934 2.3
VGGFace2/ResNet 2048 79.483 0.888 0 305 90.007 0.950 2 464 92.032 0.959 5 576 87.174 0.932 2.3

(a)

Feature Representation Fast→Frontal→Turning Frontal→Turning→Fast Turning→Frontal→Fast Average
Dataset/Architecture Dim MOTA IDF1 IDS |M | MOTA IDF1 IDS |M | MOTA IDF1 IDS |M | MOTA IDF1 IDS

BASELINES (Tiny Face Detector)

VGGFace/VGG16 4096 29.218 0.402 15 100 42.929 0.504 23 100 24.886 0.322 15 100 32.344 0.409 17.7
VGGFace2/SeNet 128 30.981 0.397 16 100 43.926 0.493 32 100 31.822 0.381 24 100 35.576 0.424 24.0
VGGFace2/ResNet 2048 19.069 0.265 14 100 44.947 0.510 27 100 39.055 0.483 29 100 34.357 0.419 23.3

VGGFace/VGG16 4096 57.070 0.598 50 500 66.803 0.719 53 500 60.892 0.653 64 500 61.588 0.657 55.7
VGGFace2/SeNet 128 45.376 0.485 47 500 67.436 0.729 63 500 63.587 0.662 61 500 58.800 0.625 57.0
VGGFace2/ResNet 2048 37.857 0.418 52 500 69.080 0.739 73 500 62.747 0.680 74 500 56.561 0.612 66.3

VGGFace/VGG16 4096 47.313 0.496 46 1000 69.795 0.741 61 1000 61.828 0.665 64 1000 59.645 0.634 57.0
VGGFace2/SeNet 128 45.610 0.532 83 1000 80.956 0.835 132 1000 83.916 0.842 152 1000 70.161 0.736 122.3
VGGFace2/ResNet 2048 40.397 0.469 75 1000 79.600 0.804 115 1000 76.103 0.775 130 1000 65.367 0.683 106.7

VGGFace/VGG16 4096 49.792 0.522 52 1500 77.317 0.781 86 1500 61.483 0.660 68 1500 62.864 0.654 68.7
VGGFace2/SeNet 128 48.073 0.557 90 1500 85.377 0.876 146 1500 84.866 0.855 160 1500 72.772 0.763 132.0
VGGFace2/ResNet 2048 46.373 0.540 93 1500 85.626 0.843 144 1500 85.096 0.838 167 1500 72.365 0.740 134.7

IdOL (Tiny Face Detector)

VGGFace/VGG16 4096 83.828 0.913 26 2436 88.049 0.912 78 2376 83.473 0.909 26 2465 85.117 0.911 43.3
VGGFace2/SeNet 128 89.850 0.947 14 381 89.380 0.946 7 367 89.792 0.948 6 392 89.674 0.947 9.0
VGGFace2/ResNet 2048 88.118 0.939 12 694 88.531 0.941 8 713 89.632 0.947 6 660 88.760 0.942 8.7

(b)

i7-2600K 3.40GHz and Nvidia Geforce Titan X as a
function of the number of features in the memory mod-
ule. It is evident that, using GPU, performance keeps
almost constant as the number of features in memory
increases. With such hardware support, the full system
operates on-line at 8 frames per second with 800x600
video frame resolution.

7. Conclusions

In this paper, we have presented a novel solution
for cumulative learning face identities in unconstrained
video streams based on face appearance. We discussed

the substantial differences between our learning set-
ting (referred as MOCAL, Multiple Object Cumula-
tive Adaptation Learning), Multiple Object Tracking
and Continual Learning when applied to video streams.
Our solution updates a representative dataset and use
it as a memory of all the past visual information ob-
served so far. This strategy enables the accumulation
and preservation of essential knowledge and at the same
time allows to handle the non-stationarity of the data
stream. We have shown that the proposed method is the-
oretically sound, asymptotically stable and operates on-
line. Its effectiveness has been demonstrated in compar-
ison with Multiple Object Tracking methods over pub-
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Figure 12: Effects of cumulative learning: performance plots of
MOTA and IDF1 over the Turning→ Frontal→ Fast curriculum for
the Baseline with 500 features memory budget (light green) versus the
IdOL method (392 features). In the IdOL method MOTA and IDF1
soon reach the maximum value and keep stable over time, despite of
the lower number of features in memory.
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Figure 13: Average processing time of Reverse Nearest Neighbor as
a function of the number of features in memory: on Intel i7-2600K
3.40GHz and NVIDIA Geforce Titan X GPU.

lic datasets. We showed that the method is capable of
cumulative learning effectively over long unconstrained
video sequences. The method can be applied in prin-
ciple to any other context for which a detector/feature
combination is available (i.e. vehicle, person, boat, traf-
fic sign).
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